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Th 1     AN ILL FATED SATELLITE 
 
 

The most frequent orbital manoeuvres performed by spacecraft 
consist of velocity variations along the direction of flight, namely 
accelerations to reach higher orbits or brakings done to initiate re-entering in 
the atmosphere. In this problem we will study the orbital variations when the 
engine thrust is applied in a radial direction.  

To obtain numerical values use: Earth radius m10376 6⋅= .RT , 
Earth surface gravity 2m/s819.g = , and take the length of the sidereal day 
to be h0240 .T = . 

We consider a geosynchronous1 communications satellite of mass m 
placed in an equatorial circular orbit of radius 0r . These satellites have an 
“apogee engine” which provides the tangential thrusts needed to reach the 
final orbit. 

Marks are indicated at the beginning of each subquestion, in parenthesis. 

 

Question 1 

1.1 (0.3) Compute the numerical value of 0r . 

1.2 (0.3+0.1) Give the analytical expression of the velocity 0v  of the satellite as a function of g, TR , and 0r , and 
calculate its numerical value. 

1.3 (0.4+0.4) Obtain the expressions of its angular momentum 0L  and mechanical energy 0E , as functions of 0v , m, g 
and TR . 

Once this geosynchronous circular orbit has been reached (see Figure F-1), the satellite 
has been stabilised in the desired location, and is being readied to do its work, an error by the 
ground controllers causes the apogee engine to be fired again. The thrust happens to be 
directed towards the Earth and, despite the quick reaction of the ground crew to shut the 
engine off, an unwanted velocity variation v∆  is imparted on the satellite. We characterize 
this boost by the parameter 0v/v∆β = . The duration of the engine burn is always negligible 
with respect to any other orbital times, so that it can be considered as instantaneous.  

 
Question 2 

Suppose 1<β . 

2.1 (0.4+0.5) Determine the parameters of the new orbit2, semi-latus-rectum l  and eccentricity ε , in terms of 0r  and β.  

2.2 (1.0) Calculate the angle α between the major axis of the new orbit and the position vector at the accidental misfire. 

2.3 (1.0+0.2) Give the analytical expressions of the perigee minr  and apogee maxr  distances to the Earth centre, as 
functions of 0r  and β , and calculate their numerical values for 4/1=β . 

2.4 (0.5+0.2) Determine the period of the new orbit, T, as a function of 0T  and β, and calculate its numerical value for 
4/1=β . 

                                                           
1 Its revolution period is 0T . 
2 See the “hint”. 

Image: ESA 
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Question 3 

3.1 (0.5) Calculate the minimum boost parameter, escβ , needed for the satellite to escape Earth gravity. 

3.2 (1.0) Determine in this case the closest approach of the satellite to the Earth centre in the new trajectory, minr ′ , as a 
function of 0r . 

 

Question 4 

Suppose escββ > . 

4.1 (1.0) Determine the residual velocity at the infinity, ∞v , as a function of 0v  
and β. 

4.2 (1.0) Obtain the “impact parameter” b of the asymptotic escape direction in 
terms of 0r and β. (See Figure F-2). 

4.3 (1.0+0.2) Determine the angle φ  of the asymptotic escape direction in terms of 

β. Calculate its numerical value for escββ
2
3

=  . 

 

 

 

 

HINT 

 

Under the action of central forces obeying the inverse-square law, bodies follow 

trajectories described by ellipses, parabolas or hyperbolas. In the approximation m << M 

the gravitating mass M is at one of the focuses. Taking the origin at this focus, the general 

polar equation of these curves can be written as (see Figure F-3) 

  ( )
θε

θ
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l

r
−

=
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where l is a positive constant named the semi-latus-rectum and ε  is the eccentricity of the 

curve. In terms of constants of motion: 
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where G is the Newton constant, L is the modulus of the angular momentum of the orbiting mass, with respect to the origin, and E is its  

mechanical energy, with zero potential energy at infinity. 

 
We may have the following cases: 

 
i) If 10 <≤ ε , the  curve is an ellipse (circumference for 0=ε ).  

ii) If 1=ε , the curve is a parabola. 

iii) If 1>ε , the curve is a hyperbola.  
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Question Basic formulas and 
ideas used 

Analytical results Numerical results Marking 
guideline 

1.1   =0r  0.3 

1.2  =0v  =0v  0.4 

1.3 
 =0L  

 
=0E  

 
0.4 
 

0.4 

2.1 

 

 =l  

=ε  

 0.4 

0.5 

2.2   =α  1.0 

2.3 
 

=

=

min

max

r

r
 

=

=

min

max

r

r
 1.2 

 

2.4  =T  =T  0.7 

3.1   =escβ  0.5 

3.2  =′minr   1.0 

4.1  =∞v   1.0 

4.2  =b   1.0 

4.3  =φ  =φ  1.2 
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Th 2     ABSOLUTE MEASUREMENTS OF ELECTRICAL QUANTITIES 

 
The technological and scientific transformations underwent during the XIX century produced a compelling need of 

universally accepted standards for the electrical quantities. It was thought the new absolute units should only rely on the 
standards of length, mass and time established after the French Revolution. An intensive experimental work to settle the 
values of these units was developed from 1861 until 1912. We propose here three case studies. 

Marks are indicated at the beginning of each subquestion, in parenthesis. 
  
Determination of the ohm (Kelvin) 

A closed circular coil of N turns, radius a and total resistance R is rotated with 
uniform angular velocity ω about a vertical diameter in a horizontal magnetic 

field iBB
rr

00 = . 

1. (0.5+1.0) Compute the electromotive force ε induced in the coil, and also the 

mean power1 P  required for maintaining the coil in motion. Neglect the coil 

self inductance. 

A small magnetic needle is placed at the center of the coil, as shown in Figure F-1. It 
is free to turn slowly around the Z axis in a horizontal plane, but it cannot follow the rapid 
rotation of the coil. 

2. (2.0) Once the stationary regime is reached, the needle will set at a direction making a small angle θ with 0B
r

. 
Compute the resistance R of the coil in terms of this angle and the other parameters of the system. 

Lord Kelvin used this method in the 1860s to set the absolute standard for the ohm. To avoid the rotating coil, 
Lorenz devised an alternative method used by Lord Rayleigh and Ms. Sidgwick, that we analyze in the next paragraphs. 

 

Determination of the ohm (Rayleigh, Sidgwick). 

The experimental setup is shown in Figure   
F-2. It consists of two identical metal disks D and D' 
of radius b mounted on the conducting shaft SS'. A 
motor rotates the set at an angular velocity ω , which 
can be adjusted for measuring R. Two identical coils 
C and C' (of radius a and with N turns each) 
surround the disks. They are connected in such a 
form that the current I flows through them in 
opposite directions. The whole apparatus serves to 
measure the resistance R.  

 

                                                 
1 The mean value X  of a quantity ( )tX  in a periodic system of period T is  ( )∫=

T
dttX

T
X

0

1
 

You may need one or more of these integrals: 
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3.  (2.0) Assume that the current I flowing through the coils C and C' creates a uniform magnetic field B around D 
and D', equal to the one at the centre of the coil. Compute1 the electromotive force ε induced between the rims 1 
and 4, assuming that the distance between the coils is much larger than the radius of the coils and that a >> b. 

The disks are connected to the circuit by brush contacts at their rims 1 and 4. The galvanometer G detects the flow 
of current through the circuit 1-2-3-4. 

4.  (0.5) The resistance R is measured when G reads zero. Give R in terms of the physical parameters of the system.  

Determination of the ampere 

Passing a current through two conductors and measuring the force between them provides an absolute determination 
of the current itself. The “Current Balance” designed by Lord Kelvin in 1882 exploits this method. It consists of six 
identical single turn coils C1… C6 of radius a, connected in series. As shown in Figure F-3, the fixed coils C1, C3, C4, and 
C6 are on two horizontal planes separated by a small distance 2h. The coils C2 and C5 are carried on balance arms of length 
d, and they are, in equilibrium, equidistant from both planes.  

The current I flows through the various coils in such a direction that the magnetic force on C2 is upwards while that 
on C5 is downwards. A mass m at a distance x from the fulcrum O is required to restore the balance to the equilibrium 
position described above when the current flows through the circuit. 

5. (1.0) Compute the force F on C2 due to the magnetic interaction with C1. For simplicity assume that the force per 
unit length is the one corresponding to two long, straight wires carrying parallel currents.  

6. (1.0) The current I is measured when the balance is in equilibrium. Give the value of I in terms of the physical 
parameters of the system. The dimensions of the apparatus are such that we can neglect the mutual effects of the 
coils on the left and on the right. 

Let M   be the mass of the balance (except for m and the hanging parts), G its centre of mass and l the distance .OG  

7. (2.0) The balance equilibrium is stable against deviations producing small changes zδ  in the height of C2 and 
zδ−  in C5. Compute2 the maximum value maxzδ  so that the balance still returns towards the equilibrium 

position when it is released. 
 

                                                 
2 Consider that the coils centres remain approximately aligned.  

Use the approximations  21
1

1
ββ

β
+≈

±
m   or 2

2
1

1

1
β

β
m≈

±
  for  1<<β , and θθ tansin ≈  for small θ. 
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guideline 

 

1 

 

 
ε = 

=P  

 

1.5 

 

2 

  

R = 

 

2.0 

 

3 

  

ε = 

 

2.0 

 

4 

  

R = 

 

0,5 

 

5 

  

F = 

 

1.0 

 

6 

  

I = 

 

1.0 

 

7 

   

=maxzδ  

 

2.0 

 



 
36th International Physics Olympiad. Salamanca (España) 2005 

  
 

 
Th 3   Page 1 of 3 

 

R.S.E.F. 

 
Th 3     NEUTRONS IN A GRAVITATIONAL FIELD 

 
In the familiar classical world, an elastic bouncing ball on the Earth’s surface is an ideal example for perpetual 

motion. The ball is trapped: it can not go below the surface or above its turning point. It will remain bounded in this state, 
turning down and bouncing up once and again, forever. Only air drag or inelastic bounces could stop the process and will 
be ignored in the following. 

A group of physicists from the Institute Laue - Langevin in Grenoble reported1 in 2002 experimental evidence on 
the behaviour of neutrons in the gravitational field of the Earth. In the experiment, neutrons moving to the right were 
allowed to fall towards a horizontal crystal surface acting as a neutron mirror, where they bounced back elastically up to the 
initial height once and again.  

The setup of the experiment is sketched in Figure F-1. It consists of the opening W, the neutron mirror M (at height 
z = 0), the neutron absorber A (at height z = H and with length L) and the neutron detector D. The beam of neutrons flies 
with constant horizontal velocity component vx from W to D through the cavity between A and M. All the neutrons that 
reach the surface of A are absorbed and disappear from the experiment. Those that reach the surface of M are reflected 
elastically. The detector D counts the transmission rate N(H), that is, the total number of neutrons that reach D per unit 
time. 

Marks are indicated at the beginning of each subquestion, in parenthesis. 

 

The neutrons enter the cavity with a wide range of positive and negative vertical velocities, vz. Once in the cavity, 
they fly between the mirror below and the absorber above.  

1. (1.5) Compute classically the range of vertical velocities vz(z) of the neutrons that, entering at a height z, can 
arrive at the detector D. Assume that L is much larger than any other length in the problem. 

2. (1.5) Calculate classically the minimum length Lc of the cavity to ensure that all neutrons outside the 
previous velocity range, regardless of the values of z, are absorbed by A. Use vx = 10 m s-1 and H = 50 µm. 

The neutron transmission rate N(H) is measured at D. We expect that it increases monotonically with H.       

3. (2.5) Compute the classical rate Nc(H) assuming that neutrons arrive at the cavity with vertical velocity vz 
and at height z, being all the values of vz and z equally probable. Give the answer in terms of ρ, the constant 
number of neutrons per unit time, per unit vertical velocity, per unit height, that enter the cavity with vertical 
velocity vz and at height z. 

 

                                                 
1  V. V. Nesvizhevsky et al.  “Quantum states of neutrons in the Earth’s gravitational field.” Nature,  415 (2002) 297. Phys Rev D 67, 

102002 (2003). 
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The experimental results obtained by the Grenoble group 

disagree with the above classical predictions, showing instead that the 
value of N(H) experiences sharp increases when H crosses some 
critical heights H1, H2 … (Figure F-2 shows a sketch). In other words, 
the experiment showed that the vertical motion of neutrons bouncing 
on the mirror is quantized. In the language that Bohr and Sommerfeld 
used to obtain the energy levels of the hydrogen atom, this can be 
written as: “The action S of these neutrons along the vertical direction 
is an integer multiple of the Planck action constant h”. Here S is given 
by 

∫ === ...3,2,1,)( nhndzzpS z             (Bohr-Sommerfeld quantization rule) 

where pz is the vertical component of the classical momentum, and the integral covers a whole bouncing cycle. Only 
neutrons with these values of S are allowed in the cavity. 

4. (2.5) Compute the turning heights Hn and energy levels En (associated to the vertical motion) using the 
Bohr-Sommerfeld quantization condition. Give the numerical result for H1 in µm and for E1 in eV.  

The uniform initial distribution ρ of neutrons at the entrance changes, during the flight through a long cavity, into 
the step-like distribution detected at D (see Figure F-2).  From now on, we consider for simplicity the case of a long cavity 
with H < H2. Classically, all neutrons with energies in the range considered in question 1 were allowed through it, while 
quantum mechanically only neutrons in the energy level E1 are permitted. According to the time-energy Heisenberg 
uncertainty principle, this reshuffling requires a minimum time of flight. The uncertainty of the vertical motion energy will 
be significant if the cavity length is small. This phenomenon will give rise to the widening of the energy levels. 

5. (2.0) Estimate the minimum time of flight tq and the minimum length Lq of the cavity needed to observe the 
first sharp increase in the number of neutrons at D. Use vx = 10 m s-1. 

 

Data: 

Planck action constant      s J 10 6.63  -34⋅=h  
Speed of light in vacuum  -18 s m 10  3.00  ⋅=c  
Elementary charge  C 10  1.60 -19⋅=e  
Neutron mass   kg 10  1.67  -27⋅=M  
Acceleration of gravity on Earth g = 9.81 m s-2 

  If necessary, use the expression: ( ) ( )
3

121
2/32/1 xdxx −

−=−∫  
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PLANCK’S CONSTANT IN THE LIGHT OF AN INCANDESCENT LAMP 

 
In 1900 Planck introduced the hypothesis that light is emitted by matter in the form of quanta of energy hν. In 1905 

Einstein extended this idea proposing that once emitted, the energy quantum remains intact as a quantum of light (that later 
received the name photon). Ordinary light is composed of an enormous number of photons on each wave front. They 
remain masked in the wave, just as individual atoms are in bulk matter, but h – the Planck’s constant – reveals their 
presence. The purpose of this experiment is to measure Planck's constant. 
  

A body not only emits, it can also absorb radiation arriving from outside. 
Black body is the name given to a body that can absorb all radiation incident upon it, 
for any wavelength. It is a full radiator. Referring to electromagnetic radiation, black 
bodies absorb everything, reflect nothing, and emit everything. Real bodies are not 
completely black; the ratio between the energy emitted by a body and the one that 
would be emitted by a black body at the same temperature, is called emissivity, ε, 
usually depending on the wavelength. 
 

Planck found that the power density radiated by a body at absolute 
temperature T in the form of electromagnetic radiation of wavelength λ can be 
written as  
 

  
( )1/5

1

2 −
=

Tce

c
u

λ
λ

λ
ε    (1) 

 
where c1 and c2 are constants. In this question we ask you to determine c2 experimentally, which is proportional to h. 
 

For emission at small λ, far at left of the maxima in Figure F-1, it is permissible to drop the -1 from the denominator 
of Eq. (1), that reduces to  
 

 
/5

1

2 Tce

c
u

λ
λ

λ
ε=    (2) 

 
The basic elements of this experimental question are sketched in Fig.   

F-2.  
 

• The emitter body is the tungsten filament of an incandescent lamp A that 
emits a wide range of λ’s, and whose luminosity can be varied. 

• The test tube B contains a liquid filter that only transmits a thin band of 
the visible spectrum around a value λ0 (see Fig. F-3). More information 
on the filter properties will be found in page 5. 

• Finally, the transmitted radiation falls upon a photo resistor C (also 
known as LDR, the acronym of Light Dependent Resistor). Some 
properties of the LDR will be described in page 6. 

 
The LDR resistance R depends on its illumination, E, which is 

proportional to the filament power energy density 
  

  0

0

E u
R u

R E

λ γ
λγ
−

−

∝ ⎫⎪ ⇒ ∝⎬
∝ ⎪⎭

 

 
where the dimensionless parameter γ is a property of the LDR that will be determined in the experiment. For this setup we 
finally obtain a relation between the LDR resistance R and the filament temperature T  
 
              TcecR 02 /

3
λγ=      (3) 

 
that we will use in page 6. In this relation c3 is an unknown proportionality constant. By measuring R as a function on T one 
can obtain c2, the objective of this experimental question. 
 
 

F-2 

A 

B 

C 

F-3 

uλ 

 λ  λ0 

F-1 

uλ 

 λ 

T3 

T2 

T1 



36th International Physics Olympiad. Salamanca (España) 2005 
 
 

 Exp.   Page 2 of 11 

R.S.E.F. 

 
 
DESCRIPTION OF THE APPARATUS 
 

The components of the apparatus are shown in Fig. F-4, which also includes some indications for its setup. Check 
now that all the components are available, but refrain for making any manipulation on them until reading the instructions in 
the next page. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
EQUIPMENT: 
 

1. Platform. It  has a disk on the top that holds a support  for the LDR, a support for the tube and a support for an 
electric lamp of 12 V, 0.1 A. 

2. Protecting cover. 
3. 10 turns and 1 kΩ potentiometer. 
4. 12 V battery. 
5. Red and black wires with plugs at both ends to connect platform to potentiometer.  
6. Red and black wires with plugs at one end and sockets for the battery at the other end. 
7. Multimeter to work as ohmmeter.  
8. Multimeter to work as voltmeter.  
9. Multimeter to work as ammeter.  
10. Test tube with liquid filter. 
11. Stand for the test tube.  
12. Grey filter. 
13. Ruler. 
 

An abridged set of instructions for the use of multimeters, along with information on the least squares method, is 
provided in a separate page. 

F-4 
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SETTING UP THE EQUIPMENT 
 
 
 

Follow these instructions: 
 

• Carefully make the electric connections as indicated in Fig. F-4, but do not plug the wires 6 to the 
potentiometer.  

• By looking at Fig. F-5, follow the steps indicated below: 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Turn the potentiometer knob anticlockwise until reaching the end.  

2. Turn slowly the support for the test tube so that one of the lateral holes is in front of the lamp and the other in 
front of the LDR. 

3. Bring the LDR nearer to the test tube support until making a light touch with its lateral hole. It is advisable to 
orient the LDR surface as indicated in Fig. F-5. 

4. Insert the test tube into its support. 

5. Put the cover onto the platform to protect from the outside light. Be sure to keep the LDR in total darkness for 
at least 10 minutes before starting the measurements of its resistance. This is a cautionary step, as the 
resistance value at darkness is not reached instantaneously.  

 

F-5 
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Task 1 
 

Draw in Answer Sheet 1 the complete electric circuits in the boxes and between the boxes, when the circuit is fully 
connected. Please, take into account the indications contained in Fig. F-4 to make the drawings. 
 
 
Measurement of the filament temperature 
 

The electric resistance RB of a conducting filament can be given as 
 

   
S
lRB ρ=        (4) 

 
where ρ  is the resistivity of the conductor, l is the length and S the cross section of the filament. 
 

This resistance depends on the temperature due to different causes such as: 
 

• Metal resistivity increases with temperature. For tungsten and for temperatures in the range 300 K to 3655 K, it 
can be given by the empirical expression, valid in SI units, 

 
83.081005.3 ρ⋅=T       (5) 

 
• Thermal dilatation modifies the filament’s length and section. However, its effects on the filament resistance will 

be negligible small in this experiment.  
 

From (4) and (5) and neglecting dilatations one gets  
 

 83.0
BRaT =        (6) 

 
• Therefore, to get T it is necessary to determine a. This can be achieved by measuring the filament resistance RB,0 at 

ambient temperature T0. 
 
 
Task 2 
 
a)  Measure with the multimeter the ambient temperature T0.  
 
b)  It is not a good idea to use the ohmmeter to measure the filament resistance RB,0 at T0 because it introduces a small 

unknown current that increases the filament temperature. Instead, to find RB,0 connect the battery to the potentiometer 
and make a sufficient number of current readings for voltages from the lowest values attainable up to 1 V. (It will prove 
useful to make at least 15 readings below 100 mV.) At the end, leave the potentiometer in the initial position and 
disconnect one of the cables from battery to potentiometer.  

 
Find RB for each pair of values of V and I, translate these values into the Table for Task 2,b) in the Answer Sheets. 
Indicate there the lowest voltage that you can experimentally attain. Draw a graph and represent RB in the vertical axis 
against I.  

 
c)  After inspecting the graphics obtained at b), select an appropriate range of values to make a linear fit to the data suitable 

for extrapolating to the ordinate at the origin, RB,0. Write the selected values in the Table for Task 2, c) in the Answer 
Sheets. Finally, obtain RB,0 and ∆RB,0. 

 
d)  Compute the numerical values of a and ∆a for RB,0 in Ω and T0 in K using (6). 
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OPTICAL PROPERTIES OF THE FILTER  
 
 
 

The liquid filter in the test tube is an aqueous solution of copper sulphate (II) and Orange (II) aniline dye. The 
purpose of the salt is to absorb the infrared radiation emitted by the filament. 

 
The filter transmittance (transmitted intensity/incident intensity) is shown in Figure F-6 versus the wavelength.  
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              F-6 
 
 
Task 3 
 
 

Determine λ 0  and ∆λ from Fig. F-6.  
 
Note:       2 ∆λ is the total width at half height and λ 0 the wavelength at the maximum. 
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PROPERTIES OF THE LDR 
 

The material which composes the LDR is non conducting in darkness 
conditions. By illuminating it some charge carriers are activated allowing some flow 
of electric current through it. In terms of the resistance of the LDR one can write the 
following relation 
 
   γ−= bER     (7) 
 
where b is a constant that depends on the composition and geometry of the LDR and 
γ is a dimensionless parameter that measures the variation of the resistance with the 
illumination E produced by the incident  radiation. Theoretically, an ideal LDR 
would have γ  = 1, however many factors intervene, so that in the real case γ  < 1.  
 

It is necessary to determine γ. This is achieved by measuring a pair R and E 
(Fig. F-7) and then introducing between the lamp and the tube the grey filter F (Fig. 
F-8) whose transmittance is known to be 51.2 %, and we consider free of error. This 
produces an illumination E’ = 0.51 E. After measuring the resistance R’ 
corresponding to this illumination, we have  

 
( ) γγ −− == EbRbER 251.0'           ;      

 
From this 

     512.0ln
'

ln γ=
R
R    (8)  

 
Do not carry out this procedure until arriving at part b) of task 4 below. 

 
 
 
Task 4 
 
a) Check that the LDR remained in complete darkness for at least 10 minutes before starting this part. Connect the battery 

to the potentiometer and, rotating the knob very slowly, increase the lamp voltage. Read the pairs of values of V and I 
for V in the range between 9.50 V and 11.50 V, and obtain the corresponding LDR resistances R. (It will be useful to 
make at least 12 readings). Translate all these values to a table in the Answer Sheet. To deal with the delay in the LDR 
response, we recommend the following procedure: Once arrived at V  > 9.5 V, wait 10 min approximately before 
making the first reading. Then wait 5 min for the second one, and so on. Before doing any further calculation go to next 
step. 

 
b) Once obtained the lowest value of the resistance R, open the protecting cover, put the 

grey filter as indicated in F-9,  cover again - as soon as possible - the platform and 
record the new LDR resistance R’. Using these data in (8) compute γ  and ∆γ. 

 
c) Modify Eq. (3) to display a linear dependence of ln R on 0.83

BR− . Write down that 
equation there and label it as (9). 

 
d) Using now the data from a), work out a table that will serve to plot Eq. (9). 
 
e) Make the graphics plot and, knowing that c2 = hc/k, compute h and ∆h by any method 

(you are allowed to use statistical functions of the calculators provided by the 
organization). 

 
(Speed of light, c = 2.998 ·108 m s-1 ; Boltzmann constant, k = 1.381·10-23 J K-1) 
 
 
 
 
 
 
 
 

F 

F-8 

F-9 

F-7 
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TASK 1 (2.0 points) 
Draw the electric connections in the boxes and between boxes below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Pm 
B 

Ω 

V 

A 

P 

Photoresistor 

Incandescent Bulb 

Potentiometer 

 
 
 
 
 
 

Red socket 

Black socket 

 

 

Ohmmeter Ω 

Voltmeter V 

Ammeter A 

Platform P 

Potentiometer Pm 

Battery B 
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TASK 2 
a) (1.0 points) 
T0 =   
 

 
b) (2.0 points) 

V  I  RB  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

Vmin =                             * 
 
* This is a characteristic of your apparatus. You can´t go below it. 

 
 
 
 
 
 
 
 
 
 
 



36th International Physics Olympiad. Salamanca (España) 2005 
 
 

 Exp.   Page 9 of 11 

R.S.E.F. 

 

36th International Physics Olympiad. Salamanca. Spain. Experimental Competition,  7 July 2005 
 

COUNTRY NUMBER COUNTRY CODE STUDENT NUMBER PAGE NUMBER TOTAL No OF PAGES 
 
 

    

 

Answer sheet  3 
 
 

TASK 2 
 
c) (2.5 points) 
 

V  I  RB 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 
 
 

RB0  =   ∆ RB0  =  
 

 
 
 
d) (1.0 points)   
 

a =  ∆a =   
 

 
 

TASK 3 (1.0 points) 
 
 

λ0 =  ∆λ  =   
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TASK 4 
 
a) (2.0 points) 

V  I  R  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 
 
b) (1.5 points) 
 

R =  
 

γ  =  

R’ =  
 

∆γ  =  

 
 
 
 

c) (1.0 points) 
 

 
                                Eq. (9) 
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TASK 4 
 
d) (3.0 points) 
 
V I  R  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
e) (3.0 points) 
 

h  =   
 

∆ h =  
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Th1     AN ILL FATED SATELLITE 

SOLUTION 
 

1.1 and 1.2 

 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⋅=⇒=

⋅=⇒⎟
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⎛
=

⇒

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

=

=

=
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0
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r

R
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/
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T

T
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1.3 

 ⇒== 02
0

2

000 vm
v

Rg
vmrL T

0

2

0 v
Rgm

L T=  

 ⇒−=−=−= 2
0

2
0

0

2
2
0

0

2
00 2

1
2
1

2
1 mvmv

r
mRg

mv
r

mM
GmvE TT 2

00 2
1 mvE −=  

2.1  

 The value of the semi-latus-rectum l is obtained taking into account that the orbital angular momentum is the same 
in both orbits. That is 

  ⇒==== 02
0

2

222
0

422

2

2
0 1 r

v

Rg

mRgv

Rgm

mMG

L
l T

T

T

T
0rl =  

 The eccentricity value is 

  
322

2
02 2

1
mMG

LE

T
+=ε  

where E is the new satellite mechanical energy 

  ( ) 2
0

2
0

2

0

22
0 2

1
2
1

2
1

2
1 mvvmEvm

r
mM

GvvmE T −∆=+∆=−∆+=  

that is  

  ( )1
2
11

2
1 22

02
0

2
2
0 −=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= β

∆
mv

v
v

mvE  

Combining both, one gets    βε =  

 This is an elliptical trajectory because 1<= βε . 
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2.2 

 The initial and final orbits cross at P, where the satellite engine fired instantaneously (see Figure 4). At this point 

  ( ) ⇒
−

===
αβ

αθ
cos1
0

0
r

rr
2
πα =  

2.3 

 From the trajectory expression one immediately obtains that 
the maximum and minimum values of r correspond to 0=θ  and  

πθ =  respectively (see Figure 4).  Hence, they are given by 

  
ε−

=
1

lrmax ε+
=

1
lrmin  

that is 

  β−
=

1
0

max
r

r     and β+
=

1
0

min
r

r  

 For 4/1=β , one gets 

  m10383m;10635 77 ⋅=⋅= .r.r minmax  

The distances maxr  and minr  can also be obtained from mechanical energy and angular momentum conservation, 

taking into account that r
r

 and v
r

 are orthogonal at apogee and at perigee  

 
( )

rvm
v

mgR
L

r
mgR

mvmvE

T

T

==

−=−=

0

2

0

2
222

0 2
11

2
1 β

 

What remains of them, after eliminating v, is a second-degree equation whose solutions are maxr  and minr . 

2.4 

 By the Third Kepler Law, the period T in the new orbit satisfies that 

  
3
0

2
0

3

2

r
T

a
T

=   

where a, the semi-major axis of the ellipse, is given by 

  
2

0

12 β−
=

+
=

rrr
a minmax  

 Therefore 

  ( ) 2/32
0 1

−
−= βTT      

 For β = 1/4 h426
16
15 23

0 .TT
/

=⎟
⎠
⎞

⎜
⎝
⎛=

−

 

2
πα =  

minr maxr

v
r

∆  

0v
r

P 

0r

Figure 4 
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3.1 

 Only if the satellite follows an open trajectory it can escape from the Earth gravity attraction. Then, the orbit 
eccentricity has to be equal or larger than one. The minimum boost corresponds to a parabolic trajectory, with ε = 1 

  βε =  ⇒  1=escβ  

 This can also be obtained by using that the total satellite energy has to be zero to reach infinity (Ep = 0) without 
residual velocity (Ek = 0) 

  ( ) 01
2
1 22

0 =−= escmvE β  ⇒  1=escβ  

 This also arises from ∞=T  or from ∞=maxr . 

3.2 

 Due to 1== escβε , the polar parabola equation is  

  
θcos1−

=
lr  

where the semi-latus-rectum continues to be 0rl = . The minimum Earth - satellite distance corresponds to πθ = , where  

  
2
0rrmin =′   

 This also arises from energy conservation (for E = 0) and from the equality between the angular momenta (L0) at the 
initial point P and at maximum approximation, where  r

r
 and v

r
 are orthogonal. 

4.1 

 If the satellite escapes to infinity with residual velocity ∞v , by energy conservation 

  ( ) 222
0 2

11
2
1

∞=−= mvmvE β  ⇒  

  ( ) 2/12
0 1−=∞ βvv  

4.2 

 As 1=>= escββε  the satellite trajectory will be a hyperbola. 

 The satellite angular momentum is the same at P than at the point 
where its residual velocity is ∞v  (Figure 5), thus 

  bvmrvm ∞=00  

 So 

  ⇒=
∞v

v
rb 0

0 ( ) 2/12
0 1

−
−= βrb  

 

 

φ  
v∆  

0v  

∞v

Asymptote 

Asymptote 

b 

Figure 5 

asymθ

asymθ
asymθ

0r

P 
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4.3  

 The angle between each asymptote and the hyperbola axis is that appearing in its polar equation in the limit ∞→r . 

This is the angle for which the equation denominator vanishes  

  ⇒=− 0cos1 asymθβ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

β
θ 1cos 1

asym  

 According to Figure 5  

  ⇒+= asymθπφ
2 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= −

β
πφ 1cos
2

1  

 For   
2
3

2
3

== escββ ,  one gets    rad412138 .º ==φ  
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Th 1     ANSWER SHEET 
 
 
 

 

Question Basic formulas and     
ideas used 

Analytical results Numerical results Marking 
guideline 

1.1  
m1022.4 7
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0.4 

2.1 
 

0rl =  

βε =  

 0.4 

0.5 

2.2 

 

Hint on the conical curves 

 
2
πα =  1.0 

 

2.3 
Results of 2.1,  or 
conservation of E and L 

β
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−
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1

1

0

0

r
r

r
r

min

max

 m1038.3

m1063.5
7
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7
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r

r
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2.4 Third Kepler's Law ( ) 2/32
0 1

−
−= βTT  h4.26=T  0.5 + 0.2 

3.1 ε = 1,  E = 0,  T = ∞  or 
 rmax = ∞ 

 
1=escβ  0.5 

3.2 ε = 1 and results of 2.1 
2
0rrmin =′  

 
1.0 

4.1 Conservation of E ( ) 2/12
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Th 2     ABSOLUTE MEASUREMENTS OF ELECTRICAL QUANTITIES  

SOLUTION 
 

1. After some time t, the normal to the coil plane makes an angle ω t with the magnetic field iBB
rr

00 = . Then, the 

magnetic flux through the coil is 

  SBN
rr

⋅= 0φ  

where the vector surface S
r

 is given by ( )jtitaS
rrr

ωωπ sincos2 +=  

Therefore tBaN ωπφ cos0
2=  

The induced electromotive force is  

   
dt
dφε −=  ⇒   tBaN ωωπε sin0

2=  

The instantaneous power is =P ε 2 /R , therefore 

  ( )
R
BaN

P
2

2
0

2 ωπ
=   

where we used  
2
1sin1sin

0
22 =>=< ∫

T
dtt

T
t ωω  

 
2. The total field at the center the coil at the instant t is  

  it BBB
rrr

+= 0  

where iB
r

 is the magnetic field due to the induced current ( )jtitBB ii
rrr

ωω sincos +=  

with  
a

IN
Bi 2

0µ
=  and I = ε / R 

Therefore t
R

BaN
Bi ω

ωπµ
sin

2
0

2
0=   

The mean values of its components are 

   

R
BaN

t
R

BaN
B

tt
R

BaN
B

iy
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4
sin

2

0cossin
2

0
2

020
2

0

0
2

0

ωπµ
ω

ωπµ

ωω
ωπµ

==

==
 

And the mean value of the total magnetic field is  

   j
R

BaN
iBBt

rrr

4
0

2
0

0
ωπµ

+=  

The needle orients along the mean field, therefore  

   
R

aN
4

tan
2

0 ωπµ
θ =  
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Finally, the resistance of the coil measured by this procedure, in terms of θ , is 

   θ
ωπµ

tan4

2
0 aN

R =  

3. The force on a unit positive charge in a disk is radial and its modulus is 

   BrBvBv ω==×
rr

  

where B is the magnetic field at the center of the coil 

   
a
I

NB
2
0µ

=  

Then, the electromotive force (e.m.f.) induced on each disk by the magnetic field B is 

   ∫ ===
b

DD bBdrrB
0

2
' 2

1 ωωεε    

Finally, the induced e.m.f. between 1 and 4 is ε = εD + ε D'  

   a
Ib

N
2

2
0 ωµε =  

 

4. When the reading of G vanishes, 0=GI  and Kirchoff laws give an immediate answer. Then we have  

   RI=ε   ⇒  
a

b
NR

2

2
0 ωµ

=  

 

5. The force per unit length f between two indefinite parallel straight wires separated by a distance h is.  

   
h
II

f 210

2π
µ

=  

 for  III == 21   and length aπ2 , the force F induced on C2 by the neighbor coils C1 is 

   20 I
h

a
F

µ
=  

 

6. In equilibrium 

   dFxgm 4=   

 Then 

   204
I

h
da

xgm
µ

=   (1) 

 so that 
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/
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xhgm

I ⎟⎟
⎠
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⎝

⎛
=

µ
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7. The balance comes back towards the equilibrium position for a little angular deviation δϕ  if the gravity torques with 
respect to the fulcrum O are greater than the magnetic torques.  

  δϕ
δδ

µδϕδϕ cos112cossin 2
0 d

zhzh
IaxgmlMg ⎟⎟

⎠

⎞
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⎝
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Therefore, using the suggested approximation 
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h
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Taking into account the equilibrium condition (1), one obtains 
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δ

δϕ cos
h
z

xgmsinlgM
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2
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Finally, for 
d
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ϕδϕδ =≈ sintan  
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Th 2     ANSWER SHEET 
 

Question Basic formulas and ideas used Analytical results Marking 
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dxm
hlMz

2

max =δ  
 

2.0 

 
  



 
36th International Physics Olympiad. Salamanca (España) 2005 

  

 
Th 3 Solution  Page 1 of 3 

 

R.S.E.F. 

Th3     QUANTUM EFFECTS OF GRAVITY  
SOLUTION 

 

1. The only neutrons that will survive absorption at A are those that cannot cross H. Their turning points will be below H. 
So that, for a neutron entering to the cavity at height z with vertical velocity vz , conservation of energy implies 

HgMzgMvM z ≤+2
2
1   ⇒  ( ) ( )zHgzvzHg z −≤≤−− 2)(2  

 
2. The cavity should be long enough to ensure the absorption of all 

neutrons with velocities outside the allowed range. Therefore, 
neutrons have to reach its maximum height at least once within the 
cavity. The longest required length corresponds to neutrons that enter 
at z = H with vz = 0 (see the figure). Calling tf to their time of fall 

⇒
⎪
⎭

⎪
⎬

⎫

=

=

2
2
1

2

f

fxc

tgH

tvL

 g
HvL xc

22=   cm4.6=cL  

 
3. The rate of transmitted neutrons entering at a given height z, per unit height, is proportional to the range of allowed 

velocities at that height, ρ being the proportionality constant 

[ ] ( )zHgzvzv
dz

zdN
zz

c −=−= 22)()(
)(

min,max, ρρ  

The total number of transmitted neutrons is obtained by adding the neutrons entering at all possible heights. Calling 
H/zy =  

( ) ( ) ( ) ( )
1

0

2/32/31

0

2/12/3

00
1

3
22212222)( ⎥⎦

⎤
⎢⎣
⎡ −−=−=−== ∫∫∫ yHgdyyHgdzzHgzdNHN

HH
cc ρρρ       

⇒ 2/32
3
4)( HgHNc ρ=  

 
4. For a neutron falling from a height H, the action over a bouncing cycle is twice the action during the fall or the ascent  

( ) 2/3
1

0

2/12/3
0

2
3
41222 HgMdyyHgMdzpS

H

z =−== ∫∫  

Using the BS quantization condition 

   hnHgMS == 2/32
3
4   ⇒ 3/2

3/1

2

2

32
9 n

gM
hH n ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=  

The corresponding energy levels (associated to the vertical motion) are 

nn HgME =     ⇒  3/2
3/122

32
9 nhgMEn ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=  
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Numerical values for the first level: 

  m1065.1
32

9 5
3/1

2

2

1
−×=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

gM
hH  µm5.161 =H  

  eV1069.1J1071.2 1231
11

−− ×=×== HgME   peV1.691 =E  

Note that H1 is of the same order than the given cavity height, H = 50 µm. This opens up the possibility for observing 
the spatial quantization when varying H. 

 

5. The uncertainty principle says that the minimum time t∆  and the minimum energy E∆  satisfy the relation h≥∆∆ tE . 

During this time, the neutrons move to the right a distance 

  
E

vtvx xx ∆
≥∆=∆ h  

Now, the minimum neutron energy allowed in the cavity is E1, so that 1EE ≈∆ . Therefore, an estimation of the 

minimum time and the minimum length required is 

ms0.4s104.0 3

1
=⋅=≈ −

E
tq

h  mm4m104 3

1
=⋅=≈ −

E
vL xq

h
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Th 3     ANSWER SHEET 

 
 

Question Basic formulas used Analytical results Numerical results Marking 
guideline 

1 HgMzgMvM z ≤+2
2
1  ( ) ( )zHgzvzHg z −≤≤−− 2)(2   1.5 

2 

fxc tvL 2=  

2
2
1

ftgH =  
g
HvL xc

22=  cm4.6=cL  1.3 + 0.2 

 

3 
[ ]min,max, zz

c vv
dz

dN
−= ρ  

( ) ∫=
H

cc zdNHN
0

)(  

2/32
3
4)( HgHNc ρ=  

  

2.5 

 

4 

 

nhdzpS
H

z == ∫02  

3/2
3/1

2

2

32
9 n

gM
hH n ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=  

3/2
3/122

32
9 nhgMEn ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=  

µm5.161 =H  

peV1.691 =E  

1.6 + 0.2 

0.5 + 0.2 

 

5 

 

h≥∆∆ tE  

1EE ≈∆  

tvx x∆=∆  

1E
tq

h≈  

1E
vL xq

h≈  

ms0.4≈qt  

mm4≈qL  

1.3 + 0.2 

0.3 + 0.2 
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PLANCK’S CONSTANT IN THE LIGHT OF AN INCANDESCENT LAMP 

SOLUTION 
 
 

TASK 1   
 
 Draw the electric connections in the boxes and between boxes below. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Pm 
B 

Ω 

V 

A 

P 

Photoresistor 

Incandescent Bulb
 

Potentiometer 

 
 
 
 
 
 

Red socket 

Black socket 

 

 

OhmmeterΩ 

VoltmeterV 

AmmeterA 

PlatformP 

PotentiometerPm 

BatteryB 



36th International Physics Olympiad. Salamanca (España) 2005 
 
 

 Exp.   Page 2 of 9 

R.S.E.F. 

 
 

TASK 2 
a)  
t0 =  24 ºC 
 

T0 =  297 K 
 

∆T0 = 1 K 

 
b) 

V /mV I / mA RB /Ω 
21.9 
30.5 
34.9 
37.0 
40.1 
43.0 
47.6 
51.1 
55.3 
58.3 
61.3 
65.5 
67.5 
73.0 
80.9 
85.6 
89.0 
95.1 
111.9 
130.2 
181.8 
220 
307 
447 
590 
730 
860 
960 

1.87 
2.58 
2.95 
3.12 
3.37 
3.60 
3.97 
4.24 
4.56 
4.79 
5.02 
5.33 
5.47 
5.88 
6.42 
6.73 
6.96 
7.36 
8.38 
9.37 
11.67 
13.04 
15.29 
17.68 
19.8 
21.5 
23.2 
24.4 

11.7 
11.8 
11.8 
11.9 
11.9 
11.9 
12.0 
12.1 
12.1 
12.2 
12.2 
12.3 
12.3 
12.4 
12.6 
12.7 
12.8 
12.9 
13.4 
13.9 
15.6 
16.9 
20.1 
25.1 
29.8 
33.9 
37.1 
39.3 

 
 
 
 

Vmin =  9.2 mV                           * 
 
* This is a characteristic of your apparatus. You can t́ go below it. 

 
 
 
 
 
 
 

We represent RB in the vertical axis against I.  
 
 
 
 
 
 
 
 
 
 
 
 
 



36th International Physics Olympiad. Salamanca (España) 2005 
 
 

 Exp.   Page 3 of 9 

R.S.E.F. 

 
 
 

 
 

In order to work out RB0 , we choose the first ten readings. 
 
 
 
 
 

TASK 2 
 
c) 
 

V /mV I / mA RB /Ω 
21.9  ± 0.1 
30.5 ± 0.1 
34.9 ± 0.1 
37.0 ± 0.1 
40.1 ± 0.1 
43.0 ± 0.1 
47.6 ± 0.1 
51.1 ± 0.1 
55.3 ± 0.1 
58.3 ± 0.1 

 
 
 

1.87 ± 0.01 
2.58 ± 0.01 
2.95 ± 0.01 
3.12 ± 0.01 
3.37 ± 0.01 
3.60 ± 0.01 
3.97 ± 0.01 
4.24 ± 0.01 
4.56 ± 0.01 
4.79 ± 0.01 

 

11.7 ± 0.1 
11.8 ± 0.1 
11.8 ± 0.1 
11.9 ± 0.1 
11.9 ± 0.1 
11.9 ± 0.1 
12.0 ± 0.1 
12.1 ± 0.1 
12.1 ± 0.1 
12.2 ± 0.1 

 

 
 
 
 
 

0

10

20

30

40

50

0 5 10 15 20 25 30

I  /mA

R
 /

o
h

m
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Error for RB (We work out the error for first value, as example). 
 

1.0
87.1
01.0

9.21
1.071.11

2222
=






+






=






 ∆+






 ∆=∆

I
I

V
VRR BB  

 
We have worked out RB0 by the least squares. 
 

( )
13.0

05.3538.13010
38.1301.0

1.001.0167.01.0

047.0: axisFor 

01.0: axisFor 

10

05.35

38.130

167.0  slope
4.11

2

2

22

22

0

222222

2

2

2

0

=
−⋅

×=
−

=∆

=⋅+=+=

=
∆

=

=
∆

=

=

=

=

==
=

∑ ∑
∑

∑

∑

∑
∑

IIn

I
R

m

n

R
Y

n

I
X

n

I

I

m
R

B

IR

B
R

I

B

B

B

σ

σσσ

σ

σ

 

 
 

RB0  =  11,4 Ω ∆ RB0  = 0.1 Ω 
 

 
 

10

11

12

13

0 1 2 3 4 5
I  /mA

R
B
 /

o
h

m
io

s
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d)    40.39
4.11

297       ;      ;  
83.083.0

0

083.0 ==== a
R

T
aaRT  

 
Working out the error for two methods: 
 
Method A 

4.0419.0
40.11
1.083.0

297
140.39   ;  83.0    ;  ln83.0lnln

0

0

0

0
00 ==






 +=∆







 ∆
+

∆
=∆−= a

R
R

T
T

aaRTa
B

B
B  

Method B 
 

Higher value of a:   
( ) ( )

8255.39
1.04.11
1297

83.083.0
00

00
max =

−
+=

∆−

∆+
=

RR

TT
a  

Smaller value of a:        
( ) ( )

9863.38
1.04.11
1297

83.083.0
00

00
min =

+
−=

∆+

∆−
=

RR

TT
a  

 

4.0419.0
2

9863.388255.39
2

minmax ==−=
−

=∆
aa

a  

 
 

a = 39.4 ∆a =  0.4 
 

 
 

TASK 3 
 
Because of  2∆λ  =  620 – 565 ;  ∆λ  = 28 nm   
 

λ0 = 590 nm ∆λ  =  28 nm 
 

 
 

TASK 4 
a) 

V /V I / mA R /kΩ 
9.48 
9.73 
9.83 

100.1 
10.25 
10.41 
10.61 
10.72 
10.82 
10.97 
11.03 
11.27 
11.42 
11.50 

 

85.5 
86.8 
87.3 
88.2 
89.4 
90.2 
91.2 
91.8 
92.2 
93.0 
93.3 
94.5 
95.1 
95.5 

8.77 
8.11 
7.90 
7.49 
7.00 
6.67 
6.35 
6.16 
6.01 
5.77 
5.69 
5.35 
5.17 
5.07 
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b) 

 
 

Because of    702.0512.0ln
11.8
07.5ln251.0ln

'
ln     ;  512.0ln

'
ln ====

R
R

R
R γγ  

 
For working out ∆γ we know that: 

R ± ∆R = 5.07 ± 0.01 kΩ 
R� ± ∆R� = 8.11 ± 0.01 kΩ 
Transmittance, t  = 51.2  % 

Working out the error for two methods: 
 
Method A 

0.005  ;  00479.0
11.8
01.0

07.5
01.0

512.0ln
1

'
'

ln
1   ;  

ln
'ln =∆=






 +=






 ∆+∆== γγ

R
R

R
R

t
∆γ

t
RR  

 
Method B 

Higher value of γ :    70654.0512.0ln
01.011.8
01.007.5lnln

''
lnmax =

+
−=

∆+
∆−= γγ
RR
RR  

 

Smaller value of γ:   69696.0512.0ln
01.011.8
01.007.5lnln

''
lnmax =

−
+=

∆−
∆+= γγ
RR
RR  

 

0.005     ; 00479.0
2

69696.070654.0
2

minmax =∆=−=
−

=∆ γγγγ  

 
R = 5.07 kΩ 
 

γ  = 0.702 

R’ = 8.11 kΩ 
 

∆γ  = 0.005 

 
 
 
c) 

                                               

            lnln ly        consequent

  (6)                 of Because

lnln               then      

(3)       that    know  We

83.0

0

2
3

83.0
0

2
3

3
0

2

−+=

=

+=

=

B

B

T
c

R
a

ccR

aRT

T
ccR

ecR

λ
γ

λ
γ

λ
γ

 

  

                              (9) Eq.   lnln 83.0

0

2
3

−+= BR
a

ccR
λ

γ                     
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d) 
 
 

V /V I / mA RB / Ω T / K RB
-0.83   (S.I.) R / kΩ ln R 

9.48 ± 0.01 85.5 ± 0.1 110.9 ± 0.2 1962 ± 18 (2.008 ± 0.004)10-2 8.77 ± 0.01 2.171 ± 0.001 
9.73± 0.01 86.8 ± 0.1 112.1 ± 0.2 1980 ± 18 (1.990± 0.004)10-2 8.11 ± 0.01 2.093 ± 0.001 
9.83± 0.01 87.3 ± 0.1 112.6 ± 0.2 1987 ± 18 (1.983± 0.004)10-2 7.90 ± 0.01 2.067 ± 0.001 

10.01± 0.01 88.2 ± 0.1 113.5 ± 0.2 2000 ± 18 (1.970± 0.004)10-2 7.49 ± 0.01 2.014 ± 0.001 
10.25± 0.01 89.4 ± 0.1 114.7 ± 0.2 2018 ± 18 (1.952± 0.003)10-2 7.00 ± 0.01 1.946 ± 0.001 
10.41± 0.01 90.2 ± 0.1 115.4 ± 0.2 2028 ± 18 (1.943± 0.003)10-2 6.67 ± 0.01 1.894 ± 0.002 
10.61± 0.01 91.2 ± 0.1 116.3 ± 0.2 2041 ± 18 (1.930± 0.003)10-2 6.35 ± 0.01 1.849 ± 0.002 
10.72± 0.01 91.8 ± 0.1 116.8 ± 0.2 2049 ± 19 (1.923± 0.003)10-2 6.16 ± 0.01 1.818 ± 0.002 
10.82± 0.01 92.2 ± 0.1 117.4 ± 0.2 2057 ± 19 (1.915± 0.003)10-2 6.01 ± 0.01 1.793 ± 0.002 
10.97± 0.01 93.0 ± 0.1 118.0 ± 0.2 2066 ± 19 (1.907± 0.003)10-2 5.77 ± 0.01 1.753 ± 0.002 
11.03± 0.01 93.3 ± 0.1 118.2 ± 0.2 2069 ± 19 (1.904± 0.003)10-2 5.69 ± 0.01 1.739 ± 0.002 
11.27± 0.01 94.5 ± 0.1 119.3 ± 0.2 2085 ± 19 (1.890± 0.003)10-2 5.35 ± 0.01 1.677 ± 0.002 
11.42± 0.01 95.1 ± 0.1 120.1 ± 0.2 2096 ± 19 (1.880± 0.003)10-2 5.15 ± 0.01 1.639 ± 0.002 
11.50± 0.01 95.5 ± 0.1 120.4 ± 0.2 2101 ± 19 (1.875± 0.003)10-2 5.07 ± 0.01 1.623 ± 0.002 

 unnecessary  
 
 
We work out the errors for all the first row, as example. 
 

Error for RB:   Ω=





+






=






 ∆+






 ∆=∆   2.0

5.85
1.0

48.9
01.09.110

2222

I
I

V
VRR BB  

 

Error for T:   K 18
9.110

2.083.0
4.39
3.01962  ;  83.0 =






 +=∆







 ∆+∆=∆ T
R
R

a
aTT

B

B  

 
Error for RB

-0.83 :   

                            
( )

( ) 283.0

83.083.083.0

10004.0
9.110

2.0020077.0

  ;   83.0  ;  ln83.0ln  ;  

−−

−−−

×≈=∆

∆=∆∆⋅=∆−==

B

B

B
BB

B

B
BB

R

R
RRR

R
RxxRxRx

 

 

Error for lnR :   001.0
77.8
01.0ln     ;  ln ==∆∆=∆ R

R
RR  

 
e) 
 
We plot ln R versus RB

-0.83 . 
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( )
( )

( )

( )

( )

( ) ( ) ( )
295.8

27068.01023559.514
0126,014

0126.010003.0672.414002.0

002.0
ln

  :   axisFor  

10003.0  :  axisFor  

14

27068.0

1023559.5

6717,414    Slope
squaresleast  By the

23

2

283.0283.0

2

2222222
ln

2

ln

2
283.0

83.0

3283.0

83.0

83.0

=
−×⋅

⋅=
−

=∆

=×⋅+=+=

=
∆

=

×=
∆

=

=

=

×=

==

−−−

−

−
−

−

−−

∑ ∑

∑

∑

∑
∑

−

−

BB

RR

R

B
R

B

B

RRn

nm

m

n

R
Y

n

R
X

n

R

R

m

B

B

σ

σσσ

σ

σ

 

 
Because of 

                                                   
a

cm
0

2
λ

γ=  

and 

                                                    
k
hcc =2  

then 

                                                   
γ
λ

c
amkh 0=  

 
 

1,5

1,7

1,9

2,1

1,860E-02 1,880E-02 1,900E-02 1,920E-02 1,940E-02 1,960E-02 1,980E-02 2,000E-02 2,020E-02

R B
-0.83

ln
R
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34
2222

34

222

0

0
22

34
8

923

1034.0
70.0
01.00

4.39
3.0

590
280

415
3.81034.6

1033.6
702.010998.2

4.3910590·10381.167.414

−−

−
−−

×=





++






+






++






×=∆








 ∆+





 ∆+







 ∆
+






 ∆+






 ∆=∆

×=
⋅×

⋅××⋅=

h

a
a

k
k

m
mhh

h

γ
γ

λ
λ  

 
        
 

h  =  6.3 × 10-34 J · s 
 

∆ h = 0.3 × 10-34 J · s 
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Theory Question 1: Gravity in a Neutron Interferometer 
 
Enter all your answers into the Answer Script. 
 

a a 

a a 

2θ 2θ BS BS 

M 

M 

BS - Beam Splitters M - Mirror 

IN OUT2 

OUT1 

 
Figure 1a 

 
 
 

φ OUT1 
IN OUT2  

 
 
 
 
 

Figure 1b 
 
Physical situation   We consider the situation of the famous neutron-interferometer 
experiment by Collela, Overhauser and Werner, but idealize the set-up inasmuch as we 
shall assume perfect beam splitters and mirrors within the interferometer. The experiment 
studies the effect of the gravitational pull on the de Broglie waves of neutrons.  

The symbolic representation of this interferometer in analogy to an optical 
interferometer is shown in Figure 1a. The neutrons enter the interferometer through the 
IN port and follow the two paths shown. The neutrons are detected at either one of the 
two output ports, OUT1 or OUT2. The two paths enclose a diamond-shaped area, which 
is typically a few cm2 in size. 

The neutron de Broglie waves (of typical wavelength of 10−10
 m) interfere such 

that all neutrons emerge from the output port OUT1 if the interferometer plane is 
horizontal. But when the interferometer is tilted around the axis of the incoming neutron 
beam by angle φ  (Figure 1b), one observes a φ  dependent redistribution of the neutrons 
between the two output ports OUT1 and OUT2.  
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Geometry       For °= 0φ  the interferometer plane is horizontal; for °= 90φ  the plane is 
vertical with the output ports above the tilt axis.  
 
1.1 (1.0) How large is the diamond-shaped area A  enclosed by the two paths of the 

interferometer? 
 

1.2 (1.0) What is the height H  of output port OUT1 above the horizontal plane of the 
tilt axis? 
 

Express A  and H  in terms of , a θ , and φ . 
 
 
Optical path length      The optical path length Nopt (a number) is the ratio of the 
geometrical path length (a distance) and the wavelength λ . If λ  changes along the path, 
Nopt is obtained by integrating  along the path. 1−λ
 
1.3 (3.0) What is the difference ΔNopt in the optical path lengths of the two paths 

when the interferometer has been tilted by angle φ ? Express your answer in terms 
of , a θ , and φ  as well as the neutron mass M, the de Broglie wavelength 0λ  of 
the incoming neutrons, the gravitational acceleration g, and Planck’s constant . h
 

1.4  
 
 

(1.0) Introduce the volume parameter 

2

2

gM
hV =  

and express ΔNopt solely in terms of A , V , 0λ , and φ . State the value of V  for 
M = 1.675×10−27

 kg, g = 9.800 m s−2, and h = 6.626 × 10−34
 J s. 

 
1.5 (2.0) How many cycles — from high intensity to low intensity and back to high 

intensity — are completed by output port OUT1 when φ  is increased from 
°−= 90φ  to °= 90φ ? 

  
Experimental data       The interferometer of an actual experiment was characterized by 
a = 3.600 cm and °= 10.22θ , and 19.00 full cycles were observed. 
 
1.6 (1.0) How large was 0λ  in this experiment? 

 
1.7 (1.0) If one observed 30.00 full cycles in another experiment of the same kind that 

uses neutrons with 0λ  = 0.2000 nm, how large would be the area A ? 
 

Hint: If 1<<xα , it is permissible to replace by ( )αx+1 xα+1 . 
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1 

 
 
For 
Examiners 
Use  
Only 
 
1.0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.0 
 

Answer Script 
 

Geometry 
 

  
1.1 The area is 

 
   =A
 
 
 
 
 
 
 
 
 

 
1.2 

 
The height is 
 
  =H  
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1 

 
Optical path length  

 

  
1.3 In terms of , a θ , φ , M , 0λ , g , and : h

 
  ΔNopt = 
 
 
 
 
 

  
1.4 
 
 

 
In terms of A , V , 0λ , and φ : 
 
  ΔNopt = 
 
 
 
 
 
 
The numerical value of V  is 
 
   =V
 
 
 
 
 
 

 
1.5 

 
The number of cycles is 
 
  # of cycles = 
 
 
 
 
 
 

 
For 
Examiners 
Use  
Only 
 
3.0 
 
 
 
 
 
 
 
 
0.8 
 
 
 
 
 
 
 
 
0.2 
 
 
 
 
 
 
 
 
 
2.0 
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1 

 
Experimental data   

For 
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1.0 
 
 
 
 
 
 
 
 
 
 
 

 
  
1.6 The de Broglie wavelength was 

 
  =0λ  
 
 
 
 
 
 
 
 

 
1.7 

 
The area is 
 
   =A
 
 
 
 
 
 
 
 
 

 
 

1.0 
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Theory Question 2: Watching a Rod in Motion 
 
Enter all your answers into the Answer Script. 

pinhole camera 

D

rod x
v 0

 
Physical situation   A pinhole camera, with the pinhole at 0=x  and at distance  from 
the

D
x axis, takes pictures of a rod, by opening the pinhole for a very short time. There are 

equidistant marks along the x axis by which the apparent length of the rod, as it is seen 
on the picture, can be determined from the pictures taken by the pinhole camera. On a 
picture of the rod at rest, its length is . However, the rod is not at rest, but is moving 
with constant velocity 

L
υ  along the x  axis. 

 
Basic relations    A picture taken by the pinhole camera shows a tiny segment of the rod 
at position . x~
 

2.1     (0.6) What is the actual position x  of this segment at the time when the picture is 
taken? State your answer in terms of x~ , , , D L υ , and the speed of light 

=3.00×10c 8 m s-1. Employ the quantities  

c
υβ =  and 

21
1
β

γ
−

=  

if they help to simplify your result. 
 

2.2     (0.9) Find also the corresponding inverse relation, that is: express x~ in terms of x , 
, D L , υ , and . c

Note: The actual position is the position in the frame in which the camera is at rest 
 
Apparent length of the rod     The pinhole camera takes a picture at the instant when the 
actual position of the center of the rod is at some point . 0x
 

2.3     (1.5) In terms of the given variables, determine the apparent length of the rod on 
this picture. 
 

2.4 (1.5) Check one of the boxes in the Answer Script to indicate how the apparent 
length changes with time. 
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Symmetric picture    One pinhole-camera picture shows both ends of the rod at the same 
distance from the pinhole. 
 
2.5     (0.8) Determine the apparent length of the rod on this picture. 

 
2.6     (1.0) What is the actual position of the middle of the rod at the time when this 

picture is taken? 
 

2.7     (1.2) Where does the picture show the image of the middle of the rod? 
 
Very early and very late pictures    The pinhole camera took one picture very early, 
when the rod was very far away and approaching, and takes another picture very late, 
when the rod is very far away and receding. On one of the pictures the apparent length is 
1.00 m, on the other picture it is 3.00 m. 
 
2.8 (0.5) Check the box in the Answer Script to indicate which length is seen on 

which picture. 
 

2.9     (1.0) Determine the velocity υ . 
 

2.10   (0.6) Determine the length L  of the rod at rest. 
 

2.11   (0.4) Infer the apparent length on the symmetric picture. 
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Basic Relations 
 
2.1   

 
x  value for given  value: x~
 
  x  = 
 
 
 

 
2.2   

 
x~  value for given x  value: 
 
  x~  = 
 
 
 
 
 
 
 

 
Apparent length of the rod 

 

 
2.3   

 
The apparent length is 
 
  )(~

0xL  = 
 
 
 
 
 
 

 
2.4   

 
Check one: The apparent length 
� increases first, reaches a maximum value, then decreases. 
� decreases first, reaches a minimum value, then increases. 
� decreases all the time. 
� increases all the time. 
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1.2 
 
 
 
 
 
 
 
 
 

Symmetric picture 
 

 
2.5   

 
The apparent length is 
 
  L~ = 
 
 
 
 
 
 
 
 
 

 
2.6   

 
The actual position of the middle of the rod is 
 
   = 0x
 
 
 
 
 
 
 
 
 

 
2.7   

 
The picture shows the middle of the rod at a distance 
 
   = l
 
 
 
 
 
 
 
 
 
from the image of the front end of the rod. 
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Very early and very late pictures 

 

 
2.8    

 
Check one: 
� The apparent length is 1 m on the early picture and 3 m on the 
late picture. 
� The apparent length is 3 m on the early picture and 1 m on the 
late picture. 

 
2.9 

 
The velocity is 
 
  υ  = 
 
 
 
 
 
 
 
 

 
2.10  

 
The rod has length 
 
  L = 
 
 
 
 
 
 
 
at rest. 

 
2.11 

 
The apparent length on the symmetric picture is 
 
  L~ = 
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Theory Question 3 
 
This question consists of five independent parts. Each of them asks for an estimate of an 
order of magnitude only, not for a precise answer. Enter all your answers into the 
Answer Script. 
 
Digital Camera    Consider a digital camera with a square CCD chip with linear 
dimension L  = 35 mm having Np = 5 Mpix (1 Mpix = 106 pixels). The lens of this 
camera has a focal length of = 38 mm. The well known sequence of numbers (2, 2.8, 4, 
5.6, 8, 11, 16, 22) that appear on the lens refer to the so called F-number, which is 
denoted by  and defined as the ratio of the focal length and the diameter D  of the 
aperture of the lens, .  

f

#F
DfF /#=

 
3.1 (1.0) Find the best possible spatial resolution minxΔ , at the chip, of the camera as 

limited by the lens. Express your result in terms of the wavelength λ  and the F-
number  and give the numerical value for #F λ = 500 nm. 
 

3.2 (0.5) Find the necessary number N  of Mpix that the CCD chip should possess in 
order to match this optimal resolution. 
 

3.3 (0.5) Sometimes, photographers try to use a camera at the smallest practical 
aperture. Suppose that we now have a camera of = 16 Mpix, with the chip size 
and focal length as given above. Which value is to be chosen for  such that the 
image quality is not limited by the optics? 

0N
#F

 
3.4 (0.5) Knowing that the human eye has an approximate angular resolution of 

φ  = 2 arcmin and that a typical photo printer will print a minimum of 300 dpi 
(dots per inch), at what minimal distance  should you hold the printed page from 
your eyes so that you do not see the individual dots? 

z

 
Data 1 inch = 25.4 mm 
 1 arcmin = 2.91 × 10−4 rad 
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Hard-boiled egg       An egg, taken directly from the fridge at temperature = 4°C, is 
dropped into a pot with water that is kept boiling at temperature . 

0T

1T
 

3.5 (0.5) How large is the amount of energy U  that is needed to get the egg 
coagulated? 
 

3.6 (0.5) How large is the heat flow  that is flowing into the egg? J
 

3.7 (0.5) How large is the heat power  transferred to the egg? P
 

3.8 (0.5) For how long do you need to cook the egg so that it is hard-boiled? 
 
Hint You may use the simplified form of Fourier’s Law rTJ ΔΔ= /κ , where  is the 

temperature difference associated with 
TΔ

rΔ , the typical length scale of the problem. 
The heat flow  is in units of W mJ −2. 
 

Data Mass density of the egg: μ = 103
 kg m−3

Specific heat capacity of the egg: C = 4.2 J K−1
 g−1

Radius of the egg: R = 2.5 cm 
Coagulation temperature of albumen (egg protein): = 65°C  cT
Heat transport coefficient: κ  = 0.64 W K−1 m−1 (assumed to be the same for liquid 
and solid albumen) 

  
Lightning      An oversimplified model of lightning is presented. Lightning is caused by 
the build-up of electrostatic charge in clouds. As a consequence, the bottom of the cloud 
usually gets positively charged and the top gets negatively charged, and the ground below 
the cloud gets negatively charged. When the corresponding electric field exceeds the 
breakdown strength value of air, a disruptive discharge occurs: this is lightning. 
 

time.
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Idealized current pulse flowing between the cloud and the ground during 
lightning. 
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Answer the following questions with the aid of this simplified curve for the current as a 
function of time and these data: 

Distance between the bottom of the cloud and the ground: h = 1 km; 
Breakdown electric field of humid air:  = 300 kV m0E -1; 
Total number of lightning striking Earth per year: 32 × 106; 
Total human population: 6.5 × 109 people. 

 
3.9 (0.5) What is the total charge Q  released by lightning? 

 
3.10 (0.5) What is the average current I  flowing between the bottom of the cloud and 

the ground during lightning? 
 

3.11 (1.0) Imagine that the energy of all storms of one year is collected and equally 
shared among all people. For how long could you continuously light up a 100 W 
light bulb for your share? 
 

 
   
Capillary Vessels      Let us regard blood as an incompressible viscous fluid with mass 
density μ similar to that of water and dynamic viscosity η  = 4.5 g m−1 s−1. We model 
blood vessels as circular straight pipes with radius r and length L and describe the blood 
flow by Poiseuille’s law,  
 

DRp =Δ , 
 
the Fluid Dynamics analog of Ohm’s law in Electricity. Here pΔ  is the pressure 
difference between the entrance and the exit of the blood vessel, υSD =  is the volume 
flow through the cross-sectional area S of the blood vessel and υ  is the blood velocity. 
The hydraulic resistance R is given by 
 

4
8

r
LR

π
η

= . 

 
For the systemic blood circulation (the one flowing from the left ventricle to the right 
auricle of the heart), the blood flow is D ≈  100 cm3s−1 for a man at rest. Answer the 
following questions under the assumption that all capillary vessels are connected in 
parallel and that each of them has radius r = 4 μm and length L = 1 mm and operates 
under a pressure difference = 1 kPa. pΔ
 

3.12 (1.0) How many capillary vessels are in the human body? 
 

3.13 (0.5) How large is the velocity υ  with which blood is flowing through a capillary 
vessel? 
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Skyscraper      At the bottom of a 1000 m high skyscraper, the outside temperature is 
Tbot= 30°C. The objective is to estimate the outside temperature Ttop at the top. Consider a 
thin slab of air (ideal nitrogen gas with adiabatic coefficient γ  = 7/5) rising slowly to 
height z where the pressure is lower, and assume that this slab expands adiabatically so 
that its temperature drops to the temperature of the surrounding air. 
 
3.14 (0.5) How is the fractional change in temperature  related to , the 

fractional change in pressure? 
TdT / pdp /

 
3.15 (0.5) Express the pressure difference  in terms of , the change in height. dp dz

 
3.16 (1.0) What is the resulting temperature at the top of the building? 

 
Data Boltzmann constant: k = 1.38 × 10−23

 J K−1

Mass of a nitrogen molecule: m = 4.65 × 10−26
 kg 

Gravitational acceleration: g = 9.80 m s−2
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Digital Camera 
 

 
3.1 

 
The best spatial resolution is 
 

  (formula:)  =Δ minx
 
 
 
 
which gives 
  (numerical:)  =Δ minx
 
 
 
 
for λ  = 500 nm. 

 
3.2 

 
The number of Mpix is 
 

  N = 
 
 
 
 

 
3.3 

 
The best F-number value is 
 

   = #F
 
 
 
 
 

 
3.4  

 
The minimal distance is 
 

  z = 
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3.5 

 
The required energy is 
 
   =U
 
 
 
 
 

 
3.6 

 
The heat flow is 
 
   =J
 
 
 
 
 

 
3.7 

 
The heat power transferred is 
 
   =P
 
 
 
 
 

 
3.8 

 
The time needed to hard-boil the egg is 
 
  =τ  
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3.9 

 
The total charge is 
 
   =Q
 
 
 
 

 
3.10 

 
The average current is 
 
  =I  
 
 
 
 

 
3.11 

 
The light bulb would burn for the duration 
 
   =t
 
 
 
 

 
Capillary Vessels 

 

 
3.12 

 
There are 
 
   =N
 
 
 
capillary vessels in a human body. 

 
3.13 

 
The blood flows with velocity 
 
  =υ  
 
 
 

 



Answer Script                                                                                           Theory Question 3 
Page 8 of 8 

 
 

Country Code Student Code Question Number 
 
 

 
 

 
3 

 
 
For 
Examiners 
Use  
Only 
 
0.5 
 
 
 
 
 
 
 
 
 
 
0.5 
 
 
 
 
 
 
 
 
 
 
1.0 
 
 
 
 
 
 
 
 
 

Skyscraper 
 

 
3.14 

 
The fractional change in temperature is 
 

  =
T
dT  

 
 
 
 
 
 

 
3.15 

 
The pressure difference is 
 
  dp = 
 
 
 
 
 
 
 

 
3.16 

 
The temperature at the top is 
 
  Ttop = 
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List of apparatus and materials 

Label  Component  Quantity  Label  Component  Quantity 

○ A  Microwave transmitter  1  ○ I  Lattice structure in a 
black box 

1 

○ B  Microwave receiver  1  ○ J  Goniometer  1 

○ C  Transmitter/receiver 
holder 

2  ○ K  Prism holder  1 

○ D  Digital multimeter  1  ○ L  Rotating table  1 

○ E  DC power supply for 
transmitter 

1  ○ M  Lens/reflector holder  1 

○ F  Slab as a “Thin film” 
sample 

1  ○ N  Plano­cylindrical lens  1 

○ G  Reflector (silver metal 
sheet) 

1  ○ O  Wax prism  2 

○ H  Beam splitter (blue 
Perspex) 

1  Blu­Tack  1 pack 

Vernier caliper 
(provided separately) 

30 cm ruler (provided 
separately)
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Caution: 

•  The output power of the microwave transmitter is well within standard safety 

levels. Nevertheless, one should never look directly into the microwave horn at 

close range when the transmitter is on. 

•  Do not open the box containing the lattice ○ I  . 

•  The wax prisms ○ O  are fragile (used in Part 3). 

Note: 

•  It is important to note that the microwave receiver output (CURRENT) is 

proportional to the AMPLITUDE of the microwave. 

•  Always use LO gain setting of the microwave receiver. 

•  Do not change the range of the multimeter during the data collection. 

•  Place the unused components away from the experiment to minimize 

interference. 

•  Always use the component labels (○ A  , ○ B  , ○ C  ,…) to indicate the components 
in all your drawings.
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The  digital  multimeter  should  be  used  with  the  two  leads  connected  as  shown  in  the 
diagram. You should use the “2m” current setting in this experiment. 

Red lead Black lead
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Part 1:  Michelson interferometer 

1.1. Introduction 

In a Michelson  interferometer, a beam splitter sends an  incoming electromagnetic (EM) 

wave  along two separate paths, and then brings the constituent waves back together after 

reflection so that they superpose, forming an interference pattern. Figure 1.1 illustrates the 

setup for a Michelson interferometer. An incident wave travels from the transmitter to the 

receiver along two different paths. These two waves superpose and interfere at the receiver. 

The strength of  signal at  the  receiver depends on  the phase difference  between  the  two 

waves, which can be varied by changing the optical path difference. 

Reflectors 

Beam 
splitter 

Transmitter 

Receiver 

Reflectors 

Beam 
splitter 

Transmitter 

Receiver 

1.2. List of components 

1)  Microwave transmitter ○ A with holder ○ C 

2)  Microwave receiver ○ B with holder○ C 

3)  Goniometer ○ J 

4)  2 reflectors: reflector ○ G with holder ○ M  and thin film ○ F  acting as a reflector. 

5)  Beam splitter ○ H with rotating table ○ L  acting as a holder 

6)  Digital multimeter ○ D 

Figure 1.1: Schematic diagram of a Michelson interferometer.
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1.3. Task: Determination of wavelength of the microwave  [2 marks] 

Using  only  the  experimental  components  listed  in  Section  1.2,  set  up  a  Michelson 

interferometer experiment to determine the wavelength λ of the microwave in air. Record 

your data and determine λ in such a way that the uncertainty is ≤ 0.02 cm. 

Note that the “thin film” is partially transmissive, so make sure you do not stand or move 

behind it as this might affect your results. 

Part 2:  “Thin film” interference 

2.1. Introduction 

A beam of EM wave incident on a dielectric thin film splits into two beams, as shown in 

Figure  2.1.  Beam  A  is  reflected  from  the  top  surface  of  the  film  whereas  beam  B  is 

reflected from the bottom surface of the film. The superposition of beams A and B results 

in the so called thin film interference. 

A 

B 
θ 1 θ 1 

θ 2 

t n 

A 

B 
θ 1 θ 1 

θ 2 

t n 

Figure 2.1: Schematic of thin film interference. 

The  difference  in  the  optical  path  lengths  of  beam  A  and  B  leads  to  constructive  or 

destructive interference. The resultant EM wave intensity I depends on the path difference 

of  the two interfering beams which  in turn depends on the angle of  incidence, θ1, of the
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incident beam, wavelength λ of the radiation, and the thickness t and refractive index n of 

the thin film. Thus, the refractive index n of the thin film can be determined from I­θ1 plot, 

using values of t and λ. 

2.2.  List of components 

1)  Microwave transmitter ○ A with holder ○ C 

2)  Microwave receiver ○ B with holder○ C 

3)  Plano­cylindrical lens ○ N  with holder ○ M 

4)  Goniometer ○ J 

5)  Rotating table ○ L 

6)  Digital multimeter ○ D 

7)  Polymer slab acting as a “thin film” sample ○ F 
8)  Vernier caliper 

2.3. Tasks: Determination of refractive index of polymer slab  [6 marks] 

1) Derive expressions for the conditions of constructive and destructive interferences 

in terms of θ1, t, λ and n. 

[1 mark] 

2) Using only the experimental components listed in Section 2.2, set up an experiment 

to measure the receiver output S as a function of  the angle of  incidence θ1  in  the 

range from 40 o  to 75 o . Sketch your experimental setup, clearly showing the angles 

of incidence and reflection and the position of the film on the rotating table. Mark 

all  components  using  the  labels  given  on  page  2.  Tabulate  your  data.  Plot  the 

receiver output S versus the angle of incidence θ1. Determine accurately the angles 

corresponding to constructive and destructive interferences. 

[3 marks] 

3) Assuming that the refractive index of air is 1.00, determine the order of interference 

m and the refractive index of the polymer slab n. Write the values ofm and n on the 

answer sheet.
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[1.5 marks] 

4) Carry out error analysis for your results and estimate the uncertainty of n. Write the 

value of the uncertainty Δn on the answer sheet. 

[0.5 marks] 

Note: 

•  The  lens  should  be  placed  in  front  of  the  microwave  transmitter  with  the  planar 

surface  facing  the  transmitter  to  obtain  a  quasi­parallel  microwave  beam.  The 

distance between the planar surface of the lens and the aperture of transmitter horn 

should be 3 cm. 

•  For best results, maximize the distance between the transmitter and receiver. 

•  Deviations  of  the microwave  emitted  by  transmitter  from  a  plane  wave may  cause 

extra peaks in the observed pattern. In the prescribed range from 40 o to 75 o , only one 

maximum and one minimum exist due to interference. 

Part 3:  Frustrated Total Internal Reflection 

3.1. Introduction 

The phenomenon of total internal reflection (TIR) may occur when the plane wave travels 

from an optically dense medium  to  less dense medium. However,  instead of TIR at  the 

interface as predicted by geometrical optics, the incoming wave in reality penetrates into 

the less dense medium and travels for some distance parallel to the interface before being 

scattered back to the denser medium (see Figure 3.1). This effect can be described by a 

shift D of the reflected beam, known as the Goos­Hänchen shift. 

Prism 

Air 

n 1 

n 2 

θ 1  D 

Figure 3.1: A sketch illustrating an EM wave undergoing total internal reflection in a 
prism. The shift D parallel to the surface in air represents the Goos­Hänchen shift
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d 

n 1 

θ 1  D 

n 1 

n 2 

Prism 

Prism 

Air 

Transmitter 

Receiver 

z 

If another medium of refractive index n1 (i.e. made of the same material as the first medium) 

is placed at a small distance d to the first medium as shown in Figure 3.2, tunneling of the 

EM wave through the second medium occurs. This intriguing phenomenon is known as the 

frustrated  total  internal  reflection  (FTIR).  The  intensity  of  the  transmitted  wave,  It, 

decreases exponentially with the distance d: 

( ) 0 exp 2 t I I d γ = −  (3.1) 

where I0  is the intensity of the incident wave and γ is: 

2 
2 1 

1 2 
2 

2  sin 1 n 
n 

π γ θ 
λ 

= −  (3.2) 

where λ  is  the wavelength  of EM wave  in  medium  2  and  n2  is  the  refractive  index  of 

medium 2 (assume that the refractive index of medium 2, air, is 1.00). 

3.2. List of components 

1)  Microwave transmitter ○ A  with holder ○ C 

Figure 1.2: A sketch of the experimental setup showing the prisms and the air gap of 
distance d. The shift D parallel to the surface in air represents the Goos­Hänchen shift. 
z is the distance from the tip of the prism to the central axis of the transmitter.
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2)  Microwave receiver ○ B  with holder ○ C 

3)  Plano­cylindrical lens ○ N  with holder ○ M 

4)  2 equilateral wax prisms ○ O  with holder ○ K  and rotating table ○ L  acting as a 
holder 

5)  Digital multimeter ○ D 

6)  Goniometer○ J 
7)  Ruler 

3.3. Description of the Experiment 

Using  only  the  list  of  components  described  in  Section  3.2,  set  up  an  experiment  to 

investigate the variation of the intensity It as a function of the air gap separation d in FTIR. 

For consistent results, please take note of the following: 

•  Use one arm of the goniometer for this experiment. 

•  Choose the prism surfaces carefully so that they are parallel to each other. 

•  The distance from the centre of the curved surface of the lens should be 2 cm from 

the surface of the prism. 

•  Place the detector such that its horn is in contact with the face of the prism. 

•  For each value of d, adjust the position of the microwave receiver along the prism 

surface to obtain the maximum signal. 

•  Make sure that  the digital multi­meter  is on the 2mA range. Collect data starting 

from d = 0.6 cm. Discontinue the measurements when the reading of the multimeter 

falls below 0.20 mA. 

3.4. Tasks: Determination of refractive index of prism material  [6 marks] 

Task 1 

Sketch  your  final  experimental  setup  and mark  all  components  using  the  labels 

given at page 2. In your sketch, record the value of the distance z (see Figure 3.2), 

the distance from the tip of the prism to the central axis of the transmitter. 

[1 Mark] 

Task 2 

Perform your experiment and tabulate your data. Perform this task twice. 

[2.1 Marks]
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Task 3 

(a)  By plotting appropriate graphs, determine the refractive index, n1, of the prism 

with error analysis. 

(b)  Write the refractive index n1, and its uncertainty ∆n1, of the prism in the answer 

sheet provided. 

[2.9 Marks] 

Part 4: Microwave diffraction of a metal­rod lattice: Bragg reflection 

4.1. Introduction 

Bragg’s Law 

The lattice structure of a real crystal can be examined using Bragg’s Law,

             λ θ  m d = sin 2     (4.1) 

where  d  refers  to  the  distance  between  a  set of  parallel  crystal  planes  that  “reflect”  the 

X­ray; m is the order of diffraction and θ is the angle between the incident X­ray beam and 

the crystal planes.  Bragg’s law is also commonly known as Bragg’s reflection or X­ray 

diffraction.
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Metal­rod lattice 

Because the wavelength of the X­ray is comparable to the lattice constant of the crystal, 

traditional  Bragg’s  diffraction  experiment  is  performed  using  X­ray.  For  microwave, 

however, diffraction occurs in  lattice structures with much  larger  lattice constant, which 

can be measured easily with a ruler. 

a 

d 

b 

x 

y 

Figure 4.1: A metal­rod lattice of  lattice constants a and b, and interplanar 
spacing d. 

Figure  4.2: Top­view of  the metal­rod  lattice  shown  in  Fig.  4.1  (not  to 
scale). The lines denote diagonal planes of the lattice. 

x 

y 

z 

a 

d 
b
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In this experiment, the Bragg law is used to measure the lattice constant of a lattice made of 

metal rods. An example of such metal­rod lattice is shown in Fig. 4.1, where the metal rods 

are  shown  as  thick vertical  lines. The  lattice  planes  along  the  diagonal  direction  of  the 

xy­plane are shown as shaded planes. Fig. 4.2 shows the top­view (looking down along the 

z­axis) of the metal­rod lattice, where the points represent the rods and the lines denote the 

diagonal lattice planes. 

4.2. List of components 

1)  Microwave transmitter ○ A  with holder ○ C 

2)  Microwave receiver ○ B  with holder ○ C 

3)  Plano­cylindrical lens ○ N  with holder ○ M 

4)  Sealed box containing a metal­rod lattice ○ I 

5)  Rotating table ○ L 

6)  Digital multimeter ○ D 

7)  Goniometer○ J 

Figure 4.3: A simple square lattice. 

In this experiment, you are given a simple square lattice made of metal rods, as illustrated 

in Fig. 4.3. The lattice is sealed in a box. You are asked to derive the lattice constant a of 

x 

y 

z 

a 

a
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the  lattice  from  the experiment. DO NOT open  the  box. No marks will  be given  to the 

experimental results if the seal is found broken after the experiment. 

4.3. Tasks: Determination of lattice constant of given simple square lattice [6 Marks] 

Task 1 

Draw a top­view diagram of the simple square lattice shown in Fig. 4.3. In the diagram, 

indicate  the  lattice  constant  a  of  the  given  lattice  and  the  interplanar  spacing  d  of  the 

diagonal planes. With the help of this diagram, derive Bragg’s Law. 

[1 Mark] 

Task 2 

Using Bragg’s law and the apparatus provided, design an experiment to perform Bragg 

diffraction experiment to determine the lattice constant a of the lattice. 

(a)  Sketch the experimental set up. Mark all components using the labels in page 2 and 

indicate clearly the angle between the axis of the transmitter and lattice planes, θ, 

and the angle between the axis of the transmitter and the axis of the receiver, ζ. In 

your experiment, measure  the diffraction on  the diagonal planes  the direction of 

which is indicated by the red line on the box. 

[1.5 Marks] 

(b) Carry out the diffraction experiment for 20° ≤ θ ≤ 50°. In this range, you will only 

observe  the  first order diffraction.  In  the answer  sheet,  tabulate  your  results and 

record both the θ and ζ. 

[1.4 Marks] 

(c)  Plot the quantity proportional to the intensity of diffracted wave as a function of θ. 

[1.3 Marks] 

(d) Determine  the  lattice  constant  a  using  the  graph  and  estimate  the  experimental 

error. 

[0.8 Marks]
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Note: 

1.  For best results, the transmitter should remain fixed during the experiment. The 

separation between the transmitter and the lattice, as well as that between lattice 

and receiver should be about 50 cm. 

2.  Use only the diagonal planes in this experiment. Your result will not be correct if 

you try to use any other planes. 

3.  The face of the lattice box with the red diagonal line must be at the top. 

4.  To  determine  the  position  of  the  diffraction  peak  with  better  accuracy,  use  a 

number of data points around the peak position.



SOLUTIONS to Theory Question 1

Geometry Each side of the diamond has length L =
a

cos θ
and the dis-

tance between parallel sides is D =
a

cos θ
sin(2θ) = 2a sin θ. The area is the

product thereof, A = LD, giving

1.1 A = 2a2 tan θ .

The height H by which a tilt of φ lifts OUT1 above IN is H = D sin φ or

1.2 H = 2a sin θ sin φ .

Optical path length Only the two parallel lines for IN and OUT1 matter,
each having length L. With the de Broglie wavelength λ0 on the IN side and
λ1 on the OUT1 side, we have

∆Nopt =
L

λ0

− L

λ1

=
a

λ0 cos θ

(
1− λ0

λ1

)
.

The momentum is h/λ0 or h/λ1, respectively, and the statement of energy
conservation reads

1

2M

(
h

λ0

)2

=
1

2M

(
h

λ1

)2

+ MgH ,

which implies

λ0

λ1

=

√
1− 2

gM2

h2
λ2

0H .

Upon recognizing that (gM2/h2)λ2
0H is of the order of 10−7, this simplifies

to
λ0

λ1

= 1− gM2

h2
λ2

0H ,

and we get

∆Nopt =
a

λ0 cos θ

gM2

h2
λ2

0H

or

1



1.3 ∆Nopt = 2
gM2

h2
a2λ0 tan θ sin φ .

A more compact way of writing this is

1.4 ∆Nopt =
λ0A

V
sin φ ,

where

1.4 V = 0.1597× 10−13 m3 = 0.1597 nm cm2

is the numerical value for the volume parameter V .
There is constructive interference (high intensity in OUT1) when the optical

path lengths of the two paths differ by an integer, ∆Nopt = 0,±1,±2, . . ., and
we have destructive interference (low intensity in OUT1) when they differ by
an integer plus half, ∆Nopt = ±1

2
,±3

2
,±5

2
, . . . . Changing φ from φ = −90◦

to φ = 90◦ gives

∆Nopt

∣∣∣∣φ=90◦

φ=−90◦
=

2λ0A

V
,

which tell us that

1.5 ] of cycles =
2λ0A

V
.

Experimental data For a = 3.6 cm and θ = 22.1◦ we have A = 10.53 cm2,
so that

1.6 λ0 =
19× 0.1597

2× 10.53
nm = 0.1441 nm .

And 30 full cycles for λ0 = 0.2 nm correspond to an area

1.7 A =
30× 0.1597

2× 0.2
cm2 = 11.98 cm2 .
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SOLUTIONS to Theory Question 2

Basic relations Position x̃ shows up on the picture if light was emitted
from there at an instant that is earlier than the instant of the picture taking
by the light travel time T that is given by

T =
√

D
2 + x̃

2
/

c .

During the lapse of T the respective segment of the rod has moved the dis-
tance vT , so that its actual position x at the time of the picture taking
is

2.1
x = x̃ + β

√
D

2 + x̃
2
.

Upon solving for x̃ we find

2.2 x̃ = γ
2
x − βγ

√

D
2 + (γx)2

.

Apparent length of the rod Owing to the Lorentz contraction, the
actual length of the moving rod is L/γ, so that the actual positions of the
two ends of the rod are

x± = x0 ±
L

2γ
for the

{

front end
rear end

}

of the rod.

The picture taken by the pinhole camera shows the images of the rod ends
at

x̃± = γ

(

γx0 ±
L

2

)

− βγ

√

D
2 +

(

γx0 ±
L

2

)2

.

The apparent length L̃(x0) = x̃+ − x̃− is therefore

2.3 L̃(x0) = γL + βγ

√

D
2 +

(

γx0 −
L

2

)2

− βγ

√

D
2 +

(

γx0 +
L

2

)2

.

Since the rod moves with the constant speed v, we have
dx0

dt

= v and therefore

the question is whether L̃(x0) increases or decreases when x0 increases. We
sketch the two square root terms:

1
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√

D
2 +

(

γx0 ± L/2
)2

0
.
.........

L/2
.
.........

−L/2

“−”

“+”

“+”

“−”

The difference of the square roots with “−” and “+” appears in the expression
for L̃(x0), and this difference clearly decreases when x0 increases.

2.4 The apparent length decreases all the time.

Symmetric picture For symmetry reasons, the apparent length on the
symmetric picture is the actual length of the moving rod, because the light
from the two ends was emitted simultaneously to reach the pinhole at the
same time, that is:

2.5 L̃ =
L

γ

.

The apparent endpoint positions are such that x̃− = −x̃+, or

0 = x̃+ + x̃− = 2γ2
x0 − βγ

√

D
2 +

(

γx0 +
L

2

)2

− βγ

√

D
2 +

(

γx0 −
L

2

)2

.
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In conjunction with

L

γ

= x̃+ − x̃− = γL − βγ

√

D
2 +

(

γx0 +
L

2

)2

+ βγ

√

D
2 +

(

γx0 −
L

2

)2

this tells us that
√

D
2 +

(

γx0 ±
L

2

)2

=
2γ2

x0 ± (γL − L/γ)

2βγ

=
γx0

β

±
βL

2
.

As they should, both the version with the upper signs and the version with
the lower signs give the same answer for x0, namely

2.6 x0 = β

√

D
2 +

(

L

2γ

)2

.

The image of the middle of the rod on the symmetric picture is, therefore,
located at

x̃0 = γ
2
x0 − βγ

√

D
2 + (γx0)2

= βγ





√

(γD)2 +
(

L

2

)2

−
√

(γD)2 +
(

βL

2

)2


 ,

which is at a distance ℓ = x̃+ − x̃0 =
L

2γ
− x̃0 from the image of the front

end, that is

2.7

ℓ =
L

2γ
− βγ

√

(γD)2 +
(

L

2

)2

+ βγ

√

(γD)2 +
(

βL

2

)2

or

ℓ =
L

2γ













1 −

βL

2
√

(γD)2 +
(

L

2

)2

+

√

(γD)2 +
(

βL

2

)2













.

Very early and very late pictures At the very early time, we have a
very large negative value for x0, so that the apparent length on the very early
picture is

L̃early = L̃(x0 → −∞) = (1 + β)γL =

√

1 + β

1 − β

L .

3



Likewise, at the very late time, we have a very large positive value for x0, so
that the apparent length on the very late picture is

L̃late = L̃(x0 → ∞) = (1 − β)γL =

√

1 − β

1 + β

L .

It follows that L̃early > L̃late, that is:

2.8
The apparent length is 3 m on the early picture
and 1 m on the late picture.

Further, we have

β =
L̃early − L̃late

L̃early + L̃late

,

so that β =
1

2
and the velocity is

2.9 v =
c

2
.

It follows that γ =
L̃early + L̃late

2
√

L̃earlyL̃late

=
2√
3

= 1.1547. Combined with

2.10 L =
√

L̃earlyL̃late = 1.73 m ,

this gives the length on the symmetric picture as

2.11 L̃ =
2L̃earlyL̃late

L̃early + L̃late

= 1.50 m .
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SOLUTIONS to Theory Question 3

Digital Camera Two factors limit the resolution of the camera as a pho-
tographic tool: the diffraction by the aperture and the pixel size. For diffrac-
tion, the inherent angular resolution θR is the ratio of the wavelength λ of
the light and the aperture D of the camera,

θR = 1.22
λ

D
,

where the standard factor of 1.22 reflects the circular shape of the aperture.
When taking a picture, the object is generally sufficiently far away from the
photographer for the image to form in the focal plane of the camera where
the CCD chip should thus be placed. The Rayleigh diffraction criterion then
states that two image points can be resolved if they are separated by more
than

3.1
∆x = fθR = 1.22λ F] ,

which gives
∆x = 1.22 µm

if we choose the largest possible aperture (or smallest value F] = 2) and
assume λ = 500 nm for the typical wavelength of daylight

The digital resolution is given by the distance ` between the center of two
neighboring pixels. For our 5Mpix camera this distance is roughly

` =
L√
Np

= 15.65 µm .

Ideally we should match the optical and the digital resolution so that neither
aspect is overspecified. Taking the given optical resolution in the expression
for the digital resolution, we obtain

3.2 N =
(

L

∆x

)2

≈ 823 Mpix .

Now looking for the unknown optimal aperture, we note that we should
have ` ≥ ∆x, that is: F] ≤ F0 with

F0 =
L

1.22λ
√

N0

= 2

√
N

N0

= 14.34 .

1



Since this F] value is not available, we choose the nearest value that has a
higher optical resolution,

3.3 F0 = 11 .

When looking at a picture at distance z from the eye, the (small) sub-
tended angle between two neighboring dots is φ = `/z where, as above, ` is
the distance between neighboring dots. Accordingly,

3.4 z =
`

φ
=

2.54× 10−2/300 dpi

5.82× 10−4 rad
= 14.55 cm ≈ 15 cm .

Hard-boiled egg All of the egg has to reach coagulation temperature.
This means that the increase in temperature is

∆T = Tc − T0 = 65 ◦C− 4 ◦C = 61 ◦C .

Thus the minimum amount of energy that we need to get into the egg such
that all of it has coagulated is given by U = µV C∆T where V = 4πR3/3 is
the egg volume. We thus find

3.5 U = µ
4πR3

3
C(Tc − T0) = 16768 J .

The simplified equation for heat flow then allows us to calculate how much
energy has flown into the egg through the surface per unit time. To get an
approximate value for the time we assume that the center of the egg is at the
initial temperature T = 4 ◦C. The typical length scale is ∆r = R, and the
temperature difference associated with it is ∆T = T1−T0 where T1 = 100 ◦C
(boiling water). We thus get

3.6 J = κ(T1 − T0)/R = 2458 W m−2 .

Heat is transferred from the boiling water to the egg through the surface of
the egg. This gives

2



3.7 P = 4πR2J = 4πκR(T1 − T0) ≈ 19.3 W

for the amount of energy transferred to the egg per unit time. From this we
get an estimate for the time τ required for the necessary amount of heat to
flow into the egg all the way to the center:

3.8 τ =
U

P
=

µCR2

3κ

Tc − T0

T1 − T0

=
16768

19.3
= 869 s ≈ 14.5 min .

Lightning The total charge Q is just the area under the curve of the
figure. Because of the triangular shape, we immediately get

3.9 Q =
I0τ

2
= 5 C .

The average current is

3.10 I = Q/τ =
I0

2
= 50 kA ,

simply half the maximal value.
Since the bottom of the cloud gets negatively charged and the ground

positively charged, the situation is essentially that of a giant parallel-plate ca-
pacitor. The amount of energy stored just before lightning occurs is QE0h/2
where E0h is the voltage difference between the bottom of the cloud and the
ground, and lightning releases this energy. Altogether we thus get for one
lightning the energy QE0h/2 = 7.5 × 108 J. It follows that you could light
up the 100 W bulb for the duration

3.11 t =
32× 106

6.5× 109
× 7.5× 108 J

100 W
≈ 10 h .

Capillary Vessels Considering all capillaries, one has

Rall =
∆p

D
= 107 Pa m−3 s .

3



All capillaries are assumed to be connected in parallel. The analogy between
Poiseuille’s and Ohm’s laws then gives the hydraulic resistance R of one
capillary as

1

Rall

=
N

R
.

We thus get

N =
R

Rall

for the number of capillary vessels in the human body. Now calculate R using
Poiseuille’s law,

R =
8ηL

πr4
≈ 4.5× 1016 kg m−4 s−1 ,

and arrive at

3.12 N ≈ 4.5× 1016

107
= 4.5× 109 .

The volume flow is D = Sallv where Sall = Nπr2 is the total cross-sectional
area associated with all capillary vessels. We then get

3.13 v =
D

Nπr2
=

r2∆p

8ηL
= 0.44 mm s−1 ,

where the second expression is found by alternatively considering one capil-
lary vessel by itself.

Skyscraper When the slab is at height z above the ground, the air in
the slab has pressure p(z) and temperature T (z) and the slab has volume
V (z) = Ah(z) where A is the cross-sectional area and h(z) is the thickness
of the slab. At any given height z, we combine the ideal gas law

pV = NkT (N is the number of molecules in the slab)

with the adiabatic law

pV γ = const or (pV )γ ∝ pγ−1

to conclude that pγ−1 ∝ T γ. Upon differentiation this gives (γ−1)
dp

p
= γ

dT

T
,

so that

4



3.14
dT

T
= (1− 1/γ)

dp

p
.

Since the slab is not accelerated, the weight must be balanced by the force
that results from the difference in pressure at the top and bottom of the slab.
Taking downward forces as positive, we have the net force

0 = Nmg + A[p(z + h)− p(z)] =
pV

kT
mg +

V

h

dp

dz
h ,

so that
dp

dz
= −mg

k

p

T
or

3.15 dp = −mg

k

p

T
dz .

Taken together, the two expressions say that

dT = −(1− 1/γ)
mg

k
dz

and therefore we have

Ttop = Tbot − (1− 1/γ)
mgH

k

for a building of height H, which gives

3.16 Ttop = 20.6 ◦C

for H = 1 km and Tbot = 30 ◦C.
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Part 1 
a. A sketch of the experimental setup (not required) 

Transmitter 

Receiver 

Rotating table 

Goniometer 
Movable arm Goniometer 

Fixed arm 

Reflector 

Holder 

Beam 
splitter 

Transmitter 

Receiver 

Rotating table 

Goniometer 
Movable arm Goniometer 

Fixed arm 

Reflector 

Holder 

Beam 
splitter 

b. Data sheet (not required) 

Position 

(cm) 

Meter 

reading 

(mA) 

Position 

(cm) 

Meter 

reading 

(mA) 

Position 

(cm) 

Meter 

reading 

(mA) 

Position 

(cm) 

Meter 

reading 

(mA) 

104.0  0.609  100.9  1.016  96.0  0.514  91.0  0.925 
103.9  0.817  100.85  1.060  95.8  0.098  90.9  1.094 
103.8  0.933  100.8  1.090  95.6  0.192  90.8  1.245 
103.7  1.016  100.7  0.994  95.4  0.669  90.7  1.291 
103.6  1.030  100.6  0.940  95.3  0.870  90.6  1.253 
103.5  0.977  100.4  0.673  95.2  1.009  90.4  0.978 
103.4  0.890  100.2  0.249  95.1  1.119  90.2  0.462 
103.3  0.738  100.0  0.074  95.0  1.138  90.0  0.045 
103.2  0.548  99.8  0.457  94.9  1.080  89.8  0.278 
103.1  0.310  99.6  0.883  94.7  0.781  89.6  0.809 
103.0  0.145  99.4  1.095  94.5  0.403  89.5  1.031 
102.9  0.076  99.3  1.111  94.3  0.044  89.4  1.235 
102.8  0.179  99.2  1.022  94.1  0.364  89.3  1.277 
102.7  0.392  99.0  0.787  93.9  0.860  89.2  1.298 
102.6  0.623  98.8  0.359  93.7  1.103  89.1  1.252 
102.5  0.786  98.6  0.079  93.6  1.160  89.0  1.133 
102.4  0.918  98.4  0.414  93.5  1.159  88.8  0.684 
102.3  0.988  98.2  0.864  93.4  1.083  88.6  0.123 
102.2  1.026  98..0  1.128  93.2  0.753  88.5  ­0.020 
102.1  1.006  97.9  1.183  93.0  0.331  88.4  0.123 
102.0  0.945  97.8  1.132  92.8  0.073  88.2  0.679 
101.9  0.747  97.7  1.015  92.6  0.515  88.0  1.116 
101.8  0.597  97.5  0.713  92.4  0.968  87.9  1.265 
101.7  0.363  97.2  0.090  92.2  1.217  87.8  1.339 
101.6  0.161  97.0  0.342  92.15  1.234  87.7  1.313 
101.5  0.055  96.8  0.714  92.1  1.230  87.6  1.190 
101.4  0.139  96.6  1.007  92.0  1.165  87.4  0.867 
101.3  0.357  96.5  1.087  91.8  0.871  87.2  0.316
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101.2  0.589  96.4  1.070  91.6  0.353  87.1  0.034 
101.1  0.781  96.3  1.018  91.4  0.018  87.0  ­0.018 
101.0  0.954  96.2  0.865  91.2  0.394  86.9  0.178 
104.0  0.609  100.9  1.016  96.0  0.514  91.0  0.925 
103.9  0.817  100.8  1.060  95.8  0.098  90.9  1.094 
103.8  0.933  100.8  1.090  95.6  0.192  90.8  1.245 
103.7  1.016  100.7  0.994  95.4  0.669  90.7  1.291 
103.6  1.030  100.6  0.940  95.3  0.870  90.6  1.253 
103.5  0.977  100.4  0.673  95.2  1.009  90.4  0.978 
103.4  0.890  100.2  0.249  95.1  1.119  90.2  0.462 
103.3  0.738  100.0  0.074  95.0  1.138  90.0  0.045 
103.2  0.548  99.8  0.457  94.9  1.080  89.8  0.278 
103.1  0.310  99.6  0.883  94.7  0.781  89.6  0.809 
103.0  0.145  99.4  1.095  94.5  0.403  89.5  1.031 
102.9  0.076  99.3  1.111  94.3  0.044  89.4  1.235 
102.8  0.179  99.2  1.022  94.1  0.364  89.3  1.277 
102.7  0.392  99.0  0.787  93.9  0.860  89.2  1.298 
102.6  0.623  98.8  0.359  93.7  1.103  89.1  1.252 
102.5  0.786  98.6  0.079  93.6  1.160  89.0  1.133 
102.4  0.918  98.4  0.414  93.5  1.159  88.8  0.684 
102.3  0.988  98.2  0.864  93.4  1.083  88.6  0.123 
102.2  1.026  98.0  1.128  93.2  0.753  88.5  ­0.020 
102.1  1.006  97.9  1.183  93.0  0.331  88.4  0.123 
102.0  0.945  97.8  1.132  92.8  0.073  88.2  0.679 
101.9  0.747  97.7  1.015  92.6  0.515  88.0  1.116 
101.8  0.597  97.5  0.713  92.4  0.968  87.9  1.265 
101.7  0.363  97.2  0.090  92.2  1.217  87.8  1.339 
101.6  0.161  97.0  0.342  92.15  1.234  87.7  1.313 
101.5  0.055  96.8  0.714  92.1  1.230  87.6  1.190 
101.4  0.139  96.6  1.007  92.0  1.165  87.4  0.867 
101.3  0.357  96.5  1.087  91.8  0.871  87.2  0.316 
101.2  0.589  96.4  1.070  91.6  0.353  87.1  0.034 
101.1  0.781  96.3  1.018  91.4  0.018  87.0  ­0.018 
101.0  0.954  96.2  0.865  91.2  0.394  86.9  0.178 

88  90  92  94  96  98  100  102  104 
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From the graph (not required) or otherwise, the positions of the first maximum point and 

12 th maximum point are measured at 87.8 cm and 103.6 cm. 

The wavelength is calculated by 

11 
8 . 87 6 . 103 

2 
− 

= λ  cm 

Thus, λ = 2.87 cm. 

Error analysis 

d 
11 
2 

= λ  , ∆d = 0.05 x2 cm =  0.1 cm. 

cm cm d  02 . 0 018 . 0 10 . 0 
11 
2 

11 
2 

< = × = ∆ = ∆λ 

1.8 marks 

0.2 marks
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Part 2 
(a)  Deduction of interference conditions 

A 

B 
θ 1 θ 1 

θ 2 

t n 

A 

B 
θ 1 θ 1 

θ 2 

t n 

Assume that  the thickness of the film is t and refractive index n. Let  1 θ  be the incident 

angle and  2 θ  the refracted angle.  The difference of the optical paths  L ∆  is: 

) sin tan cos / ( 2  1 2 2 θ θ θ  t nt L − = ∆ 

Law of refraction: 

2 1  sin sin θ θ  n = 

Thus 

1 
2 2  sin 2 θ − = ∆  n t L 

Considering  the  180  deg  (π)  phase  shift  at  the  air­  thin  film  interface  for  the  reflected 

beam, we have interference conditions: 

,...) 3 , 2 , 1 ( sin 2  min 
2 2 = = −  m m n t λ θ  for the destructive peak 

and λ θ  )
2 
1 ( sin 2  max 

2 2 ± = −  m n t  for the constructive peak 

If thickness t and wave length λ are known, one can determine the refractive index of the 

thin film from I ­ θ 1spectrum (I is the intensity of the interfered beam). 

1 mark
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(b)  A sketch of the experimental setup 

θ 

Transmitter 

Receiver 

Thin film 

Plano­convex 
cylinder lens 

Rotating table 

Goniometer 
Movable arm 

Goniometer 
Fixed arm 

θ 

θ 

Transmitter 

Receiver 

Thin film 

Plano­convex 
cylinder lens 

Rotating table 

Goniometer 
Movable arm 

Goniometer 
Fixed arm 

θ 

Students should use the labeling on Page 2. 

(c)  Data Set 

X: θ1 / degree  Y: Meter reading S/mA 

40.0  0.309 
41.0  0.270 
42.0  0.226 
43.0  0.196 
44.0  0.164 
45.0  0.114 
46.0  0.063 
47.0  0.036 
48.0  0.022 
49.0  0.039 
50.0  0.066 
51.0  0.135 
52.0  0.215 
53.0  0.262 
54.0  0.321 
55.0  0.391 
56.0  0.454 
57.0  0.511 

1 mark
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58.0  0.566 
59.0  0.622 
60.0  0.664 
61.0  0.691 
62.0  0.722 
63.0  0.754 
64.0  0.796 
65.0  0.831 
66.0  0.836 
67.0  0.860 
68.0  0.904 
69.0  0.970 
70.0  1.022 
71.0  1.018 
72.0  0.926 
73.0  0.800 
74.0  0.770 
75.0  0.915 

Uncertainty: angle  o 5 . 0 1 ± = ∆θ  , current: ±0.001 mA 

35  40  45  50  55  60  65  70  75  80 

0.0 

0.2 

0.4 

0.6 

0.8 
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48 o 
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θ ( o  ) 

From the data,  min θ  and  max θ  can be found at 48 o and 70.5 o respectively. 

To calculate the refractive index, the following equations are used: 

0.9 marks 

0.6 marks 

0.5 marks
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,...) 3 , 2 , 1 ( 48 sin 2  2 2 = = −  m m n t  o λ  (1) 

and λ )
2 
1 ( 5 . 70 sin 2  2 2 − = −  m n t  o  (2) 

In this experiment, t = 5.28 cm, λ = 2.85cm (measured using other method). 

Solving the simultaneous equations (1) and (2), we get 

25 . 0 
) 

2 
( 

48 sin 5 . 70 sin 
2 

2 2 

+ 
− 

= 

t 

m 
o o 

λ 

m = 4.83  m = 5 

Substituting m = 5 in (1), we get n = 1.54 

Substituting m = 5 in (2), we also get n = 1.54 

Error analysis: 

2 2  ) 
2 

( sin 
t 

m n λ θ + = 

) 
2 2 

2 (sin 1 

) 
2 2 

2 (sin 
) 

2 
( sin 

1 

3 

2 2 

2 

2 

3 

2 2 

2 

2 

2 2 

t 
t 

m 
t 

m 
n 

t 
t 

m 
t 

m 

t 
m 

n 

∆ − ∆ + ∆ • = 

∆ − ∆ + ∆ • 
+ 

= ∆ 

λ λ λ θ θ 

λ λ λ θ θ 
λ θ 

If we take ∆θ = ±0.5 o = ±0.0087 rad, ∆t = ±0.05 cm, ∆λ = ±0.02 cm, and θ = 48 o 

02 . 0 ) 05 . 0 
28 . 5 2 
85 . 2 5 01 . 0 

28 . 5 2 
85 . 2 5 96 sin 0087 . 0 ( 

54 . 1 
1 

3 

2 2 

2 

2 

≈ × 
× 
× 

+ × 
× 
× 

+ = ∆  o n 

Thus,  n + ∆n = 1.54 ±0.02 

1 mark 

0.5 marks 

0.5 marks
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Part 3 

Sample Solution 

Task 1 
Sketch your final experimental setup and mark all components using the labels given at 
page 2. In your sketch, write down the distance z (see Figure 3.2), where z is the distance 
from the tip of the prism to the central axis of the transmitter. 

Lens 

Prism 

Prism 

Receiver 

Transmitter 

d 

z 

(Students should use labels on page 2.) 

Task 2 
Tabulate your data. Perform the experiment twice. 

Data Set 
X: d(cm) ∆X(cm)  Set 1 

S1  (mA) 
Set 2 
S2(mA) 

Saverage 
(mA) ∆S(mA) #  It (mA) 2* ∆(It) $  Y: ln(It (mA) 2 ) ∆Y & 

0.60  0.05  0.78  0.78  0.780  0.01  0.6080  0.016  ­0.50  0.03 
0.70  0.05  0.68  0.69  0.685  0.01  0.4690  0.014  ­0.76  0.03 
0.80  0.05  0.58  0.59  0.585  0.01  0.3420  0.012  ­1.07  0.03 
0.90  0.05  0.50  0.51  0.505  0.01  0.2550  0.010  ­1.37  0.04 
1.00  0.05  0.42  0.42  0.420  0.01  0.1760  0.008  ­1.74  0.05 
1.10  0.05  0.36  0.35  0.355  0.01  0.1260  0.007  ­2.07  0.06 
1.20  0.05  0.31  0.31  0.310  0.01  0.0961  0.006  ­2.34  0.06 
1.30  0.05  0.26  0.25  0.255  0.01  0.0650  0.005  ­2.73  0.08 
1.40  0.05  0.21  0.22  0.215  0.01  0.0462  0.004  ­3.07  0.09 

# ∆S = 0.01 mA (for each set of current measurements) 
* S 2  proportional to the intensity, It 
$ ∆(S 2 ) = ∆It = 2 S × ∆S 
& ∆Y = ∆(lnIt) = ∆(It)/It
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Task 3 
By plotting appropriate graphs, determine the refractive index, n1, of the prism with error 
analysis. Write the refractive index n1, and its uncertainty ∆n1, of the prism in the answer 
sheet provided. 

Least Square Fitting 

X = d(cm) ∆X(cm) Y = ln(It) ∆Y ∆Y 2 XY  X 2  Y 2 

0.60  0.05  ­0.50  0.03  0.001  ­0.298  0.360  0.247 
0.70  0.05  ­0.76  0.03  0.001  ­0.530  0.490  0.573 
0.80  0.05  ­1.07  0.03  0.001  ­0.858  0.640  1.150 
0.90  0.05  ­1.37  0.04  0.002  ­1.230  0.810  1.867 
1.00  0.05  ­1.74  0.05  0.002  ­1.735  1.000  3.010 
1.10  0.05  ­2.07  0.06  0.003  ­2.278  1.210  4.290 
1.20  0.05  ­2.34  0.06  0.004  ­2.811  1.440  5.487 
1.30  0.05  ­2.73  0.08  0.006  ­3.553  1.690  7.469 
1.40  0.05  ­3.07  0.09  0.009  ­4.304  1.960  9.451 

ΣX = ΣY = Σ∆Y = Σ(∆Y) 2 = ΣXY = ΣX 2 = ΣY 2 = 
9.00  ­15.648  0.469  0.029  ­17.596  9.600  33.544
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From ( ) 0 exp 2 t I I d γ = −  , taking natural log on both sides, we obtain: 

0 ln( ) 2 ln( ) t I d I γ = − + 

which is of the form y = mx + c. 

To calculate the gradient, the following equation was used, where N is the number of data 
points: 

( ) ( )( ) 
( ) 2 2 

3.247 
N XY X Y 

m 
N X X 

− 
= = − 

− 

∑ ∑ ∑ 
∑ ∑ 

To  calculate  the  standard  deviation σY  of  the  individual  Y  data  values,  the  following 
equation was used: 

( ) 2 
0.064 

2 Y 

Y 
N 

σ 
∆ 

= = 
− 

∑ 

Hence the standard deviation in the slope can be calculated: 

( ) 2 2 
0.082 m Y 

N 
N X X 

σ σ = = 
− ∑ ∑ 

From the gradient: 
2 3.247 0.082 

3.25 0.08 
γ = ± 
≈ ± 

Using: 
2 2 
2 

1 
2 1 sin 
k 

n 
k 

γ 
θ 

+ 
= 

where θ1  =  60 o ,  k2  =  2π/λ ≈  2.20  (using  the  wavelength  determined  from  earlier  part 
(using λ = (2.85 ± 0.02)cm), we obtain: 

1 1  1.434 0.016 
1.43 0.02 

n n ± ∆ = ± 
≈ ±
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Error Analysis for refractive index of n1 

( ) ( ) 2 2 

1 1 
2 2 2 2 2 2 

1 2 
2 2 1 2 1 sin sin 

k k d d n k 
dk k d k 

γ γ 
γ 

θ γ θ 

    + +     ∆ = ∆ + ∆     
        

( ) ( ) ( ) 1 1 1 
2 2 2 2 2 2 2 2 2 
2 2 2 

1 2 2 
1 2 1 2 1 sin sin sin 

0.016 
0.02 

k k k 
n k 

k k 
γ γ γ γ 

γ 
θ θ θ 

− −     + + +     ∆ = − ∆ + ∆     
        

= 
≈ 

where: 

2  2 

2  0.015 k π λ 
λ 

∆ = − ∆ = − 

Note: Other methods of error analysis are also accepted.
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Part 4 

Task 1 

Top­view of a simple square lattice. 

Figure 4.1: Schematic diagram of a simple square lattice with lattice constant a and 
interplaner d of the diagonal planes indicated. 

Deriving Bragg's Law 

Conditions necessary for the observation of diffraction peaks: 

1.  The angle of incidence = angle of scattering. 
2.  The pathlength difference is equal to an integer number of wavelengths. 

a 

d 

0.5 marks
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Figure 4.2: Schematic diagram for deriving Bragg's law. 

h = d sinθ      (1). 

The path length difference is given by, 

2h = 2d sinθ      (2). 

For diffraction to occur, the path difference must satisfy, 

2 d sinθ = mλ,  m = 1, 2, 3...  (3). 

a 

d 

Figure 4.3 Illustration of the lattice used in the experiment (this Figure 
is not required) 

0.5 marks
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Fig. 4.4 Actual lattice used for the 
experiment (this Figure is not required) 

Fig. 4.4 The actual lattice used in the experiment (not required) 

Task 2 (a) 

Fig. 4.5 Sketch of the experimental set up 

ζ = 180° ­ 2θ 

θ 

Plano­cylindrical 
Lens on Holder 

Microwave 
Transmitter on 
Holder 

Lattice Box  on 
Rotating Table 

Microware 
Receiver 
on Holder 

J 
A 

N 
I 

B 

D 

Digital 
Multimeter 

I 
L 

1.5 marks
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Task 2(b) & 2(c) 

Data Set 

Task 2(d) 

From eq 3 and let m = 1, 

λ θ = max sin 2d  (4) 

From Fig. 4.3, 

θ/° 
 

ζ/° 
 

Output 
current 
S (mA) 

Intensity 
I=S 2 

(mA) 2 

20.0  140.0  0.023  0.000529 
21.0  138.0  0.038  0.001444 
22.0  136.0  0.070  0.0049 
23.0  134.0  0.109  0.011881 
24.0  132.0  0.163  0.026569 
25.0  130.0  0.201  0.040401 
26.0  128.0  0.233  0.054289 
27.0  126.0  0.275  0.075625 
28.0  124.0  0.320  0.1024 
29.0  122.0  0.350  0.1225 
30.0  120.0  0.353  0.124609 
31.0  118.0  0.358  0.128164 
32.0  116.0  0.354  0.125316 
33.0  114.0  0.342  0.116964 
34.0  112.0  0.321  0.103041 
35.0  110.0  0.303  0.091809 
36.0  108.0  0.280  0.0784 
37.0  106.0  0.241  0.058081 
38.0  104.0  0.200  0.04 
39.0  102.0  0.183  0.033489 
40.0  100.0  0.162  0.026244 
41.0  98.0  0.139  0.019321 
42.0  96.0  0.120  0.0144 
43.0  94.0  0.109  0.011881 
44.0  92.0  0.086  0.007396 
45.0  90.0  0.066  0.004356 
46.0  88.0  0.067  0.004489 
47.0  86.0  0.066  0.004356 
48.0  84.0  0.070  0.0049 
49.0  82.0  0.084  0.007056 
50.0  80.0  0.080  0.0064 

0 
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d a  2 =  (5) 

Combine eqs (4) and (5), we obtain, 

max sin 2 θ 
λ = a 

From the symmetry of the data, the peak position is determined to be: 

θmax = 31°  (The theoretical value is θmax = 32°) 

cm cm a 
o 

913 . 3 
31 sin 2 

85 . 2 
sin 2  max 

= = = 
θ 

λ 

(Actual value a = 3.80 cm) 

[The value 3.55 in the marking scheme is derived from: 

cm cm a 
o 

58 . 3 
34 sin 2 

83 . 2 
sin 2  max 

= = = 
θ 

λ 

where 2.83 cm and 34 deg are the min and max allowed values for wavelength and 
peak position. 

Similarly: 

The value 4.10 is derived from:  cm cm a 
o 

06 . 4 
30 sin 2 

87 . 2 
sin 2  max 

= = = 
θ 

λ 

The value 3.55 is derived from:  cm cm a 
o 

58 . 3 
34 sin 2 

83 . 2 
sin 2  max 

= = = 
θ 

λ 

The value 3.40 is derived from:  cm cm a 
o 

49 . 3 
35 sin 2 

83 . 2 
sin 2  max 

= = = 
θ 

λ 

The value 4.20 is derived from:  cm cm a 
o 

18 . 4 
29 sin 2 

87 . 2 
sin 2  max 

= = = 
θ 

λ  ] 

Error analysis: 

Known uncertainties: 
∆λ = 0.02 cm; 

∆θ = 0.5 deg = 0.014 rad.  (uncertainty in determining θ from graph).
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From: 
max sin 2 θ 

λ = a 

1 . 0 112 . 0 

)) 014 . 0 ( ) 32 cot( 
85 . 2 
02 . 0( 80 . 3 

) cot ( 

) ) (sin 
sin 

1 ( 

) (sin 
) (sin 2 sin 2 

max 

max 
max 

max 2 
max max 

≈ = 

− × ° − = 

∆ − 
∆ 

= 

∆ − 
∆ 

= 

∆ − 
∆ 

= ∆ 

cm 

cm 

a 

d 
d a 

d 
d a 

θ θ 
λ 
λ 

θ θ 
θ θ λ 

λ 

θ θ 
θ θ 

λ 
θ 
λ 

Hence: 
a ± ∆a = 3.913 ± 0.112 

≈ 3.9 ± 0.1 cm 

0.8 marks
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In this problem we deal with a simplified model of accelerometers designed to activate the safety 

air bags of automobiles during a collision. We would like to build an electromechanical system in 

such a way that when the acceleration exceeds a certain limit, one of the electrical parameters of 

the system such as the voltage at a certain point of the circuit will exceed a threshold and the air 

bag will be activated as a result. 

 

Note: Ignore gravity in this problem. 

 

1 Consider a capacitor with parallel plates as in Figure 1. The area of each plate in the capacitor 

is A and the distance between the two plates is d . The distance between the two plates is 

much smaller than the dimensions of the plates. One of these plates is in contact with a wall 

through a spring with a spring constant k , and the other plate is fixed. When the distance 

between the plates is d  the spring is neither compressed nor stretched, in other words no 

force is exerted on the spring in this state. Assume that the permittivity of the air between the 

plates is that of free vacuum 
0ε . The capacitance corresponding to this distance between the 

plates of the capacitor is dAC 00 ε= . We put charges Q+  and Q−  on the plates and let 

the system achieve mechanical equilibrium.  

 

 
Figure 1 

 

1.1 Calculate the electrical force, 
EF , exerted by the plates on each other. 0.8 

 

1.2 Let x  be the displacement of the plate connected to the spring. Find x .  0.6 
 

1.3 
In this state, what is the electrical potential difference V between the plates of the 

capacitor in terms of Q , A , d , k ? 
0.4 

 

1.4 
Let C  be the capacitance of the capacitor, defined as the ratio of charge to potential 

difference. Find 
0CC  as a function of Q , A , d   and k .  

0.3 

 

1.5 What is the total energy, U , stored in the system in terms of Q , A , d  and k ? 0.6 

 

Figure 2, shows a mass M which is attached to a conducting plate with negligible mass and also 

to two springs having identical spring constants k .  The conducting plate can move back and 

forth in the space between two fixed conducting plates. All these plates are similar and have the 

same area A . Thus these three plates constitute two capacitors. As shown in Figure 2, the fixed 

plates are connected to the given potentials V  and V− , and the middle plate is connected 

k  

d  
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through a two-state switch to the ground. The wire connected to the movable plate does not 

disturb the motion of the plate and the three plates will always remain parallel. When the whole 

complex is not being accelerated, the distance from each fixed plate to the movable plate is 

d which is much smaller than the dimensions of the plates. The thickness of the movable plate 

can be ignored.  
 

 
Figure 2 

 

The switch can be in either one of the two states α  and β . Assume that the capacitor complex is 

being accelerated along with the automobile, and the acceleration is constant. Assume that during 

this constant acceleration the spring does not oscillate and all components of this complex 

capacitor are in their equilibrium positions, i.e. they do not move with respect to each other, and 

hence with respect to the automobile.  

Due to the acceleration, the movable plate will be displaced a certain amount x  from the middle 

of the two fixed plates.  

 

2 Consider the case where the switch is in state α  i.e. the movable plate is connected to the 

ground through a wire, then 

 

2.1 Find the charge on each capacitor as a function of  x . 0.4 
 

2.2 Find the net electrical force on the movable plate, 
EF , as a function of x .  0.4 

    

2.3 
Assume xd >>  and terms of order 

2
x can be ignored compared to terms of order 

2
d . Simplify the answer to the previous part.  

0.2 

 

2.4 
Write the total force on the movable plate (the sum of the electrical and the spring 

forces) as xkeff−  and give the form of 
effk .  

0.7 

 

2.5 Express the constant acceleration a  as a function of x . 0.4 

Movable 

plate 

a  

Fixed Plate 
Fixed Plate 

V  

α  β
 

SC  

V  

M  

k  k  



 
 

 

 3 

  

   

3 Now assume that the switch is in state β  i.e. the movable plate is connected to the ground 

through a capacitor, the capacitance of which is 
SC  (there is no initial charge on the 

capacitors). If the movable plate is displaced by an amount x  from its central position,  

 

3.1 
Find 

SV  the electrical potential difference across the capacitor 
SC  as a function of 

x . 
1.5 

 

3.2 
Again assume that xd >>  and ignore terms of order 2

x  compared to terms of 

order 2
d . Simplify your answer to the previous part. 

0.2 

 

4 We would like to adjust the parameters in the problem such that the air bag will not be 

activated in normal braking but opens fast enough during a collision to prevent the driver’s 

head from colliding with the windshield or the steering wheel. As you have seen in Part 2, the 

force exerted on the movable plate by the springs and the electrical charges can be 

represented as that of a spring with an effective spring constant 
effk . The whole capacitor 

complex is similar to a mass and spring system of mass M and spring constant 
effk  under the 

influence of a constant acceleration a , which in this problem is the acceleration of the 

automobile.  
 

Note: In this part of the problem, the assumption that the mass and spring are in equilibrium under 

a constant acceleration and hence are fixed relative to the automobile, no longer holds.  
 

Ignore friction and consider the following numerical values for the parameters of the problem: 
 

cm0.1=d , 22 m105.2 −×=A , N/m102.4 3×=k , 2212

0 /NmC1085.8 −×=ε , 

V12=V , kg15.0=M . 
 

4.1 

Using this data, find the ratio of the electrical force you calculated in section 2.3 to 

the force of the springs and show that one can ignore the electrical forces compared 

to the spring forces. 

0.6 

 

Although we did not calculate the electrical forces for the case when the switch is in the state β , 

it can be shown that in this situation, quite similarly, the electrical forces are as small and can be 

ignored.  
 

4.2 

If the automobile while traveling with a constant velocity, suddenly brakes with a 

constant acceleration a , what is the maximum displacement of the movable plate? 

Give your answer in parameter.  

0.6 

 

Assume that the switch is in state β  and the system has been designed such that when the 

electrical voltage across the capacitor reaches V15.0=SV , the air bag is activated. We would 

like the air bag not to be activated during normal braking when the automobile’s acceleration is 

less than the acceleration of gravity 28.9 smg = , but be activated otherwise.  
 

4.3 How much should 
SC  be for this purpose?   0.6 
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We would like to find out if the air bag will be activated fast enough to prevent the driver’s head 

from hitting the windshield or the steering wheel. Assume that as a result of collision, the 

automobile experiences a deceleration equal to g  but the driver’s head keeps moving at a 

constant speed. 
 

4.4 
By estimating the distance between the driver’s head and the steering wheel, find 

the time 
1t  it takes before the driver’s head hits the steering wheel.  

0.8 

 

4.5 
Find the time 

2t  before the air bag is activated and compare it to
1t . Is the air bag 

activated in time? Assume that airbag opens instantaneously. 
0.9 
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In physics, whenever we have an equality relation, both sides of the equation should be 

of the same type i.e. they must have the same dimensions. For example you cannot have a 

situation where the quantity on the right-hand side of the equation represents a length and 

the quantity on the left-hand side represents a time interval. Using this fact, sometimes one 

can nearly deduce the form of a physical relation without solving the problem analytically. 

For example if we were asked to find the time it takes for an object to fall from a height of 

h under the influence of a constant gravitational acceleration g , we could argue that one 

only needs to build a quantity representing a time interval, using the quantities g and h and 

the only possible way of doing this is 
2/1)/( ghaT = . Notice that this solution includes an 

as yet undetermined coefficient a which is dimensionless and thus cannot be determined, 

using this method. This coefficient can be a number such as 1, 21 , 3 , π , or any other 

real number. This method of deducing physical relations is called dimensional analysis. In 

dimensional analysis the dimensionless coefficients are not important and we do not need 

to write them. Fortunately in most physical problems these coefficients are of the order of 1 

and eliminating them does not change the order of magnitude of the physical quantities. 

Therefore, by applying the dimensional analysis to the above problem, one 

obtains
2/1)/( ghT = .  

 

Generally, the dimensions of a physical quantity are written in terms of the dimensions 

of four fundamental quantities: M  (mass), L  (length), T (time), and K  (temperature). 

The dimensions of an arbitrary quantity, x  is denoted by ][x . As an example, to express 

the dimensions of velocity v , kinetic energy kE , and heat capacity VC  we 

write:
1][ −= LTv , 

22][ −= TMLEk , 
122][ −−= KTMLCV . 

1 Fundamental Constants and Dimensional Analysis  

1.1 

Find the dimensions of the fundamental constants, i.e. the Planck's 

constant, h , the speed of light, c , the universal constant of gravitation,G , 

and the Boltzmann constant, Bk , in terms of the dimensions of length, mass, 

time, and temperature.  

0.8 

 

The Stefan-Boltzmann law states that the black body emissive power which is the total 

energy radiated per unit surface area of a black body in unit time is equal to 
4

σθ  where 

σ  is the Stefan-Boltzmann's constant and θ  is the absolute temperature of the black body. 

 

1.2 
Determine the dimensions of the Stefan-Boltzmann's constant in terms of the 

dimensions of length, mass, time, and temperature.  
0.5 

 

The Stefan-Boltzmann's constant is not a fundamental constant and one can write it in 

terms of fundamental constants i.e. one can write 
δγβασ BkGcha= . In this relation a  is a 

dimensionless parameter of the order of 1. As mentioned before, the exact value of a  is not 

significant from our viewpoint, so we will set it equal to 1. 
 

1.3 Findα , β ,γ , and δ  using dimensional analysis. 1.0 
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2 Physics of Black Holes  

In this part of the problem, we would like to find out some properties of black holes 

using dimensional analysis. According to a certain theorem in physics known as the no hair 

theorem, all the characteristics of the black hole which we are considering in this problem 

depend only on the mass of the black hole. One characteristic of a black hole is the area of 

its event horizon. Roughly speaking, the event horizon is the boundary of the black hole. 

Inside this boundary, the gravity is so strong that even light cannot emerge from the region 

enclosed by the boundary. 
 

We would like to find a relation between the mass of a black hole, m , and the area of 

its event horizon, A . This area depends on the mass of the black hole, the speed of light, 

and the universal constant of gravitation. As in 1.3 we shall write
γβα

mcGA = . 
 

2.1 Use dimensional analysis to findα , β , and γ . 0.8 
 

 From the result of 2.1 it becomes clear that the area of the event horizon of a black 

hole increases with its mass. From a classical point of view, nothing comes out of a 

black hole and therefore in all physical processes the area of the event horizon can only 

increase. In analogy with the second law of thermodynamics, Bekenstein proposed to 

assign entropy, S , to a black hole, proportional to the area of its event horizon i.e. 

AS η= . This conjecture has been made more plausible using other arguments.  

 

2.2 

Use the thermodynamic definition of entropy θdQdS =  to find the dimensions 

of entropy. 

dQ is the exchanged heat and θ  is the absolute temperature of the system. 

0.2 

 

2.3 
As in 1.3, express the dimensioned constant η  as a function of the fundamental 

constants h , c , G , and Bk . 
1.1 

 

Do not use dimensional analysis for the rest of problem, but you may use the results you 

have obtained in previous sections. 

  

3 Hawking Radiation 

 

With a semi-quantum mechanical approach, Hawking argued that contrary to the 

classical point of view, black holes emit radiation similar to the radiation of a black body at 

a temperature which is called the Hawking temperature. 
 

3.1 

Use 
2

mcE = , which gives the energy of the black hole in terms of its mass, 

and the laws of thermodynamics to express the Hawking temperature Hθ  of 

a black hole in terms of its mass and the fundamental constants. Assume that 

the black hole does no work on its surroundings.  

0.8 

 

3.2 

The mass of an isolated black hole will thus change because of the Hawking 

radiation. Use Stefan-Boltzmann's law to find the dependence of this rate of 

change on the Hawking temperature of the black hole, Hθ and express it in 

terms of mass of the black hole and the fundamental constants. 

0.7 
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3.3 
Find the time 

*
t , that it takes an isolated black hole of mass m  to evaporate 

completely i.e. to lose all its mass.  
1.1 

 

From the viewpoint of thermodynamics, black holes exhibit certain exotic behaviors. 

For example the heat capacity of a black hole is negative. 
 

3.4 Find the heat capacity of a black hole of mass m . 0.6 

 

 

4 Black Holes and the Cosmic Background Radiation 

 

Consider a black hole exposed to the cosmic background radiation. The cosmic 

background radiation is a black body radiation with a temperature Bθ  which fills the entire 

universe. An object with a total area A  will thus receive an energy equal to AB ×
4

θσ  per 

unit time. A black hole, therefore, loses energy through Hawking radiation and gains 

energy from the cosmic background radiation. 
 

4.1 

Find the rate of change of a black hole's mass, in terms of the mass of the 

black hole, the temperature of the cosmic background radiation, and the 

fundamental constants.  

0.8 

 

4.2 
At a certain mass, 

*
m , this rate of change will vanish. Find 

*
m and express it 

in terms of Bθ and the fundamental constants. 
0.4 

 

4.3 

Use your answer to 4.2 to substitute for Bθ  in your answer to part 4.1 and 

express the rate of change of the mass of a black hole in terms of m , 
*

m , 

and the fundamental constants. 

0.2 

 

4.4 
Find the Hawking temperature of a black hole at thermal equilibrium with 

cosmic background radiation. 
0.4 

 

4.5 
Is the equilibrium stable or unstable? Why? (Express your answer 

mathematically) 
0.6 
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Two stars rotating around their center of mass form a binary star system. Almost half of the stars 

in our galaxy are binary star systems. It is not easy to realize the binary nature of most of these 

star systems from Earth, since the distance between the two stars is much less than their distance 

from us and thus the stars cannot be resolved with telescopes. Therefore, we have to use either 

photometry or spectrometry to observe the variations in the intensity or the spectrum of a 

particular star to find out whether it is a binary system or not. 

 

Photometry of Binary Stars 
 

If we are exactly on the plane of motion of the two stars, then one star will occult (pass in front 

of) the other star at certain times and the intensity of the whole system will vary with time from 

our observation point. These binary systems are called ecliptic binaries. 

 

1 Assume that two stars are moving on circular orbits around their common center of mass with 

a constant angular speed ω  and we are exactly on the plane of motion of the binary system. 

Also assume that the surface temperatures of the stars are 1T  and 2T  )( 21 TT > , and the 

corresponding radii are 1R and 2R  ( )21 RR > , respectively. The total intensity of light, 

measured on Earth, is plotted in Figure 1 as a function of time. Careful measurements 

indicate that the intensities of the incident light from the stars corresponding to the minima 

are respectively 90 and 63 percent of the maximum intensity, 0I , received from both stars 

( )  W/m104.8 2-9

0 ×=I . The vertical axis in Figure 1 shows the ratio 0II  and the 

horizontal axis is marked in days. 

 

 

 
Figure 1. The relative intensity received from the binary star system as a 

function of time. The vertical axis has been scaled by 
2-9

0  W/m104.8×=I . 

Time is given in days.  

 

1.1 

Find the period of the orbital motion. Give your answer in seconds up to two 

significant digits.  

What is the angular frequency of the system in rad/sec? 

0.8 

 

I/I0  

0II
 = 0.63 

0II
 = 0.90 

1.0 

0.8 

0.6 

0.4 

0.2 

Time (days) 1.0 2.0 3.0 4.0 5.0 6.0 
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To a good approximation, the receiving radiation from a star is a uniform black body radiation 

from a flat disc with a radius equal to the radius of the star. Therefore, the power received from 

the star is proportional to 
4AT  where A  is area of the disc and   T  is the surface temperature of 

the star.  

 
 

1.2 Use the diagram in Figure 1 to find the ratios 21 TT and 21 RR . 1.6 

 

Spectrometry of Binary Systems 
 

In this section, we are going to calculate the astronomical properties of a binary star by using 

experimental spectrometric data of the binary system. 
 

Atoms absorb or emit radiation at their certain characteristic wavelengths. Consequently, the 

observed spectrum of a star contains absorption lines due to the atoms in the star’s atmosphere.  

Sodium has a characteristic yellow line spectrum (D1 line) with a wavelength 5895.9Ǻ (10 Ǻ = 1 

nm). We examine the absorption spectrum of atomic Sodium at this wavelength for the binary 

system of the previous section. The spectrum of the light that we receive from the binary star is 

Doppler-shifted, because the stars are moving with respect to us. Each star has a different speed. 

Accordingly the absorption wavelength for each star will be shifted by a different amount. Highly 

accurate wavelength measurements are required to observe the Doppler shift since the speed of 

the stars is much less than the speed of light. The speed of the center of mass of the binary system 

we consider in this problem is much smaller than the orbital velocities of the stars. Hence all the 

Doppler shifts can be attributed to the orbital velocity of the stars.  Table 1 shows the measured 

spectrum of the stars in the binary system we have observed. 

 

 

Table 1: Absorption spectrum of the binary star system for the Sodium D1  line 

 

 

      

2.4 2.1 1.8 1.5 1.2 0.9 0.6 0.3 t/days 

5894.6 5894.1 5894.3 5895.1 5896.2 5897.2 5897.7 5897.5 
1λ  (Å) 

5898.1 5899.0 5898.7 5897.3 5896.2 5893.7 5892.8 5893.1 
2λ  (Å) 

4.8 4.5 4.2 3.9 3.6 3.3 3.0 2.7 t/days 

5894.3 5895.0 5896.2 5897.2 5897.7 5897.3 5896.7 5895.6 
1λ  (Å) 

5898.7 5897.4 5896.2 5893.7 5892.8 5893.1 5894.5 5896.4 
2λ  (Å) 

(Note: There is no need to make a graph of the data in this table) 

2 Using Table 1,  

 

2.1 
Let 1v and 2v be the orbital velocity of each star. Find 1v and 2v . 

The speed of light m/s100.3 8×=c . Ignore all relativistic effects. 
1.8 

 

2.2 Find the mass ratio of the stars ( )21 mm . 0.7 

 

2.3 
Let 1r  and 2r  be the distances of each star from their center of mass.  

Find 1r  and 2r . 
0.8 

 



 

 

 3 

2.4 Let r  be the distance between the stars. Find r . 0.2 

 

3  The gravitational force is the only force acting between the stars.  
 

3.1 
Find the mass of each star up to one significant digit.  

The universal gravitational constant  
21311 skgm107.6 −−−×=G . 

1.2 

 

General Characteristics of Stars 

 
4 Most of the stars generate energy through the same mechanism. Because of this, there is an 

empirical relation between their mass, M , and their luminosity, L  , which is the total 

radiant power of the star. This relation could be written in the form ( )α

SunSun MMLL = . 

Here, kg100.2 30×=SunM  is the solar mass and, W109.3 26×=SunL  is the solar 

luminosity. This relation is shown in a log-log diagram in Figure 2.  

 

 
Figure 2. The luminosity of a star versus its mass varies as a power law. The diagram is log-

log. The star-symbol represents Sun with a mass of g100.2 30 k×  and luminosity of 

W109.3 26× . 

 

 

 

 
4.1 Find α  up to one significant digit. 0.6 

 

4.2 
Let 1L  and 2L  be the luminosity of the stars in the binary system studied in the 

previous sections. Find 1L  and 2L . 
0.6 

 

4.3 
What is the distance, d , of the star system from us in light years?  

To find the distance you can use the diagram of Figure 1. One light year is the 

distance light travels in one year. 

0.9 



 

 

 4 

 

4.4 
What is the maximum angular distance,θ , between the stars from our observation 

point? 
0.4 

 

4.5 
What is the smallest aperture size for an optical telescope, D , that can resolve these 

two stars? 
0.4 

 
 

 

 



   

1

 
Experimental Problem

  
Determination of energy band gap of semiconductor thin films  

I. Introduction 
Semiconductors can be roughly characterized as materials whose electronic properties 
fall somewhere between those of conductors and insulators. To understand 
semiconductor electronic properties, one can start with the photoelectric effect as a 
well-known phenomenon. The photoelectric effect is a quantum electronic 
phenomenon, in which photoelectrons are emitted from the matter through the 
absorption of sufficient energy from electromagnetic radiation (i.e. photons). The 
minimum energy which is required for the emission of an electron from a metal by 
light irradiation (photoelectron) is defined as "work function". Thus, only photons 
with a frequency 

 

higher than a characteristic threshold, i.e. with an energy h ( h 
is the Planck s constant) more than the material s work function, are able to knock 
out the photoelectrons.       

Figure 1. An illustration of photoelectron emission from a metal plate: The incoming photon 
should have an energy which is more than the work function of the material.  

In fact, the concept of work function in the photoelectric process is similar to the 
concept of the energy band gap of a semiconducting material. In solid state physics, 
the band gap gE is the energy difference between the top of the valence band and the 

bottom of the conduction band of insulators and semiconductors. The valence band is 
completely filled with electrons, while the conduction  band is empty however 
electrons can go from the valence band to the conduction band if they acquire 
sufficient energy (at least equal to the band gap energy).The semiconductor's 
conductivity strongly depends on its energy band gap.              

Figure 2. Energy band scheme for a semiconductor. 
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Band gap engineering is the process of controlling or altering the band gap of a 
material by controlling the composition of certain semiconductor alloys. Recently, it 
has been shown that by changing the nanostructure of a semiconductor it is possible 
to manipulate its band gap.  

In this experiment, we are going to obtain the energy band gap of a thin-film 
semiconductor containing nano-particle chains of iron oxide (Fe2O3) by using an 
optical method. To measure the band gap, we study the optical absorption properties 
of the transparent film using its optical transmission spectrum. As a rough statement, 
the absorption spectra shows a sharp increase when the energy of the incident photons 
equals to the energy band gap.  

II. Experimental Setup 
You will find the following items on your desk: 
1. A large white box containing a spectrometer with a halogen lamp. 
2. A small box containing a sample, a glass substrate, a sample-holder, a grating, 

and a photoresistor. 
3. A multimeter. 
4. A calculator. 
5. A ruler.  
6. A card with a hole punched in its center. 
7. A set of blank labels.  

The spectrometer contains a goniometer with a precision of 5 . The Halogen lamp 
acts as the source of radiation and is installed onto the fixed arm of the spectrometer 
(for detailed information see the enclosed "Description of Apparatus").     

The small box contains the following items: 
1. A sample-holder with two windows: a glass substrate coated with Fe2O3 film 

mounted on one window and an uncoated glass substrate mounted on the other. 
2. A photoresistor mounted on its holder, which acts as a light detector. 
3. A transparent diffraction grating (600 line/mm).     

A schematic diagram of the setup is shown in Figure 3:             

Figure 3. Schematic diagram of the experimental setup. 

Note: Avoid touching the surface of any component in the small box! 
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III. Methods 
To obtain the transmission of a film at each wavelength, filmT , one can use the 

following formula: 
)(/)()( glassfilmfilm IIT

 
   (1) 

where filmI and glassI are respectively the intensity of the light transmitted from the 

coated glass substrate, and the intensity of the light transmitted from the uncoated 
glass slide. The value of I can be measured using a light detector such as a 
photoresistor. In a photoresistor, the electrical resistance decreases when the intensity 
of the incident light increases.  Here, the value of I can be determined from the 
following relation: 

1)()( RCI

  

(2) 
where R

 

is the electrical resistance of the photoresistor, C is a -dependent 
coefficient.  

The transparent grating on the spectrometer diffracts different wavelengths of 
light into different angles. Therefore, to study the variations of T

 

as a function of , 
it is enough to change the angle of the photoresistor ( ) with respect to the optical 
axis (defined as the direction of the incident light beam on the grating), as shown in 
Figure 4.  
From the principal equation of a diffraction grating: 

]sin)[sin( 00dn  (3) 

one can obtain the angle 

 

corresponding to a particular : n

 

is an integer number 
representing the order of diffraction, d is the period of the grating, and o  is the angle 

the normal vector to the surface of grating makes with the optical axis (see Fig. 4). (In 
this experiment we shall try to place the grating perpendicular to the optical axis 
making 0o , but since this cannot be achieved with perfect precision the error 

associated with this adjustment will be measured in task 1-e.)          

Figure 4. Definition of the angles involved in Equation 3. 

Experimentally it has been shown that for photon energies slightly larger than 
the band gap energy, the following relation holds: 

)( gEhAh

 

(4) 

where 

 

is the absorption coefficient of the film, A  is a constant that depends on the 
film s material, and is the constant determined by the absorption mechanism of the 
film s material and structure. Transmission is related to the value of 

 

through the 
well-known absorption relation:  

o 

Grating 

o 

'

 

Optical axis
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t)(-expfilmT  (5) 

where t  is thickness of the film.  

IV. Tasks:  

0. Your apparatus and sample box (small box containing the sample holder) are 
marked with numbers. Write down the Apparatus number and Sample number in 
their appropriate boxes, in the answer sheet.  

1. Adjustments and Measurements:

   

1-a 

 

Check the vernier scale and report the maximum precision 
( ). 

0.1 pt 

 

Note: Magnifying glasses are available on request.  

Step1: 
To start the experiment, turn on the Halogen lamp to warm up. It would be better not 
to turn off the lamp during the experiment. Since the halogen lamp heats up during 
the experiment, please be careful not to touch it.  

Place the lamp as far from the lens as possible, this will give you a parallel light 
beam.   

We are going to make a rough zero-adjustment of the goniometer without utilizing 
the photoresistor. Unlock the rotatable arm with screw 18 (underneath the arm), and 
visually align the rotatable arm with the optical axis. Now, firmly lock the rotatable 
arm with screw 18. Unlock the vernier with screw 9 and rotate the stage to 0 on the 
vernier scale. Now firmly lock the vernier with screw 9 and use the vernier fine-
adjustment  screw (screw 10) to set the zero of the vernier scale. Place the grating 
inside its holder. Rotate the grating's stage until the diffraction grating is roughly 
perpendicular to the optical axis. Place the card with a hole in front of the light source 
and position the hole such that a beam of light is incident on the grating. Carefully 
rotate the grating so that the spot of reflected light falls onto the hole. Then the 
reflected light beam coincides with the incident beam. Now lock the grating's stage 
by tightening screw 12.  

 

By measuring the distance between the hole and the grating, 
estimate the precision of this adjustment ( o ). 0.3 pt 

1-b 

 

Now, by rotating the rotatable arm, determine and report the 
range of angles for which the first-order diffraction of visible light 
(from blue to red) is observed. 

0.2 pt 

 

Step 2: 
Now, install the photoresistor at the end of the rotatable arm. To align the system 
optically, by using the photoresistor, loosen the screw 18, and slightly turn the 
rotatable arm so that the photoresistor shows a minimum resistance. For fine 
positioning, firmly lock screw 18, and use the fine adjustment screw of the rotatable 
arm. 
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Use the vernier fine-adjustment screw to set the zero of the vernier scale.   

 
Report the measured minimum resistance value ( )0(

minR ).  0.1 pt 

1-c 

 
Your zero-adjustment is more accurate now, report the 

precision of this new adjustment ( o ) .  

Note: o

 

is the error in this alignment i.e. it is a measure of 

misalignment of the rotatable arm and the optical axis. 

0.1 pt 

  

Hint: After this task you should tighten the fixing screws of the vernier. 
Moreover, tighten the screw of the photoresistor holder to fix it and do not remove it 
during the experiment.   

Step 3: 
Move the rotatable arm to the region of the first-order diffraction. Find the angle at 
which the resistance of the photoresistor is minimum (maximum light intensity). 
Using the balancing screws, you can slightly change the tilt of the grating s stage, to 
achieve an even lower resistance value.   

1-c 

 

Report the minimum value of the observed resistance ( )1(
minR ) in 

its appropriate box. 
0.1 pt 

  

It is now necessary to check the perpendicularity of the grating for zero adjustment, 
again. For this you must use the reflection-coincidence method of Step 1.   

Important: From here onwards carry out the experiment in dark (close the cover).  

Measurements: Screw the sample-holder onto the rotatable arm. Before you start the 
measurements, examine the appearance of your semiconductor film (sample). Place 
the sample in front of the entrance hole 1S on the rotatable arm such that a uniformly 
coated part of the sample covers the hole. To make sure that every time you will be 
working with the same part of the sample make proper markings on the sample holder 
and the rotatable arm with blank labels.  

Attention: At higher resistance measurements it is necessary to allow the 
photoresistor to relax, therefore for each measurement in this range wait 3 to 4 
minutes before recording your measurement.  

 

Measure the resistance of the photoresistor for the uncoated 
glass substrate and the glass substrate coated with semiconductor 
layer as a function of the angle 

 

(the value read by the 
goniometer for the angle between the photoresistor and your 
specified optical axis). Then fill in Table 1d. Note that you need 
at least 20 data points in the range you found in Step 1b. Carry 
out your measurement using the appropriate range of your 
ohmmeter. 

2.0 pt 
1-d 

 

Consider the error associated with each data point. Base your 1.0 pt 
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answer only on your direct readings of the ohmmeter.   

 
Step 4: 
The precision obtained so far is still limited since it is impossible to align the 
rotatable arm with the optical axis and/or position the grating perpendicular to the 
optical axis with 100% precision. So we still need to find the asymmetry of the 
measured transmission at both sides of the optical axis (resulting from the deviation 
of the normal to the grating surface from the optical axis ( o )). 

To measure this asymmetry, follow these steps:   

 

First, measure filmT at 20 . Then, obtain values for filmT 

at some other angles around 20 . Complete Table 1e (you can 
use the values obtained in Table 1d).  

0.6 pt 
1-e 

 

Draw filmT  versus 

 

and visually draw a curve. 0.6 pt 

On your curve find the angle 

 

for which the value of filmT is equal to the filmT that 

you measured at o20 (
)20(

|
filmfilm

TT
). Denote the difference of this angle 

with 20  as , in other words: 
20             (6)  

1-e 

 

Report the value of 

 

in the specified box. 0.2 pt 

 

Then for the first-order diffraction, Eq. (3) can be simplified as follows: 
)2/sin(d , (7) 

where  is the angle read on the goniometer.   

2. Calculations:

  

2-a 

 

Use Eq. (7) to express 

 

in terms of the errors of the other 
parameters (assume d is exact and there is no error is associated 
with it). Also using Eqs. (1), (2), and (5), express filmT

 

in terms 

of R  and R . 

0.6 pt 

 

2-b 

 

Report the range of  values of  over the region of first-order 
diffraction.  

0.3 pt 

 

2-c 

 

Based on the measured parameters in Task 1, complete Table 
2c for each . Note that the wavelength should be calculated using 
Eq. (7).  

2.4 pt 

  

Plot 1
glassR and 1

filmR as a function of wavelength together on 

the same diagram. Note that on the basis of Eq. (2) behaviors of 
1

glassR and 1
filmR can reasonably give us an indication of the way 

glassI  and filmI  behave, respectively. 

1.5 pt 
2-d  

 

In Table 2d, report the wavelengths at which glassR and 

filmR attain their minimum values.   
0.4 pt 
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2-e 

 
For the semiconductor layer (sample) plot filmT as a function of 

wavelength. This quantity also represents the variation of the film 
transmission in terms of wavelength. 

1.0 pt 

 
3. Data analysis:

 
By substituting 21

 

and 071.0A ((eV)1/2/nm) in Eq. (4) one can find values for 

gE  and t  in units of eV and nm, respectively. This will be accomplished by plotting a 

suitable diagram in an yx

 

coordinate system and doing an extrapolation in the 
region satisfying this equation.    

3-a 

 

By assuming hx

 

and 2)( hty

 

and by using your 
measurements in Task 1, fill in Table 3a for wavelengths around 
530 nm and higher. Express your results ( x

 

and y ) with the 
correct number of significant figures (digits), based on the 
estimation of the error on one single data point. 
Note that h

 

should be calculated in units of eV and wavelength 

in units of nm. Write the unit of each variable between the 
parentheses in the top row of the table.  

2.4 pt 

  

Plot y  versus x .  

 

Note that the y

 

parameter corresponds to the absorption of the 
film. Fit a line to the points in the linear region around 530 nm. 3-b 

 

Specify the region where Eq. (4) is satisfied, by reporting the 
values of the smallest and the largest x-coordinates for the data 
points to which you fit the line.  

2.6 
pt 

 

3-c 

 

Call the slope of this line m , and find an expression for the 
film thickness ( t ) and its error ( t ) in terms of m and A (consider 
A  to have no error).  

0.5 pt 

 

3-d 

 

Obtain the values of gE and t and their associated errors in 

units of eV and nm, respectively. Fill in Table 3d.  
3.0 pt 

  

Some useful physical constants required for your analysis:  

 

Speed of the light:  81000.3c  m/s 

 

Plank s constant:  341063.6h  J.s 

 

Electron charge:     191060.1e  C    
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Description of the Apparatus   

In Fig.1 you can see the general view of the apparatus set up on your desk, which 

will be used in the experiment. The instrument is a spectroscope to be equipped with a 

detector to act as a simple spectrometer.    

To start adjusting the apparatus, you should first pull up the white cover of the 

box (Fig.1). The cover pivots on one side of the base of the apparatus. In order to 

establish a dark environment for the detector, the cover should be returned to its initial 

position and kept tightly closed during the measurement of the spectra. The power cord 

has a switch that turns the halogen lamp on and off. There are four screws to level the 

apparatus (a magnified view of which you can see in right inset of Fig.1)           

Figure 1. Apparatus of the experiment. One of the level adjusting screws is enlarged in the right inset.          

Warning 1: Avoid touching the halogen lamp and its 

holder which will be hot after the lamp is turned on!

 

Warning 2: Do not manipulate the adaptor and its 

connections. Power is supplied to the apparatus through 

220 V outlets! 
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The top view of the apparatus is shown in Fig.2 . The details are introduced in the 

figure.                                 

Figure 2.  

1. Power cord 
2. Halogen lamp and its cooling fan 
3. On/Off switch 
4. Arm of adjustable length 
5. Adjusting screw 
6. Adaptor: 220V  less than 12 V 
7. Lens 
8. Vernier 
9. Vernier s lock 
10. Fine adjustment screw for the vernier 
11. Grating s stage 
12. Grating s stage s fixing screw  
13. Adjustment screw for leveling the 

grating s stage (shown in Fig. 4)  

14. Grating holder 
15. Sample holder 
16. Fixing and adjusting screw for 

the  sample and glass holder 
(Fig. 6) 

17. Rotatable arm 
18. Rotatable arm s lock (Fig.4 ) 
19. Fine adjustment for the rotatable 

arm 
20. Detector position 
21. Fixing screw for the detector 
22. Connecting socket for the 

detector 
23. Connection to the multimeter 
24. Fixing screw to the base  

The number mentioned on the top-left corner, is the apparatus number. 

 

1

 

2 

3 

4

 

5 

6

 

7

 

9

 

11 

12 14 

15

 

16

 

17

 

19

 

20 

21

 

22 
23 

24

 

8

 

10 
312 
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The angle, which the rotatable arm makes with the direction of the fixed arm of 

the apparatus, could be measured by a protractor equipped by a vernier.  In this vernier 

resolution scale is 30' (minutes of arc). This instrument is able to measure an angle with 

accuracy of 5'.  

In addition to the apparatus you should find a box (Figure 3), containing the 

following elements: 

1: a detector in its holder; 2: a 600 line/mm grating; 3: the sample and a glass substrate 

mounted in a frame.      

Figure 3. The small box, containing the glass and sample holder, a diffraction grating and a photoresistor.   

First, you should take the grating out of its cover and put it into its frame (the grating 

holder, Fig. 4), carefully.       

There are three adjustment screws (Fig. 4) for making the grating stand vertically 

in its position.          

Figure 4. Locking, fixing and adjusting screws of the apparatus. A1: Fixing screw for the grating; 
 A2: The grating. 7, 9, 10, 12-14, 18 and 19 are explained in Figure 2. 

1
A1 

13

 

12

 

7

 

A2 

1

18

 

1

9

 

10

 

CAUTION: Touching the surface of the grating could reduce 

its diffraction efficiency seriously, or even damage it!  

3 2 1 
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The detector should be tight to its position, in the end of the rotatable arm, (Figure 5):            

Figure 5 . The detector and its holder. D1: The photoresistor; D2: connecting wire. D3: The detector 
holder. 17 and 21 are explained in Fig. 2.    

The sample and the glass substrate are fixed to a frame (holder) (Fig. 6c), which 

would be attached to the instrument by a fixing screw (Fig. 6a, item 16). This frame is 

rotatable and one can put the sample or the glass substrate in front of the entrance hole, 

by turning the frame around the fixing screw (Fig. 6a).         

Figure 6 . The Sample and the glass holder. S1: Entrance hole; S2: Sample; S3: Glass substrate. 15 and 16 
are explained in Fig. 2.      

21 

17 D1 

D2 

D3 

S1 

16 

A2 15

 

S1 
15 

S2

 

S3 

a

 

b

 

c S1 
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The Multimeter which you should use for recording the signal detected by the 

photoresistor is shown in the Fig. 7. This multimeter can measure up to 200 M . The red 

and black probe wires should be connected to the instrument as is shown in the Fig. 7. 

The on/off button is placed on the left hand side of the multimeter (Fig. 7, item M1).                  

Figure 7. The Multimeter for measuring the resistance of the photoresistor. M1: on/off switch; M2: probe 
wires; M3: Hold button; M4: connections to the apparatus.          

M2

 

M1

 

M3

 

M4 

Note: The multimeter has auto-off feature. In the case of auto-
off, you should push on/off button (M1) twice, successively.   

 

 Hold button should not be active during the experiment. 

 



Question “Orange” 
 

1.1) 

First of all, we use the Gauss’s law for a single plate to obtain the electric field,  

0ε

σ
=E .               (0.2) 

The density of surface charge for a plate with charge, Q  and area, A  is 

A

Q
=σ .                (0.2) 

Note that the electric field is resulted by two equivalent parallel plates. Hence the 

contribution of each plate to the electric field is E
2

1
. Force is defined by the electric filed 

times the charge, then we have 

Force = QE
2

1
= 

A

Q

0

2

2ε
   (0.2)+ (0.2) ( The ½  coefficient + the final result) 

 

1.2) 

The Hook’s law for a spring is 

xkFm −= .   (0.2) 

In 1.2 we derived the electric force between two plates is  

A

Q
Fe

0

2

2ε
= . 

The system is stable. The equilibrium condition yields 

 em FF = ,    (0.2) 

kA

Q
x

0

2

2ε
=⇒    (0.2) 

 

1.3) 

The electric field is constant thus the potential difference, V  is given by  

)( xdEV −=     (0.2) 

(Other reasonable approaches are acceptable. For example one may use the definition of 

capacity to obtainV .)   

By substituting the electric field obtained from previous section to the above equation, we 

get, 







−=

dkA

Q

A

dQ
V

0

2

0 2
1

εε
                   (0.2) 

 

1.4)  

C is defined by the ratio of charge to potential difference, then  

V

Q
C =  .            (0.1)        



Using the answer to 1.3, we get 

1

0

2

0 2
1

−









−=

dkA

Q

C

C

ε
          (0.2) 

 

1.5) 

Note that we have both the mechanical energy due to the spring  

2

2

1
kxUm = ,           (0.2)          

and the electrical energy stored in the capacitor.  

C

Q
U E

2

2

=  .              (0.2) 

Therefore the total energy stored in the system is 









−=

dkA

Q

A

dQ
U

0

2

0

2

4
1

2 εε
          (0.2) 

 

2.1) 

For the given value of x , the amount of charge on each capacitor is 

 

xd

VA
CVQ

−
== 0

11

ε
 ,                (0.2) 

xd

VA
CVQ

+
== 0

22

ε
 .               (0.2) 

 

2.2) 

Note that we have two capacitors. By using the answer to 1.1 for each capacitor, we get 

A

Q
F

0

2

1
1

2ε
= , 

A

Q
F

0

2

2
2

2ε
= . 

As these two forces are in the opposite directions, the net electric force is  

21 FFFE −= ,   (0.2)     








+
−

−
=⇒

22

2

0

)(

1

)(

1

2 xdxd

VA
FE

ε
    (0.2) 

 

2.3) 

Ignoring terms of order 2
x  in the answer to 2.2., we get

    
 

x
d

VA
FE 3

2

02ε
=           (0.2) 

  

2.4) 

There are two springs placed in series with the same spring constant, k , then the 

mechanical force is 



xkFm 2−= .     (The coefficient (2) has (0.2)) 

Combining this result with the answer to 2.4 and noticing that these two forces are in the 

opposite directions, we get 

Em FFF += ,                  x
d

VA
kF 








−−=⇒

3

2

02
ε

, (Opposite signs of the 

two forces have (0.3)) 









−=⇒

3

2

02
d

VA
kkeff

ε
   (0.2) 

 

2.5) 

By using the Newtown’s second law, 

maF =            (0.2) 

and the answer to 2.4, we get 

x
d

VA
k

m
a 








−−=

3

2

02 ε
   (0.2) 

 

 

 

 

3.1) 

Starting with Kirchhoff’s laws, for two electrical circuits, we have 

 



















=+−

=−+−

=−+

0

0

0

12

1

1

2

2

S

S

S

S

S

QQQ

C

Q
V

C

Q

C

Q
V

C

Q

  (Each has (0.3), Note: the sings may depend on the specific choice made) 

 

Noting that sV = 
S

S

C

Q
  one obtains  

22

0

22

0

2

2

xd

dA
C

xd

xA

VV

S

S

−
+

−=⇒
ε

ε

 .    ((0.4) + (0.2): (0.4) for solving the above equations and (0.2) 

for final result) 

 



Note: Students may simplify the above relation using the approximation 22
xd >> . It does 

not matter in this section. 

 

3.2) 

Ignoring terms of order 2
x  in the answer to 3.1., we get

 
 

 

dACd

xA
VV

S

S

0

2

0

2

2

ε

ε

+
=  .        (0.2) 

 

4.1) 

The ratio of the electrical force to the mechanical (spring) force is 

3

2

0

dk

VA

F

F

m

E
ε

=  , 

Putting the numerical values: 

9106.7 −×=
m

E

F

F
 .               ((0.2) + (0.2) + (0.2): (0.2) for order of magnitude, (0.2) for 

two significant digits and (0.2) for correct answer (7.6 or 7.5)).  

As it is clear from this result, we can ignore the electrical forces compared to the electric 

force. 

 

 

 

4.2) 

As seen in the previous section, one may assume that the only force acting on the moving 

plate is due to springs:  

xkF 2=  .     (The concept of equilibrium (0.2)) 

Hence in mechanical equilibrium, the displacement of the moving plate is  

k

ma
x

2
=  . 

The maximum displacement is twice this amount, like the mass spring system in a 

gravitational force field, when the mass is let to fall. 

xx 2max =     (0.2) 

k

am
x =max     (0.2) 

 

4.3) 

At the acceleration 

ga = ,              (0.2) 

The maximum displacement is 

k

gm
x =max . 

Moreover, from the result obtained in 3.2, we have     



dACd

xA
VV

S

S

0

2

max0

2

2

ε

ε

+
=  

This should be the same value given in the problem, V15.0 . 









−=⇒ 1

2 max0

dV

xV

d

A
C

S

S

ε
    (0.2) 

F100.8 11−×=⇒ SC                (0.2) 

 

4.4) 

Let l  be the distance between the driver’s head and the steering wheel. It can be 

estimated to be about 

mm 14.0 −=l .            (0.2) 

Just at the time the acceleration begins, the relative velocity of the driver’s head with 

respect to the automobile is zero. 

 0)0( ==∆ tv ,             (0.2) 

then 

2

1
2

1
tg=l      

g
t

l2
1 =⇒     (0.2) 

st 5.03.01 −=           (0.2) 

 

4.5) 

The time 2t is half of period of the harmonic oscillator, hence   

 

2
2

T
t = ,            (0.3) 

The period of harmonic oscillator is simply given by  

k

m
T

2
2π=  ,     (0.2) 

therefore, 

st 013.02 = .     (0.2) 

 

As 21 tt > , the airbag activates in time.                   (0.2) 



1.1)  One may use any reasonable equation to obtain the dimension of the questioned 

quantities.  

 

I) The Planck relation is 121]][[][][]][[ −− ==⇒=⇒= TMLEhEhEh ννν                                   

(0.2) 

II) 1][ −= LTc           (0.2) 

III)  23122

2
]][][[][ −−− ==⇒= TLMmrFG

r

mmG
F     (0.2) 

IV) 1221 ][][][ −−− ==⇒= KTMLEKKE BB θθ      (0.2) 

 

 

 

1.2) Using the Stefan-Boltzmann's law,  

 4θσ=
Area

Power
, or any equivalent relation, one obtains:     

 (0.3) 

.][][][ 43124 −−−− =⇒= KMTTLEK σσ       (0.2) 

 

 

 

1.3)  The Stefan-Boltzmann's constant, up to a numerical coefficient, equals 

,
δγβασ BkGch=  where δγβα ,,, can be determined by dimensional analysis. Indeed, 

,][][][][][ δγβασ BkGch= where e.g. .][ 43 −−= KMTσ  

 

 

( ) ( ) ( ) ( ) ,2223212223111243 δδγβαδγβαδγαδγβα −−−−−++++−−−−−−−−− == KTLMKTMLTLMLTTMLKMT  

          (0.2) 

The above equality is satisfied if,            

 













−=−

−=−−−−

=+++

=+−

⇒

,4

,322

,0232

,1

δ

δγβα

δγβα

δγα

   (Each one (0.1)) ⇒













=

=

−=

−=

.4

,0

,2

,3

δ

γ

β

α

   (Each one (0.1))                  

⇒  .
32

4

hc

kB=σ   

 

 

2.1) Since A , the area of the event horizon, is to be calculated in terms of m from a 

classical theory of relativistic gravity, e.g. the General Relativity, it is a combination of 

c , characteristic of special relativity, and G  characteristic of gravity. Especially, it is 



independent of the Planck constant h  which is characteristic of quantum mechanical 

phenomena.  

 
γβα

mcGA =  

 

Exploiting dimensional analysis, 

( ) ( ) βαβαγαγβαγβα −−++−−−− ==⇒=⇒ 2312312][][][][ TLMMLTTLMLmcGA  

           (0.2) 

The above equality is satisfied if,   

 









=−−

=+

=+−

⇒

,02

,23

,0

βα

βα
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
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




=

−=

=

,2

,4

,2

γ

β

α

 (Each one (0.1))⇒  

 .
4

22

c

Gm
A =  

                    

 

2.2) 

 

From the definition of entropy 
θ

dQ
dS = , one obtains 1221]][[][ −−− == KTMLES θ  (0.2) 

 

 

2.3)  Noting AS=η , one verifies that,  
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
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−−−−−+++++−

−−−

,][][][][][

,]][[][

22223
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δδγβαδγβαδβαδγβαη

η

KTLMkchG

KMTAS

B

   (0.2) 

Using the same scheme as above, 

 

 ⇒













=

−=−−−−

=+++

=++−

,1

,222

,0223

,1

δ

δγβα

δγβα

δβα

 (Each one (0.1))    













=

=

−=

−=

⇒

,1

,3

,1

,1

δ

γ

β

α

     (Each one (0.1))                

thus, .
3

hG

kc B=η          (0.1) 

  

3.1)  



The first law of thermodynamics is dWdQdE += . By assumption, 0=Wd . Using the 

definition of entropy, 
θ

dQ
dS = , one obtains,  

,0+= dSdE Hθ   (0.2) + (0.1), for setting 0=Wd . 

Using, 








=

=

,

,

2

2

mcE

m
ch

kG
S B

  [(0.1) for S]    

one obtains, 

1

2

1 −−









=








==

dm

dS
c

dE

dS

dS

dE
Hθ          (0.2) 

Therefore,
mkG

hc

B

H

1

2

1 3









=θ .    (0.1)+(0.1) (for the coefficient) 

 

3.2) The Stefan-Boltzmann's law gives the rate of energy radiation per unit area. Noting 

that 2
mcE =  we have: 

  
















=

=

=

−=

,2

4

22

32

4

4

,

,/

mcE

c

Gm
A

hc

k

AdtdE

B

H

σ

σθ

     ⇒ ,
1

2 4

22
4

3

32

4

2

c

Gm

mkG

hc

hc

k

td

md
c

B

B









−=   (0.2)                                 

⇒  .
1

16

1
22

4

mG

hc

td

md
−=   (0.1)  (for simplification) + (0.2) (for the minus sign) 

 

3.3)  

By integration:   

.
1

16

1
22

4

mG

hc

td

md
−=  dt

G

hc
dmm ∫∫ −=⇒

2

4
2

16
   (0.3)      

,
16

3
)0()(

2

4
33

t
G

hc
mtm −=−⇒  (0.2) + (0.2)   (Integration and correct boundary values)  

At *
tt =  the black hole evaporates completely: 

0)( * =tm      (0.1)        3

4

2
*

3

16
m

hc

G
t =⇒    (0.2)+(0.1) (for the coefficient) 

 

 

3.4)  VC  measures the change in E  with respect to variation of θ .  

 

(0.2) 
















=

=

=

mkG

hc

cmE

d

Ed
C

B

V

1

2

,

,

3

2

θ

θ

                           ⇒   .
2 2

m
hc

kG
C B

V −=    0.1)+(0.1) (for the coefficient) 

 

 

4.1) Again the Stefan-Boltzmann's law gives the rate of energy loss per unit area of the 

black hole. A similar relation can be used to obtain the energy gained by the black 

hole due to the background radiation. To justify it, note that in the thermal 

equilibrium, the total change in the energy is vanishing. The blackbody radiation 

is given by the Stefan-Boltzmann's law. Therefore the rate of energy gain is given 

by the same formula.  

 

 








=

+−=

,2

44

cmE

AA
td

Ed
Bσθσθ

              ⇒   ( ) 24

38

2

22

4 1

16
mk

hc

G

mG

hc

dt

dm
BB θ+−=   (0.3) 

 

4.2)   

Setting 0=
dt

dm
, we have: 

( ) 0
1

16

2*4

38

2

2*2

4

=+− mk
hc

G

mG

hc
BB θ     (0.2) 

and consequently,  

BBkG

hc
m

θ

1

2

3
* =         (0.2) 

 

4.3)  









−−=⇒=

4*

4

22

4

*

3

1
1

16

1

2 m

m

mG

hc

dt

dm

mkG

hc

B

Bθ      (0.2) 

 

4.4) Use the solution to 4.2,  

BBkG

hc
m

θ

1

2

3
* = (0.2)  and 3.1 to obtain,   B

B mkG

hc
θθ ==

*

3
* 1

2
     (0.2) 

One may also argue that *
m corresponds to thermal equilibrium. Thus for *

mm = the 

black hole temperature equals Bθ . 

Or one may set ( ) 0
44* =−−= A

td

Ed
Bθθσ  to get Bθθ =* . 

 

(0.2) 

(0.2) 

(0.1) + (0.4) (For the first and the second terms respectively) 

 



4.5) Considering the solution to 4.3, one verifies that it will go away from the 

equilibrium.       (0.6) 

⇒
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dt
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Question “Pink” 

 
1.1  

Period = 3.0 days = s106.2 5× .   (0.4) 

Period = 
ω

π2
 (0.2) ⇒  15 srad104.2 −−×=ω . (0.2) 

 

 

1.2 

Calling the minima in the diagram 1, 90.001 ==αII  and 63.002 == βII , we have: 

 

α

1
1

4

1

2

2

1

2

1

0 =















+=

T

T

R

R

I

I
   (0.4) 

α

β
=























−








−=

4

1

2

2

1

2

1

2 11
T

T

R

R

I

I
    (0.4)   (or equivalent relations) 

 

From above, one finds: 

6.1
1 2

1

2

1 =⇒
−

=
R

R

R

R

β

α
 (0.2+0.2)  and        4.1

1

1

2

14

2

1 =⇒
−

−
=

T

T

T

T

α

β
 (0.2+0.2) 

 

 

2.1) 

Doppler-Shift formula: 

c

v
≅

∆

0λ

λ
 (or equivalent relation)   (0.4) 

 

Maximum and minimum wavelengths:   7.5897max,1 =λ Å , 1.5894min,1 =λ  Å 

           0.5899max,2 =λ Å , 8.5892min,2 =λ  Å    

 

Difference between maximum and minimum wavelengths: 

                  6.31 =∆λ  Å   ,    2.62 =∆λ  Å   (All 0.6) 

 

Using the Doppler relation and noting that the shift is due to twice the orbital speed: (Factor of 

two 0.4) 

   
0

1
1

2λ

λ∆
= cv   

4102.9 ×=  m/s   (0.2) 

   
0

2
2

2λ

λ∆
= cv   

5106.1 ×=  m/s   (0.2) 



The student can use the wavelength of central line and maximum (or minimum) wavelengths. 

Marking scheme is given in the Excel file. 

 

 

2.2) As the center of mass is not moving with respect to us: (0.5) 

 

1

2

2

1

v

v

m

m
=  = 7.1    (0.2) 

 

 

2.3) 

 

Writing 
ω

i
i

v
r =  for 2,1=i  , we have  (0.4) 

 
9

1 108.3 ×=r m, (0.2)    
9

2 105.6 ×=r m (0.2) 

 

 

2.4) 

 
10

21 100.1 ×=+= rrr m (0.2) 

 

 

3.1) 

 

The gravitational force is equal to mass times the centrifugal acceleration 

 

2

2

2
2

1

2

1
12

21

r

v
m

r

v
m

r

mm
G ==    (0.7) 

Therefore, 
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

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kg103

kg106
30

2

30

1

m

m
   (0.2 + 0.2) 

 

 

 

 

 

 

 

 



 

4.1) As it is clear from the diagram, with one significant digit, 4=α .  (0.6) 
 

 

 
 

4.2) 

As we have found in the previous section: 

4









=

Sun

i
Suni

M

M
LL (0.2) 

So, 

   Watt103 28

1 ×=L (0.2) 

   Watt104 27

2 ×=L (0.2) 

 
 

4.3) The total power of the system is distributed on a sphere with radius d  to produce 0I , 

that is: 

2

21
0

4 d

LL
I

π

+
=   (0.5)           

0

21

4 I

LL
d

π

+
=⇒ = 18101× m     (0.2) 

          = 100 ly. (0.2) 

 
 

4.4)   
d

r
=≅ θθ tan = 8101 −× rad.    (0.2 + 0.2) 

 
 

4.5) 

A typical optical wavelength is 0λ . Using uncertainty relation: 

   ≅=
r

d
D 0λ

 50 m.   (0.2 + 0.2) 
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0

Solution (The Experimental Question):

 
Task 1

  
1a. 

nominal=5´=0.08

 
nominal (degree) 0.08 

   

1b.  
                    

                                                       

                

If a is the distance between card and the grating and r

 

is the distance between the 
hole and the light spot so we have   

...,...,
2

2
2

2

1
1

21 x
x

f
x

x

f
xxf

2

2

2

0000 2

a

22
1,2tan

a

r

a

r

a

r
If

a

r

 

We want 0 to be zero i.e.
a

r
r

2
0 0

  

4.0007.0
2

170,1 0 radrad
a

r
mmammr

  

0  0.4

  

range of visible light (degree) 13 

 

26

       

r

Reflected Beam 

a Optical Axis 

Incident Beam 
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1c. 

0
minR (21.6±0.1) k

 
0 5´ = 0.08

 
1

minR R=(192±1) k

 
0=5´ because  

   

 
= 5´ => R= (21.9±0.1) k

 
   

 
=-5´ => R= (21.9±0.1) k

    

1d.  

Table 1d. The measured parameters  

 (degree) Rglass(M )

 

Rglass(M )

 

Rfilm(M )

 

Rfilm(M )

 

15.00

 

3.77

 

0.03

 

183

 

3

 

15.50

 

2.58

 

0.02

 

132

 

2

 

16.00

 

1.88

 

0.01

 

87

 

1

 

16.50

 

1.19

 

0.01

 

51.5

 

0.5

 

17.00

 

0.89

 

0.01

 

33.4

 

0.3

 

17.50

 

0.68

 

0.01

 

19.4

 

0.1

 

18.00

 

0.486

 

0.005

 

10.4

 

0.1

 

18.50

 

0.365

 

0.005

 

5.40

 

0.03

 

19.00

 

0.274

 

0.003

 

2.66

 

0.02

 

19.50

 

0.225

 

0.002

 

1.42

 

0.01

 

20.00

 

0.200

 

0.002

 

0.880

 

0.005

 

20.50

 

0.227

 

0.002

 

0.822

 

0.005

 

21.00

 

0.368

 

0.003

 

1.123

 

0.007

 

21.50

 

0.600

 

0.005

 

1.61

 

0.01

 

22.00

 

0.775

 

0.005

 

1.85

 

0.01

 

22.50

 

0.83

 

0.01

 

1.87

 

0.01

 

23.00

 

0.88

 

0.01

 

1.93

 

0.02

 

23.50

 

1.01

 

0.01

 

2.14

 

0.02

 

24.00

 

1.21

 

0.01

 

2.58

 

0.02

 

24.50

 

1.54

 

0.01

 

3.27

 

0.02

 

25.00

 

1.91

 

0.01

 

4.13

 

0.02

 

16.25

 

1.38

 

0.01

 

66.5

 

0.5

 

16.75

 

1.00

 

0.01

 

40.0

 

0.3

 

17.25

 

0.72

 

0.01

 

23.4

 

0.2

 

17.75

 

0.535

 

0.005

 

12.8

 

0.1

 

18.25

 

0.391

 

0.003

 

6.83

 

0.05

 

18.75

 

0.293

 

0.003

 

3.46

 

0.02

 

19.25

 

0.235

 

0.003

 

1.76

 

0.01

 

19.75

 

0.195

 

0.002

 

0.988

 

0.005

 

20.25

 

0.201

 

0.002

 

0.776

 

0.005

 

20.75

 

0.273

 

0.003

 

0.89

 

0.01
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1e.   

In =-20 => Rglass= (132± 2) k   , Rfilm= (518±5) k      

 
Tfilm 

 
Tfilm 

 = -20

 
0.255 19.25

 
0.134

 
19.50

 
0.158

 
19.75

 
0.197

 

20.00

 

0.227

 

20.25

 

0.259

 

20.50

 

0.276

   

20.75

 

0.307

   

Graphics   

We see that: T(

 

= 20.25 ) = T(

 

= -20 )   

(degree) 0.25±0.08 
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T
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(degree) 

Tfilm| =-20° 
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Task 2.

  
2a. 

180

1.0
cos

42
cot

2
sin

2
22

2

d
d

d
d     

 

= 2.9 cos( ) (nm) 

 

22

glass

glass

film

film
film

film

glass
film R

R

R

R
TT

R

R
T  

22

glass

glass

film

film

film

glass

R

R

R

R

R

R
T 

   

2b.   

2613

   

2.6    2.8 nm 

  

mm
600

1
d   and    

degree0.085where
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2c.  

Table 2c. The calculated parameters using the measured parameters   

 
(degree)  

(nm)

 
Ig/C( ) 
(M -1) 

Is/C( ) 
(M -1) Tfilm t

 
15.0

 
428

 
0.265

 
0.00546

 
0.0206

 
3.88

 
15.5

 
442

 
0.388

 
0.00758

 
0.0195

 
3.94

 

16.0

 

456

 

0.532

 

0.0115

 

0.0216

 

3.83

 

16.25

 

463

 

0.725

 

0.0150

 

0.0208

 

3.88

 

16.5

 

470

 

0.840

 

0.0194

 

0.0231

 

3.77

 

16.75

 

477

 

1.00

 

0.0250

 

0.0250

 

3.69

 

17.0

 

484

 

1.12

 

0.0299

 

0.0266

 

3.63

 

17.25

 

491

 

1.39

 

0.0427

 

0.0308

 

3.48

 

17.5

 

498

 

1.47

 

0.0515

 

0.0351

 

3.35

 

17.75

 

505

 

1.87

 

0.0781

 

0.0418

 

3.17

 

18.0

 

512

 

2.06

 

0.096

 

0.0467

 

3.06

 

18.25

 

518

 

2.56

 

0.146

 

0.0572

 

2.86

 

18.5

 

525

 

2.74

 

0.185

 

0.0676

 

2.69

 

18.75

 

532

 

3.41

 

0.289

 

0.0847

 

2.47

 

19.0

 

539

 

3.65

 

0.376

 

0.103

 

2.27

 

19.25

 

546

 

4.26

 

0.568

 

0.134

 

2.01

 

19.5

 

553

 

4.44

 

0.704

 

0.158

 

1.84

 

19.75

 

560

 

5.13

 

1.01

 

0.197

 

1.62

 

20.0

 

567

 

5.00

 

1.14

 

0.227

 

1.48

 

20.25

 

573

 

4.98

 

1.29

 

0.259

 

1.35

 

20.5

 

580

 

4.41

 

1.22

 

0.276

 

1.29

 

20.75

 

587

 

3.66

 

1.12

 

0.307

 

1.18

 

21.0

 

594

 

2.72

 

0.890

 

0.328

 

1.12

 

21.5

 

607

 

1.67

 

0.621

 

0.373

 

0.99

 

22.0

 

621

 

1.29

 

0.541

 

0.419

 

0.87

 

22.5

 

634

 

1.20

 

0.535

 

0.444

 

0.81

 

23.0

 

648

 

1.14

 

0.518

 

0.456

 

0.79

 

23.5

 

661

 

0.99

 

0.467

 

0.472

 

0.75

 

24.0

 

675

 

0.826

 

0.388

 

0.469

 

0.76

 

24.5

 

688

 

0.649

 

0.306

 

0.471

 

0.75

 

25.0

 

701

 

0.524

 

0.242

 

0.462

 

0.77
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2d.  

 Graphics  

max(Iglass) 564±5 (nm) 

max(Ifilm) 573±5 (nm) 

  

2e. Graphics                      
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Task 3.

  
3a. 

Table 3a. The calculated parameters for each measured data point 
 (degree) x (eV) y ( eV2) 

15.00

 
2.898

 
126.6

 
15.50

 
2.806

 
121.9

 
16.00

 
2.720

 
108.8

 
16.25

 
2.679

 
107.8

 

16.50

 

2.639

 

98.9

 

16.75

 

2.600

 

92.0

 

17.00

 

2.563

 

86.3

 

17.25

 

2.527

 

77.4

 

17.50

 

2.491

 

69.7

 

17.75

 

2.457

 

60.9

 

18.00

 

2.424

 

55.1

 

18.25

 

2.392

 

46.8

 

18.50

 

2.360

 

40.4

 

18.75

 

2.330

 

33.1

 

19.00

 

2.300

 

27.3

 

19.25

 

2.271

 

20.91

 

19.50

 

2.243

 

17.07

 

19.75

 

2.215

 

12.92

 

20.00

 

2.188

 

10.51

 

20.25

 

2.162

 

8.53

 

20.50

 

2.137

 

7.56

 

20.75

 

2.112

 

6.23

 

21.00

 

2.088

 

5.43

 

21.50

 

2.041

 

4.06

 

22.00

 

1.997

 

3.02

 

22.50

 

1.954

 

2.52

 

23.00

 

1.914

 

2.26

 

23.50

 

1.875

 

1.98

 

24.00

 

1.838

 

1.94

 

24.50

 

1.803

 

1.84

 

25.00

 

1.769

 

1.86
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3b.   

Graphics   

eV2.24x min

   

eV2.68x max

   

3c.  
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In linear range we have, m=213 (eV),  r2= 0.9986,  Eg=2.17 (eV)   
and we have /nmeV0.071A 1/2  so we find t= 206 (nm)  

222

22

2

22

22

22

2

2

2
2

, xmyxy
xNx

xy

xNx

xmy

xNx

x
R

m
y

m

i
i

i
i

i
i

    

where x & y are the mean of error range of x & y

  

N

y
y

N

x
x i

i
i

i
22

&  So            2eV9.0,eV014.0 yx

   

m  10 (eV) 

 

t = t 

 

m/(2 m)  

 

5 (nm)  

2
22

2
2222 11

m
m

y

N

xy

m
m

m

y

N

yxm

m
E g

  

eV02.0gE   

 

Table 3d. The calculated values of Eg and t using Fig. 3  

Eg (eV) Eg (eV) t (nm) t (nm) 
2.17 0.02 206 5 

  



                 39th International Physics Olympiad - Hanoi - Vietnam - 2008                                   

                                Theoretical Problem No. 1 
                            

WATER-POWERED RICE-POUNDING MORTAR 
 
A. Introduction  
 Rice is the main staple food of most people in Vietnam. To make white rice from 
paddy rice, one needs separate of the husk (a process called "hulling") and separate the 
bran layer ("milling"). The hilly parts of northern Vietnam are abundant with water 
streams, and people living there use water-powered rice-pounding mortar for bran layer 
separation. Figure 1 shows one of such mortars., Figure 2 shows how it works.  

                    
B. Design and operation 

1. Design.  
The rice-pounding mortar shown in Figure 1 has the following parts: 

 The mortar, basically a wooden container for rice. 
 The lever, which is a tree trunk with one larger end and one smaller end. It can rotate 
around a horizontal axis. A pestle is attached perpendicularly to the lever at the smaller 
end. The length of the pestle is such that it touches the rice in the mortar when the lever 
lies horizontally. The larger end of the lever is carved hollow to form a bucket. The shape 
of the bucket is crucial for the mortar's operation. 
 2. Modes of operation 
 The mortar has two modes. 
  Working mode. In this mode, the mortar goes through an operation cycle illustrated in 
Figure 2.  
 The rice-pounding function comes from the work that is transferred from the pestle to 
the rice during stage f) of Figure 2. If, for some reason, the pestle never touches the rice, 
we say that the mortar is not working. 
 Rest mode with the lever lifted up. During stage c) of the operation cycle (Figure 2), 
as the tilt angle α  increases, the amount of water in the bucket decreases. At one 
particular moment in time, the amount of water is just enough to counterbalance the 
weight of the lever. Denote the tilting angle at this instant by β . If the lever is kept at 
angle β  and the initial angular velocity is zero, then the lever will remain at this 
position forever. This is the rest mode with the lever lifted up. The stability of this 
position depends on the flow rate of water into the bucket, Φ . If  exceeds some 

value 

Φ

2Φ , then this rest mode is stable, and the mortar cannot be in the working mode. 

In other words,  is the minimal flow rate for the mortar not to work. 2Φ
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A water-powered rice-pounding mortar 
Figure 1  
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OPERATION CYCLE OF A WATER-POWERED RICE-POUNDING MORTAR 
 

α = β 

α1

α 2 

α 0 

Figure 2 

a) 

b) 

c) 

d) 

e) 

f) 

a) At the beginning there is no water in 
the bucket, the pestle rests on the mortar. 
Water flows into the bucket with a small 
rate, but for some time the lever remains 
in the horizontal position. 
 
b) At some moment the amount of water 
is enough to lift the lever up. Due to the 
tilt, water rushes to the farther side of the 
bucket, tilting the lever more quickly. 

Water starts to flow out at 1α α= . 

 
c) As the angle α  increases, water 
starts to flow out. At some particular tilt 
angle, α β= , the total torque is zero. 
 
d) α  continues increasing, water 
continues to flow out until no water 
remains in the bucket. 
 
e) α  keeps increasing because of 
inertia. Due to the shape of the bucket, 
water falls into the bucket but 
immediately flows out. The inertial 
motion of the lever continues until α  

reaches the maximal value 0α . 

 
f) With no water in the bucket, the 
weight of the lever pulls it back to the 
initial horizontal position. The pestle 
gives the mortar (with rice inside) a 
pound and a new cycle begins. 
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C. The problem    
 Consider a water-powered rice-pounding mortar with the following parameters 
(Figure 3) 

The mass of the lever (including the pestle but without water) is M = 30 kg,  
  The center of mass of the lever is G.. The lever rotates around the axis T 
(projected onto the point T on the figure). 
  The moment of inertia of the lever around T is I = 12 kg ⋅m2. 

When there is water in the bucket, the mass of water is denoted as , the center 
of mass of the water body is denoted as N. 

m

  The tilt angle of the lever with respect to the horizontal axis is α .   
  The main length measurements of the mortar and the bucket are as in Figure 3. 
 Neglect friction at the rotation axis and the force due to water falling onto the bucket. 
In this problem, we make an approximation that the water surface is always horizontal. 

      
 
 
 
 
 
 
 
 

Pestle

a =20cm 

L = 74 cm 

γ =300 
h= 12 cm 

b =15cm 

8 cm 

Mortar 

    

Bucket 
T

N 
G 

Lever

 

 
Figure 3  Design and dimensions of the rice-pounding mortar 

 
 
1. The structure of the mortar 

At the beginning, the bucket is empty, and the lever lies horizontally. Then water flows 
into the bucket until the lever starts rotating. The amount of water in the bucket at this 
moment is 1.0 kg.  m =

1.1. Determine the distance from the center of mass G of the lever to the rotation  
axis T. It is known that GT is horizontal when the bucket is empty. 
 1.2. Water starts flowing out of the bucket when the angle between the lever and the 

horizontal axis reaches 1α . The bucket is completely empty when this angle is 2α . 

Determine 1α and 2α .  

 1.3. Let ( )μ α  be the total torque (relative to the axis T) which comes from the 
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weight of the lever and the water in the bucket. ( )μ α  is zero when α β= . Determine 

β  and the mass of water in the bucket at this instant.  1m

 
2. Parameters of the working mode 

 Let water flow into the bucket with a flow rate Φ  which is constant and small. The 
amount of water flowing into the bucket when the lever is in motion is negligible.  In 
this part, neglect the change of the moment of inertia during the working cycle. 

 2.1. Sketch a graph of the torque μ  as a function of the angle α , ( )μ α , during 

one operation cycle. Write down explicitly the values of ( )μ α  at angle α1, α2, and    

α = 0. 
 2.2. From the graph found in section 2.1., discuss and give the geometric 

interpretation of the value of the total energy  produced by totalW ( )μ α and the work 

 that is transferred from the pestle to the rice. poundingW

 2.3. From the graph representing μ  versus α , estimate 0α  and  (assume 

the kinetic energy of water flowing into the bucket and out of the bucket is negligible.) 
You may replace curve lines by zigzag lines, if it simplifies the calculation. 

poundingW

 
3. The rest mode 
  Let water flow into the bucket with a constant rate Φ , but one cannot neglect the 
amount of water flowing into the bucket during the motion of the lever. 
 3.1. Assuming the bucket is always overflown with water, 
  3.1.1. Sketch a graph of the torque μ  as a function of the angle α  in the 
vicinity of α β= . To which kind of equilibrium does the position α β=  of the lever 
belong? 

  3.1.2. Find the analytic form of the torque ( )μ α  as a function of αΔ  when 

α β= + Δα , and αΔ  is small. 
  3.1.3. Write down the equation of motion of the lever, which moves with zero 
initial velocity from the position α β α= + Δ  ( αΔ  is small). Show that the motion is, 
with good accuracy, harmonic oscillation. Compute the period τ . 
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 3.2. At a given , the bucket is overflown with water at all times only if the lever 
moves sufficiently slowly. There is an upper limit on the amplitude of harmonic 

oscillation, which depends on . Determine the minimal value 

Φ

Φ 1Φ of  (in kg/s) so 

that the lever can make a harmonic oscillator motion with amplitude 1

Φ

o.   
 3.3. Assume that  is sufficiently large so that during the free motion of the lever 

when the tilting angle decreases from 

Φ

2α  to 1α  the bucket is always overflown with 

water. However, if  is too large the mortar cannot operate. Assuming that the motion 

of the lever is that of a harmonic oscillator, estimate the minimal flow rate  for the 

rice-pounding mortar to not work.  

Φ

2Φ
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CHERENKOV LIGHT AND RING IMAGING COUNTER 
 

 Light propagates in vacuum with the speed . There is no particle which moves with 
a speed higher than . However, it is possible that in a transparent medium a particle 

moves with a speed  higher than the speed of the light in the same medium 

c
c

v c
n

, where 

 is the refraction index of the medium. Experiment (Cherenkov, 1934) and theory 
(Tamm and Frank, 1937) showed that a charged particle, moving with a speed  in a 
transparent medium with refractive index 

 such that 

n
v

n c
n

>v , radiates light, called 

Cherenkov light, in directions forming 
with the trajectory an angle  

 1arccos
n

θ
β

=      (1) 

θ

θ

A B 

where 
c

β =
v .  

1. To establish this fact, consider a particle moving at constant velocity 
c
n

>v  on a 

straight line. It passes A at time 0 and B at time . As the problem is symmetric with 

respect to rotations around AB, it is sufficient to consider light rays in a plane containing 
AB. 

1t

 At any point C between A and B, the particle emits a spherical light wave, which 

propagates with velocity 
c
n

. We define the wave front at a given time as the envelope 

of all these spheres at this time.  

t

 1.1. Determine the wave front at time  and draw its intersection with a plane 

containing the trajectory of the particle.  

1t

  1.2. Express the angle ϕ  between this intersection and the trajectory of the particle 
in terms of  and n β . 

2. Let us consider a beam of particles moving with velocity 
c
n

>v , such that the angle 

θ  is small, along a straight line IS. The beam crosses a concave spherical mirror of focal 
length f and center C, at point S. SC makes with SI a small angle α  (see the figure in 
the Answer Sheet). The particle beam creates a ring image in the focal plane of the mirror. 
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Explain why with the help of a sketch illustrating this fact. Give the position of the center 
O and the radius  of the ring image.  r
 This set up is used in ring imaging Cherenkov counters (RICH) and the medium which 
the particle traverses is called the radiator. 

Note: in all questions of the present problem, terms of second order and higher in α  
and θ  will be neglected. 

 
3. A beam of particles of known momentum 10 0 GeV/.p c=  consists of three types of 

particles: protons, kaons and pions, with rest mass 2
p 0 94 GeV. /M c= ,  

2
κ 0 50 GeV. /M c=  and 2

π 0 14 GeV. /M c= , respectively. Remember that  and pc

2Mc  have the dimension of an energy, and 1 eV is the energy acquired by an electron 
after being accelerated by a voltage 1 V, and 1 GeV = 109 eV, 1 MeV = 106 eV.  
 The particle beam traverses an air medium (the radiator) under the pressure . The 
refraction index of air depends on the air pressure according to the relation 

where a = 2.7×10

P
P

1n a= + P -4 atm-1

 3.1. Calculate for each of the three particle types the minimal value of the air 

pressure such that they emit Cherenkov light. 

minP

 3.2. Calculate the pressure 1
2

P  such that the ring image of kaons has a radius equal 

to one half of that corresponding to pions. Calculate the values of κθ  and πθ  in this 

case.  
 Is it possible to observe the ring image of protons under this pressure? 
  
4. Assume now that the beam is not perfectly monochromatic: the particles momenta are 
distributed over an interval centered at 10  having a half width at half height 

. This makes the ring image broaden, correspondingly 
GeV / c

pΔ θ  distribution has a half 

width at half height θΔ . The pressure of the radiator is 1
2

P  determined in 3.2.  

 4.1. Calculate κ

p
θΔ
Δ

 and π

p
θΔ
Δ

, the values taken by 
p
θΔ
Δ

in the pions and kaons 

cases. 

 4.2. When the separation between the two ring images, π κθ θ− , is greater than 10 
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πtimes the half-width sum κθ θΔ = Δ + Δθ , that is π κ 10θ θ θ− > Δ , it is possible to 

distinguish well the two ring images. Calculate the maximal value of  such that the 
two ring images can still be well distinguished. 

pΔ

5. Cherenkov first discovered the effect bearing his name when he was observing a bottle 
of water located near a radioactive source. He saw that the water in the bottle emitted 
light.  

 5.1. Find out the minimal kinetic energy  of a particle with a rest mass minT M  

moving in water, such that it emits Cherenkov light. The index of refraction of water is  
n = 1.33. 

5.2. The radioactive source used by Cherenkov emits either α particles (i.e. helium 

nuclei) having a rest mass 2
α 3 8 GeV. /M c=  or β particles (i.e. electrons) having a 

rest mass 2
e 0 51 MeV. /M c= . Calculate the numerical values of  for α particles 

and β particles.  

minT

Knowing that the kinetic energy of particles emitted by radioactive sources never 
exceeds a few MeV, find out which particles give rise to the radiation observed by 
Cherenkov. 

 
6. In the previous sections of the problem, the dependence of the Cherenkov effect on 
wavelength λ  has been ignored. We now take into account the fact that the Cherenkov 
radiation of a particle has a broad continuous spectrum including the visible range  
(wavelengths from 0.4 µm to 0.8 µm). We know also that the index of refraction  of 
the radiator decreases linearly by 2% of 

n
1n −  whenλ  increases over this range.  

 6.1. Consider a beam of pions with definite momentum of  moving in 
air at pressure 6 atm. Find out the angular difference 

10 0 GeV. c/
δθ  associated with the two ends 

of the visible range. 
 6.2. On this basis, study qualitatively the effect of the dispersion on the ring image of 
pions with momentum distributed over an interval centered at and 
having a half width at half height

10 GeV /p c=
0 3 GeV. /p cΔ = .  

6.2.1. Calculate the broadening due to dispersion (varying refraction index) and 
that due to achromaticity of the beam (varying momentum). 

6.2.2. Describe how the color of the ring changes when going from its inner to 
outer edges by checking the appropriate boxes in the Answer Sheet. 
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CHANGE OF AIR TEMPERATURE WITH ALTITUDE, 
ATMOSPHERIC STABILITY AND AIR POLLUTION 

 
 
 Vertical motion of air governs many atmospheric processes, such as the formation of 
clouds and precipitation and the dispersal of air pollutants. If the atmosphere is stable, 
vertical motion is restricted and air pollutants tend to be accumulated around the 
emission site rather than dispersed and diluted. Meanwhile, in an unstable atmosphere, 
vertical motion of air encourages the vertical dispersal of air pollutants. Therefore, the 
pollutants’ concentrations depend not only on the strength of emission sources but also 
on the stability of the atmosphere.  

We shall determine the atmospheric stability by using the concept of air parcel in 
meteorology and compare the temperature of the air parcel rising or sinking adiabatically 
in the atmosphere to that of the surrounding air. We will see that in many cases an air 
parcel containing air pollutants and rising from the ground will come to rest at a certain 
altitude, called a mixing height. The greater the mixing height, the lower the air pollutant 
concentration. We will evaluate the mixing height and the concentration of carbon 
monoxide emitted by motorbikes in the Hanoi metropolitan area for a  morning rush 
hour scenario, in which the vertical mixing is restricted due to a temperature inversion 
(air temperature increases with altitude) at elevations above 119 m.      

Let us consider the air as an ideal diatomic gas, with molar mass μ  = 29 g/mol. 
  
 

 Quasi equilibrium adiabatic transformation obey the equation , where constpV γ =

p

V

c
c

γ =  is the ratio between isobaric and isochoric heat capacities of the gas. 

The student may use the following data if necessary: 
 The universal gas constant is R = 8.31 J/(mol.K). 

The atmospheric pressure on ground is 0p = 101.3 kPa 

The acceleration due to gravity is constant, g = 9.81 m/s2 

    The molar isobaric heat capacity is 
7
2pc = R  for air. 

   The molar isochoric heat capacity is 
5
2Vc = R  for air. 
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Mathematical hints 

a.  
( ) ( )1 1 ln

d A Bxdx A Bx
A Bx B A Bx B

+
= =

+ +∫ ∫ +  

b. The solution of the differential equation =dx Ax B
dt

+   (with  A and B  constant) is             

( ) ( )1
Bx t x t
A

= +  where ( )1x t  is the solution of the differential equation =0dx Ax
dt

+ . 

c. 
11lim

x

x e
x→∞

⎛ ⎞+ =⎜ ⎟
⎝ ⎠

 

 
1. Change of pressure with altitude. 

 1.1. Assume that the temperature of the atmosphere is uniform and equal to . 

Write down the expression giving the atmospheric pressure  as a function of the 
altitude . 

0T

p
z

 1.2. Assume that the temperature of the atmosphere varies with the altitude according 
to the relation 

   ( ) ( )0T z T z= − Λ  

where is a constant, called the temperature lapse rate of the atmosphere (the vertical 
gradient of temperature is - ).  

Λ
Λ

  1.2.1. Write down the expression giving the atmospheric pressure  as a 
function of the altitude .   

p
z

  1.2.2. A process called free convection occurs when the air density increases with 
altitude. At which values of does the free convection occur? Λ
  
2. Change of the temperature of an air parcel in vertical motion  

Consider an air parcel moving upward and downward in the atmosphere. An air 
parcel is a body of air of sufficient dimension, several meters across, to be treated as an 
independent thermodynamical entity, yet small enough for its temperature to be 
considered uniform. The vertical motion of an air parcel can be treated as a quasi 
adiabatic process, i.e. the exchange of heat with the surrounding air is negligible. If the 
air parcel rises in the atmosphere, it expands and cools. Conversely, if it moves 
downward, the increasing outside pressure will compress the air inside the parcel and its 
temperature will increase.  
 As the size of the parcel is not large, the atmospheric pressure at different points on 
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the parcel boundary can be considered to have the same value ( )p z , with - the 

altitude of the parcel center. The temperature in the parcel is uniform and equals to 

z

( )parcelT z , which is generally different from the temperature of the surrounding air 

( )T z . In parts 2.1 and 2.2, we do not make any assumption about the form of T(z). 

 2.1. The change of the parcel temperature parcelT with altitude is defined by 

parceldT
G

dz
= − . Derive the expression of (T, TG parcel). 

  
2.2. Consider a special atmospheric condition in which at any altitude z the 

temperature of the atmosphere equals to that of the parcel T parcelT , ( ) ( )parcelT z T z= . 

We use Γ  to denote the value of  when G parcelT T= , that is parceldT
dz

Γ = −  

(with parcelT T= ). Γ  is called dry adiabatic lapse rate.  

  2.2.1. Derive the expression of Γ  
  2.2.2. Calculate the numerical value of Γ .  

  2.2.3. Derive the expression of the atmospheric temperature ( )T z as a function 

of the altitude.  
 2.3. Assume that the atmospheric temperature depends on altitude according to the 

relation ( ) ( )0T z T z= − Λ , where Λ  is a constant. Find the dependence of the parcel 

temperature ( )parcelT z  on altitude . z

 2.4. Write down the approximate expression of ( )parcelT z  when ( )0z TΛ <<  and 

T(0) ≈ Tparcel(0). 
  
 
3. The atmospheric stability. 
 In this part, we assume that changes linearly with altitude.  T

3.1. Consider an air parcel initially in equilibrium with its surrounding air at altitude 
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0z , i.e. it has the same temperature ( )0T z  as that of the surrounding air. If the parcel is 

moved slightly up and down (e.g. by atmospheric turbulence), one of the three following 
cases may occur: 

- The air parcel finds its way back to the original altitude , the equilibrium of 

the parcel is stable. The atmosphere is said to be stable.  

0z

- The parcel keeps moving in the original direction, the equilibrium of the parcel 
is unstable. The atmosphere is unstable. 

- The air parcel remains at its new position, the equilibrium of the parcel is 
indifferent. The atmosphere is said to be neutral. 
What is the condition on  for the atmosphere to be stable, unstable or neutral? Λ

3.2. A parcel has its temperature on ground ( )parcel 0T  higher than the temperature 

( )0T  of the surrounding air. The buoyancy force will make the parcel rise. Derive the 

expression for the maximal altitude the parcel can reach in the case of a stable 
atmosphere in terms of and Γ. Λ

  
 

4. The mixing height 
 4.1. Table 1 shows air temperatures recorded by a radio sounding balloon at 7: 00 am 
on a November day in Hanoi. The change of temperature with altitude can be 

approximately described by the formula ( ) ( )0T z T z= − Λ  with different lapse rates Λ 

in the three layers 0 < < 96 m, 96 m < < 119 m and 119 m< < 215 m. z z z

Consider an air parcel with temperature ( )parcel 0T = 22oC ascending from ground. 

On the basis of the data given in Table 1 and using the above linear approximation, 
calculate the temperature of the parcel at the altitudes of 96 m and 119 m. 

4.2. Determine the maximal elevation  the parcel can reach, and the temperature  H

( )parcelT H  of the parcel.  

H is called the mixing height. Air pollutants emitted from ground can mix with the 
air in the atmosphere (e.g. by wind, turbulence and dispersion) and become diluted 
within this layer.   
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Table 1 
Data recorded by a radio sounding balloon at 7:00 am on a November day in Hanoi.  
 

Altitude, m Temperature, oC

5 21.5

60 20.6

64 20.5

69 20.5

75 20.4

81 20.3

90 20.2

96 20.1

102 20.1

109 20.1

113 20.1

119 20.1

128 20.2

136 20.3

145 20.4

153 20.5

159 20.6

168 20.8

178 21.0

189 21.5

202 21.8

215 22.0

225 22.1

234 22.2

246 22.3

257 22.3

 
 
5. Estimation of carbon monoxide (CO) pollution during a morning motorbike rush 
hour in Hanoi. 

Hanoi metropolitan area can be approximated by a rectangle with base 
dimensions and W as shown in the figure, with one side taken along the south-west 
bank of the Red River.  

L
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It is estimated that during the morning rush hour, from 7:00 am to 8:00 am, there are 
8x105 motorbikes on the road, each running on average 5 km and emitting 12 g of CO 
per kilometer. The amount of CO pollutant is approximately considered as emitted 
uniformly in time, at a constant rate M during the rush hour. At the same time, the clean 
north-east wind blows perpendicularly to the Red River (i.e. perpendicularly to the sides 
L of the rectangle) with velocity u, passes the city with the same velocity, and carries a 
part of the CO-polluted air out of the city atmosphere. 

Also, we use the following rough approximate model: 
• The CO spreads quickly throughout the entire volume of the mixing layer 

above the Hanoi metropolitan area, so that the concentration ( )C t of CO at time  can 

be assumed to be constant throughout that rectangular box of dimensions L, W and H.  

t

• The upwind air entering the box is clean and no pollution is assumed to be 
lost from the box through the sides parallel to the wind.  

• Before 7:00 am, the CO concentration in the atmosphere is negligible.    
5.1. Derive the differential equation determining the CO pollutant concentration 

( )C t  as a function of time. 

5.2. Write down the solution of that equation for ( )C t . 

5.3. Calculate the numerical value of the concentration ( )C t at 8:00 a.m. 

Given = 15 km, = 8 km,  = 1 m/s. L W u
                      

 6



                 39th International Physics Olympiad - Hanoi - Vietnam - 2008                                   

                                Experimental Problem                              

 

DIFFERENTIAL THERMOMETRIC METHOD 
 In this problem, we use the differential thermometric method to fulfill the two 
following tasks: 
 1. Finding the temperature of solidification of a crystalline solid substance. 
 2. Determining the efficiency of a solar cell. 

A. Differential thermometric method  

In this experiment forward biased silicon diodes are used as temperature sensors to 
measure temperature. If the electric current through the diode is constant, then the voltage 
drop across the diode depends on the temperature according to the relation  

        ( ) ( ) ( )0V T V T T Tα= − − 0                               (1) 

where ( )V T and ( )0V T are respectively the voltage drops across the diode at 

temperature  and at room temperature  (measured in T 0T oC), and the factor 

     ( ) o2 00 0 03 mV/ C. .α = ±               (2) 

The value of ( )0V T may vary slightly from diode to diode.  

If two such diodes are placed at different temperatures, the difference between the 
temperatures can be measured from the difference of the voltage drops across the two 
diodes. The difference of the voltage drops, called the differential voltage, can be 
measured with high precision; hence the temperature difference can also be measured 
with high precision. This method is called 
the differential thermometric method.  The 
electric circuit used with the diodes in this 
experiment is shown in Figure 1. Diodes 
D1 and D2 are forward biased by a 9V 

battery, through 10 kΩ resistors, 1R  and 

2R . This circuit keeps the current in the 

two diodes approximately constant. 

V1 
V2 

Δ V   

D 1       D 2   

R 1     R 2   E

 
Figure 1. Electric circuit of the diode 

If the temperature of diode D1 is 1T  and that of D2 is , then according to (1), we 

have: 

2T
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    ( ) ( ) ( )1 1 1 0 1 0V T V T T Tα= − −  

and  

     ( ) ( ) ( )2 2 2 0 2 0V T V T T Tα= − −  

The differential voltage is: 

      ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 1 1 2 0 1 0 2 1 0 2 1V V T V T V T V T T T V T T Tα αΔ = − = − − − = Δ − −   

      ( )0V V T αΔ = Δ − ΔT

1

                                    (3) 

in which . By measuring the differential voltage 2T T TΔ = − VΔ , we can determine 

the temperature difference. 
To bias the diodes, we use a circuit box, the diagram of which is shown in Figure 2. 

                                           
                                                  

Blue 
 
 
 
 
 
 
 
 
 
  
 

The circuit box contains two biasing resistors of 10 kΩ for the diodes, electrical leads 
to the 9 V battery, sockets for connecting to the diodes D1 and D2, and sockets for 

connecting to digital multimeters to measure the voltage drop  on diode D2V 2 and the 

differential voltage of the diodes DVΔ 1 and D2. 
  
 
 
 
 

Common- Black 
 

Black 

Figure 2. Diagram of the circuit box 
(top view) 

9 V 

To D2 - Red 

To D1 - Blue 

10 kΩ 

10 kΩ 

 Red 

V2

ΔV

 Red 
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B. Task 1: Finding the temperature of solidification of a crystalline substance  
1. Aim of the experiment  

If a crystalline solid substance is heated to the melting state and then cooled down, 

it solidifies at a fixed temperature , called temperature of solidification, also called the 

melting point of the substance. The traditional method to determine  is to follow the 

change in temperature with time during the cooling process. Due to the fact that the 
solidification process is accompanied by the release of the latent heat of the phase 
transition, the temperature of the substance does not change while the substance is 
solidifying. If the amount of the substance is large enough, the time interval in which the 
temperature remains constant is rather long, and one can easily determine this 
temperature. On the contrary, if the amount of substance is small, this time interval is too 

short to be observed and hence it is difficult to determine . 

sT

sT

sT

 In order to determine  in case of small amount of substance, we use the 

differential thermometric method, whose principle can be summarized as follows. We use 
two identical small dishes, one containing a small amount of the substance to be studied, 
called the sample dish, and the other not containing the substance, called the reference 
dish. The two dishes are put on a heat source, whose temperature varies slowly with time. 
The thermal flows to and from the two dishes are nearly the same. Each dish contains a 
temperature sensor (a forward biased silicon diode). While there is no phase change in 

the substance, the temperature of the sample dish and the temperature of the 

reference dish vary at nearly the same rate, and thus 

sT

sampT refT

ref sampT T TΔ = − varies slowly with 

. If there is a phase change in the substance, and during the phase change 

does not vary and equals , while steadily varies, then varies quickly. 

The plot of versus shows an abrupt change. The value of corresponding 

to the abrupt change of  is indeed . 

sampT

sampT sT refT TΔ

TΔ sampT sampT

TΔ sT

 The aim of this experiment is to determine the temperature of solidification sT  of a 
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pure crystalline substance, having  in the range from 50sT oC to 70oC, by using the 

traditional and differential thermal analysis methods. The amount of substance used in 
the experiment is about 20 mg. 
 
2. Apparatus and materials 

1. The heat source is a 20 W halogen lamp.  
 2. The dish holder is a bakelite plate with a square hole in it. A steel plate is fixed on 
the hole. Two small magnets are put on the steel plate.   
 3. Two small steel dishes, each contains a silicon diode soldered on it. One dish is 
used as the reference dish, the other - as the sample dish.       

 

Figure 4. The dishes on the dish holder 
(top view) 

 
 

 
 
 
 
 

 

Steel plate  Magnets 

12V/20W bulb  

Ref. dish  
Sample dish 

D1  D2  

Red
Black  

Blue 

Cover   

Figure 3. Apparatus for measuring the solidification temperature 

Each dish is placed on a magnet. The magnetic force maintains the contact between 
the dish, the magnet and the steel plate. The magnets also keep a moderate thermal 
contact between the steel plate and the dishes.   

A grey plastic box used as a cover to 
protect the dishes from the outside influence.  

D1 D2 

Red  

Blue

Black 

Figure 3 shows the arrangement of the 
dishes and the magnets on the dish holder 
and the light bulb.  

4. Two digital multimeters are used as 
voltmeters. They can also measure room 
temperature by turning the Function selector 
to the ‘’oC/oF” function. The voltage function 
of the multimeter has an error of ±2 on the 
last digit. 

Note: to prevent the multimeter (see 
Figure 9) from going into the “Auto power 
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off” function, turn the Function selector from OFF position to the desired function while 
pressing and holding the SELECT button. 

5. A circuit box as shown in Figure 2.  
6. A 9 V battery. 
7. Electrical leads. 
8. A small ampoule containing about 20 mg of the substance to be measured. 
9. A stop watch 
10. A calculator 
11. Graph papers.  

 
3. Experiment  
1. The magnets are placed on two equivalent locations on the steel plate. The reference 
dish and the empty sample dish are put on the magnets as shown in the Figure 4. We use 
the dish on the left side as the reference dish, with diode D1 on it (D1 is called the 
reference diode), and the dish on the right side as the sample dish, with diode D2 on it (D2 
is called the measuring diode). 

Put the lamp-shade up side down as shown in Figure 5. Do not switch the lamp on. 
Put the dish holder on the lamp. Connect the apparatuses so that you can measure the 

voltage drop on the diode D2, that is samp 2V V= , and the differential voltage . VΔ

In order to eliminate errors due to the warming up period of the instruments and 
devices, it is strongly recommended that the complete measurement circuit be switched 
on for about 5 minutes before starting real experiments. 
 

Figure 5. 
Using the halogen lamp as a heat source 

   
 
 
 
 
 

1.1. Measure the room temperature  and the voltage drop 0T ( )samp 0V T  across 

diode D2 fixed to the sample dish, at room temperature .  0T

 1.2. Calculate the voltage drops ( )o
samp 50 CV , ( )o

samp 70 CV  and ( )o
samp 80 CV  

on the measuring diode at temperatures 50oC, 70oC and 80oC, respectively.  
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2. With both dishes still empty, switch the lamp on. Follow Vsam. When the temperature 

of the sample dish reaches ~ 80sampT oC, switch the lamp off. 

2.1. Wait until ~ 70sampT oC, and then follow the change in  and  with 

time, while the steel plate is cooling down. Note down the values of and 

sampV VΔ

sampV VΔ  

every 10 s to 20 s in the table provided in the answer sheet. If VΔ  varies quickly, the 
time interval between consecutive measurements may be shorter. When the temperature 

of the sample dish decreases to ~ 50sampT oC, the measurement is stopped. 

2.2. Plot the graph of versus t, called Graph 1, on a graph paper provided.  sampV

2.3. Plot the graph of versus , called Graph 2, on a graph paper provided. VΔ sampV

Note: for 2.2 and 2.3 do not forget to write down the correct name of each graph. 
 
3. Pour the substance from the ampoule into the sample dish. Repeat the experiment 
identically as mentioned in section 2.  

3.1. Write down the data of and sampV VΔ with time t in the table provided in the 

answer sheet. 

   3.2. Plot the graph of versus t, called Graph 3, on a graph paper provided.  sampV

3.3. Plot the graph of versus , called Graph 4, on a graph paper provided.  VΔ sampV

Note: for 3.2 and 3.3 do not forget to write down the correct name of each graph. 
 
4. By comparing the graphs in section 2 and section 3, determine the temperature of 
solidification of the substance. 

4.1. Using the traditional method to determine : by comparing the graphs of 

versus t in sections 3 and 2, i.e. Graph 3 and Graph 1, mark the point on Graph 3 

where the substance solidifies and determine the value  (corresponding to this point) 

of . 

sT

sampV

sV

sampV
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Find out the temperature of solidification  of the substance and estimate its error. sT

 4.2. Using the differential thermometric method to determine : by comparing the 

graphs of versus  in sections 3 and 2, i.e. Graph 4 and Graph 2, mark the 

point on Graph 4 where the substance solidifies and determine the value of .  

sT

VΔ sampV

sV sampV

Find out the temperature of solidification  of the substance.  sT

4.3. From errors of measurement data and instruments, calculate the error of  

obtained with the differential thermometric method. Write down the error calculations 

and finally write down the values of  together with its error in the answer sheet. 

sT

sT

 
C. Task 2: Determining the efficiency of a solar cell under illumination of an 
incandescent lamp 
1. Aim of the experiment 

The aim of the experiment is to determine the efficiency of a solar cell under 
illumination of an incandescent lamp. Efficiency is defined as the ratio of the electrical 
power that the solar cell can supply to an external circuit, to the total radiant power 
received by the cell. The efficiency depends on the incident radiation spectrum. In this 
experiment the radiation incident to the cell is that of an incandescent halogen lamp. In 
order to determine the efficiency of the 
solar cell, we have to measure the 
irradiance  at a point situated under 
the lamp, at a distance d from the lamp 
along the vertical direction, and the 
maximum power P

E

max of the solar cell 
when it is placed at this point. In this 
experiment, d = 12 cm  (Figure 6). 
Irradiance  can be defined by: E

 /E S= Φ  
in which  is the radiant flux (radiant 
power), and is the area of the 
illuminated surface. 

Φ

 d = 12 cm

Figure 6. 
Using the halogen lamp 

 as a light source S
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2. Apparatus and materials 
1. The light source is a 20W halogen lamp.  
2. The radiation detector is a hollow cone made of copper, the inner surface of it is 

blackened with soot (Figure 7). The cone is incompletely thermally isolated from the 
surrounding. In this experiment, the detector is considered an ideal black body. To 
measure temperature, we use silicon diodes. The measuring diode is fixed to the radiation 
detector (D2 in Figure 1 and Figure 7), so that its temperature equals that of the cone. The 
reference diode is placed on the inner side of the wall of the box containing the detector; 
its temperature equals that of the surrounding. The total heat capacity of the detector (the 

cone and the measuring diode) is ( )0 69 0 02 J/K= ±. .C . The detector is covered by a 

very thin polyethylene film; the radiation absorption and reflection of which can be 
neglected. 

 

 

 
  Thermal insulator   

Measuring 
diode D2

 
 
 
 
 

   

Red Blue  Black
 

Common  

Reference 
diode D1

Figure 7. Diagram of the radiation detector 
 

3. A circuit box as shown in Figure 2. 
4. A piece of solar cell fixed on a plastic box 

(Figure 8). The area of the cell includes some metal 
connection strips. For the efficiency calculation these 
strips are considered parts of the cell. 

5. Two digital multimeters. When used to 
measure the voltage, they have a very large internal 
resistance, which can be considered infinitely large. 
When we use them to measure the current, we cannot 
neglect their internal resistance. The voltage function 
of the multimeter has an error of ±2 on the last digit. 

Red

Black Figure 8. 
The solar cell 
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The multimeters can also measure the room temperature.  
Note: to prevent the multimeter (see Figure 9) from going into the “Auto power off” 

function, turn the Function selector from OFF position to the desired function while 
pressing and holding the SELECT button. 

6. A 9 V battery 
7. A variable resistor. 
8. A stop watch 
9. A ruler with 1mm divisions 
10. Electrical leads.  

 11. Graph papers. 
 
3. Experiment 

When the detector receives energy from radiation, it heats up. At the same time, the 
detector loses its heat by several mechanisms, such as thermal conduction, convection, 
radiation etc...Thus, the radiant energy received by detector in a time interval dt is equal 
to the sum of the energy needed to increase the detector temperature and the energy 
transferred from the detector to the surrounding: 

     dt CdT dQΦ = +
where  is the heat capacity of the detector and the diode,  - the temperature 
increase and  - the heat loss.  

C dT
dQ

When the temperature difference between the detector and the surrounding 

 is small, we can consider that the heat  transferred from the detector to 

the surrounding in the time interval is approximately proportional to and , 
that is dQ , with  being a factor having the dimension of W/K. Hence, 
assuming that  is constant and 

0T T TΔ = − dQ

dt TΔ dt
k Tdt= Δ k
k TΔ  is small, we have: 

       ( )dt CdT k Tdt Cd T k TdtΦ = + Δ = Δ + Δ

or    
( )d T k T
dt C C
Δ Φ

+ Δ =            (4) 

The solution of this differential equation determines the variation of the temperature 
difference with time t, from the moment the detector begins to receive the light with 
a constant irradiation, assuming that at t=0, 

TΔ
TΔ =0 

 ( ) 1
k t
CT t e

k
−⎛ ⎞Φ

Δ = −⎜⎜
⎝ ⎠

⎟⎟                     (5) 

When the radiation is switched off, the mentioned above differential equation 
becomes  
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( ) 0d T k T
dt C
Δ

+ Δ =             (6) 

and the temperature difference TΔ varies with the time according to the following 
formula: 

( ) ( )0
k t
CT t T e

−
Δ = Δ         (7) 

where  is the temperature difference at 0( )TΔ 0t = (the moment when the measurement 
starts). 

1. Determine the room temperature . 0T

2. Compose an electric circuit comprising the diode sensors, the circuit box and the 
multimeters to measure the temperature of the detector. 

In order to eliminate errors due to the warming up period of the instruments and 
devices, it is strongly recommended that the complete measurement circuit be switched 
on for about 5 minutes before starting real experiments. 
 2.1. Place the detector under the light source, at a distance of d = 12 cm to the lamp. 
The lamp is off. Follow the variation of VΔ for about 2 minutes with sampling intervals 

of 10 s and determine the value of 0V TΔ ( )  in equation (3). 

2.2. Switch the lamp on to illuminate the detector. Follow the variation of . Every 
10-15 s, write down a value of 

VΔ
VΔ  in the table provided in the answer sheet. (Note: 

columns x and y of the table will be used later in section 4.). After 2 minutes, switch the 
lamp off. 

2.3. Move the detector away from the lamp. Follow the variation of for about 2 
minutes after that. Every 10-15 s, write down a value of 

VΔ
VΔ  in the table provided in the 

answer sheet. (Note: columns x and y of the table will be used later in section 3.). 
 

Hints: As the detector has a thermal inertia, it is recommended not to use some data 
obtained immediately after the moment the detector begins to be illuminated or ceases to 
be illuminated.   

 
3. Plot a graph in an x-y system of coordinates, with variables x and y chosen 
appropriately, in order to prove that after the lamp is switched off, equation (7) is satisfied.    

3.1. Write down the expression for variables x and y. 
3.2. Plot a graph of y versus x, called Graph 5. 
3.3. From the graph, determine the value of . k

 
4. Plot a graph in an x-y system of coordinates, with variables x and y chosen 
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appropriately, in order to prove that when the detector is illuminated, equation (5) is 
satisfied.  

4.1. Write down the expressions for variables x and y. 
4.2. Plot a graph of y versus x, called Graph 6. 
4.3. Determine the irradiance E at the orifice of the detector. 
  

5. Put the solar cell to the same place where the radiation detector was. Connect the solar 
cell to an appropriate electric circuit comprising the multimeters and a variable resistor 
which is used to change the load of the cell. Measure the current in the circuit and the 
voltage on the cell at different values of the resistor.  

5.1. Draw a diagram of the circuit used in this experiment. 
5.2. By rotating the knob of the variable resistor, you change the value of the load. 

Note the values of current  and voltage V  at each position of the knob. I
5.3. Plot a graph of the power of the cell, which supplies to the load, as a function of 

the current through the cell. This is Graph 7. 
5.4. From the graph deduce the maximum power Pmax of the cell and estimate its error. 
5.5. Write down the expression for the efficiency of the cell that corresponds to the 

obtained maximum power. Calculate its value and error. 
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Contents of the experiment kit (see also Figure 10) 
1 Halogen lamp 220 V/ 20 W 9 Stop watch 
2 Dish holder 10 Calculator 
3 Dish 11 Radiation detector 
4 Multimeter 12 Solar cell 
5 Circuit box 13 Variable resistor 
6 9 V battery 14 Ruler 
7 Electrical leads 15 Box used as a cover 
8 Ampoule with substance to be 

measured 
  

 
 
 
Note: to prevent the multimeter (see Figure 9) from going into the “Auto power off” 

function, turn the Function selector from OFF position to the desired function while 
pressing and holding the SELECT button. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Digital multimeter 

Function selector 

Select 
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1 

2 

3 

4

5 

6 

7 

8 9 

10 

11 

12 13 

14

15 

Figure 10. Contents of the experiment kit 
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3−= =

 
Solution 

 
1. The structure of the mortar 
 1.1. Calculating the distance TG 

The volume of water in the bucket is V . The length of the 

bottom of the bucket is . 

3 31000cm 10 m

0 060 0 74 0 12 60 m 0 5322mtan ( . . tan ) .d L h= − = − =

(as the initial data are given with two significant digits, we shall keep only two 
significant digits in the final answer, but we keep more digits in the intermediate steps). 
The height  of the water layer in the bucket is calculated from the formula: c

2 1/ 2b0 ( 2 3 / )tan 60
2 3
c d V dV bcd b c c + −

= + ⇒ =  

Inserting numerical values for ,  and , we find b d 0.01228mc =V . 
When the lever lies horizontally, the distance, on the horizontal axis, between the rotation 

axis and the center of mass of water N, is oTH 60 0 4714m
2 4

tan .d ca≈ + + = , and 

(see the figure below). TG ( / )TH 0.01571mm M= =
 

H                     T  

N 

 

 

K 

R 

S P 

 

 

 

 
Answer: . TG 0.016m=
 

α1 α2 1.2. Calculating the values of  and . 
α1  When the lever tilts with angle , water level is at the edge of the bucket. At that 

point the water volume is . Assume 3 310 m− PQ d< . From geometry , 

from which P . The assumption 

PQ / 2V hb= ×

PQ d<Q 0.1111m= is obviously satisfied 
( ). 0.5322md =

QS= PQ+ 3tan / /( ).h h hα1 =α1To compute the angle , we note that  From this 

we find . o20.6α1 =
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When the tilt angle is , the bucket is empty: . o30 o30α2 =

                                                                   G 

                                            h                 T    

 

R               N            

                             Q 

                   P 
I

S 

 

 

 

 

 

 

 

 

 

 

 
β 1.3. Determining the tilt angle  of the lever and the amount of water in the bucket 

 m μwhen the total torque  on the lever is equal to zero 
(m)x= Denote PQ . The amount of water in the bucket is 

water 9 (kg)
2

xhbm xρ= = .  

μ = 0  when the torque coming from the water in the bucket cancels out the torque 
coming from the weight of the lever. The cross section of the water in the bucket is the 
triangle PQR in the figure. The center of mass N of water is located at 2/3 of the meridian 
RI, therefore NTG lies on a straight line. Then: TN TGmg Mg× = ×  or 

TN TG 30 0.1571 0.4714m M× = × = × =       (1)  
Calculating  from x then substitute (1) : TN

2TN ( 3 ) 0.94 0.08 3 0.8014
3 2 3 3

x x xL a h= + − + = − − = −  

which implies     (2) 2TN 9 (0.8014 / 3) 3 7.213m x x x× = − = − + x

xSo we find an equation for : 
                 (3) 23 7.213 0.4714x x− + =

2.337x = 0.06723x = xThe solutions to (3) are and . Since  has to be smaller than 
0.5322, we have to take  and m x0 0.06723x x= = 09 0.6051kg= = .    

0 4362
3

tan .h
x h

β = =
+

o7β = 23.5, or  .  

Answer:  and . oβ = 23.60.61kgm =

 
2. Parameters of the working mode 
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)tα( )tμ( 2.1.Graphs of μ α( )  during one operation cycle.  , , and
μα = 0 Initially when there is no water in the bucket, ,  has the largest magnitude 

equal to . Our convention will be that 
the sign of this torque is negative as it tends to decrease 

TG 30 9.81 0.01571 4.624 N mgM × = × × = ⋅
α . 

As water flows into the bucket, the torque coming from the water (which carries 
positive sign) makes μ μ increase until  is slightly positive, when the lever starts to 
lift up. From that moment, by assumption, the amount of water in the bucket is constant. 
 The lever tilts so the center of mass of water moves away from the rotation axis, 
leading to an increase of μ , which reaches maximum when water is just about to 

overflow the edge of the bucket. At this moment .  o20.6α α1= =

 A simple calculation shows that 
  . SI SP PQ / 2 0.12 1.732 0.1111/ 2 0.2634m= + = × + =

2TN 0.20 0.74 SI 0.7644m
3

= + − =  . 

    o
max 1 0 TN 30 TG 20.6( . ) cosgμ = × − ×

      = o1 0 0 7644 30 0 01571 9 81 20 6 2 690 N m( . . . ) . cos . .× − × × × = ⋅ .  

max 2.7 N mμ = ⋅ . Therefore 
 As the bucket tilts further, the amount of water in the bucket decreases, and when 

μα β= μ = 0, . Due to inertia, α  keeps increasing and  keeps decreasing. The 

bucket is empty when oα = 30 μ, when  equals  

. After that o30 TG 30 4 0 N mcos .g− × × × = − ⋅ α  keeps increasing due to inertia to 

TG 2 N mcos cosgMμ α α0= − = −4.6 ⋅α0  ( 0 ), then quickly decreases to 0 

( 2 N mμ = −4.6 ⋅ ).  
)tα( ( )tμ μ α( ) On this basis we can sketch the graphs of , , and  as in the figure 

below 
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 is dW dμ α α= ( )μ α( ) 2.2. The infinitesimal work produced by the torque . The 
energy obtained by the lever during one cycle due to the action of 

-4.0 N.m                           C 

-4.6 N.m  F 

O                           E   α 
B    30o     α0 

     μ 
2.7 N.m                A 

20.6o 

 23.6o 

-4.6 cosα0 N.m                           D 

μ α( )  is 

( )W dμ α α= ∫ , which is the area limited by the line μ α( ) . Therefore  is equal 

to the area enclosed by the curve

totalW

μ α( ) (OABCDFO) on the graph . 
   The work that the lever transfers to the mortar is the energy the lever receives as it 

moves from the position poundingWoα α= α = 0 to the horizontal position . We have  

μ α( )equals to the area of (OEDFO) on the graph . It is equal to 

0 0TG 4 6sin . singM α α× × =   (J).  

0α  2.3. The magnitudes of  can be estimated from the fact that at point D the energy 
of the lever is zero. We have   

area (OABO) = area (BEDCB) 
Approximating OABO by a triangle, and BEDCB by a trapezoid, we obtain:  

23.6 2.7 (1/ 2) 4.0 [( 23.6) ( 30)] (1/ 2)α α0 0× × = × − + − × , 

which implies . From this we find  o34.7α0 =

0

34 76

TG
.

cosMg dα α− × ×∫poundingW  =  o4 62 34 7 2 63. sin . .× == area (OEDFO) = 
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Thus we find  J. pounding 2.6W ≈ μ 

β                 α

3. The rest mode 
 3.1.  
  3.1.1. The bucket is always overflown 
with water. The two branches of μ α( )  in the 
vicinity of α β=  corresponding to 
increasing and decreasing α coincide with 
each other. 

α β= The graph implies that  is a stable 
equilibrium of the mortar.  

μ α β α= + Δ  3.1.2. Find the expression for the torque  when the tilt angle is  
( αΔ  is small ). 
 The mass of water in bucket when the lever tilts with angle α  is 

0
1 1PQ

30tan tan
h

α
⎛= −⎜
⎝ ⎠

⎞
⎟(1/ 2) PQm bhρ= , where . A simple calculation shows that 

when α β β α+ Δ increases from  to , the mass of water increases by 

2 2

2 22 2sin sin
bh bhm ρ ρα α

α β
Δ = − Δ ≈ − Δ μ. The torque  acting on the lever when the tilt 

is mΔβ α+ Δ  equals the torque due to .  

( )TN cosm gμ β α= Δ × × × + Δ We have . TN is found from the equilibrium 

condition of the lever at tilting angle β :   
 . TN TG / 30 0.01571/ 0.605 0.779mM m= × = × =

N m N mμ α α= −47.2×Δ ⋅ ≈ −47×Δ ⋅ .    We find at the end 
   3.1.3. Equation of motion of the lever 

2

2
dI
dt
αμ =  where μ α= −47×Δ , α β α= + Δ , and  is the sum of moments 

of inertia of the lever and of the water in bucket relative to the axis T. Here  is not 
constant the amount of water in the bucket depends on 

I

I
αΔα . When  is small, one can 

consider the amount and the shape of water in the bucket to be constant, so  is 
approximatey a constant. Consider water in bucket as a material point with mass 0.6 kg, a 

simple calculation gives . We have 

I

2 212 0.6 0.78 12.36 12.4 kg mI = + × = ≈

2

247 12.4 d
dt
αα Δ

− ×Δ = × . That is the equation for a harmonic oscillator with period  



                     39th International Physics Olympiad - Hanoi - Vietnam - 2008 
                                                             
                              Theoretical Problem No. 1 /Solution  
  

 6

12.42 3
47

τ π= = .227 . The answer is therefore 2sτ = 3. . 

α β= 3.2. Harmonic oscillation of lever (around ) when bucket is always overflown. 
Assume the lever oscillate harmonically with amplitude α0Δ  around α β= . At time 

, 0t = αΔ = 0 , the bucket is overflown. At time  the tilt changes by dt dα . We are 
interested in the case dα < 0 , i.e., the motion of lever is in the direction of decreasing 
α , and one needs to add more water to overflow the bucket. The equation of motion is: 

0 2sin( / )tα α πΔ = −Δ τ dt0 2 2( ) ( / )cos( / )d d tα α α π τ π τΔ = = −Δ, therefore . 

 For the bucket to be overflown, during this time the amount of water falling to the 

bucket should be at least  
22

0
2 2

2 2
2 2

cos
sin sin

bh dtbh tdm d α π ρρ πα
τβ τ β

Δ ⎛ ⎞= − = ⎜
⎝ ⎠

⎟  ; is 

maximum at ,  

dm

2
0

0 2sin
bhdm dtπ ρ α
τ β

Δ
=0t = . 

 The amount of water falling to the bucket is related to flow rate ; , 0dm dt= ΦΦ

2
0

2sin
bhπ ρ α
τ β

Δ
Φ =therefore .  

 An overflown bucket is the necessary condition for harmonic oscillations of the lever, 
therefore the condition for the lever to have harmonic oscillations with ampltude  or o1

2π/360 rad is  with  1Φ ≥ Φ

2

1 2
2 0 2309kg/s

360
.

sin
bhπ ρ π
τ β

Φ = =       

 So . 0.23kg/s1Φ =
 
 3.3 Determination of  2Φ

 If the bucket remains overflown when the tilt decreases to ,o20.6  then the amount of 
water in bucket should reach 1 kg at this time, and the lever oscillate harmonically with 

amplitude equal o o20.6 3o23.6 − = 3 1Φ. The flow should exceed , therefore   

  . 3 0.23 .7kg/s2Φ = × ≈ 0
 This is the minimal flow rate for the rice-pounding mortar not to work. 
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1. 
 
 
                                                                                 
                                                                                    
                           
 
 
 
                                                                                     
                                                                                 

A

θ

C B

D

E

D’

 
Figure 1 

                                           
Let us consider a plane containing the particle trajectory. At , the particle 

position is at point A. It reaches point B at 

0t =

1t t= . According to the Huygens principle, at 

moment , the radiation emitted at A reaches the circle with a radius equal to AD 

and the one emitted at C reaches the circle of radius CE. The radii of the spheres are 
proportional to the distance of their centre to B: 

10 t t< <

( )
( )
1

1

CE 1 const
CB

/c t t n
t t nβ
−

= = =
−v

 

The spheres are therefore transformed into each other by homothety of vertex B and 

their envelope is the cone of summit B and half aperture 
1

2
Arcsin

n
πϕ θ

β
= = − , 

where θ  is the angle made by the light ray CE with the particle trajectory.  
1.1. The intersection of the wave front with the plane is two straight lines, BD and 

BD'. 

1.2. They make an angle 
1Arcsin
n

ϕ
β

= with the particle trajectory.  
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2. The construction for finding the ring image of the particles beam is taken in the plane  
containing the trajectory of the particle and the optical axis of the mirror.  

We adopt the notations: 
S – the point where the beam crosses the spherical mirror 

 F – the focus of the spherical mirror  
 C – the center of the spherical mirror 
 IS – the straight-line trajectory of the charged particle making a small angle α with 
the optical axis of the mirror. 
 
 
 
 
 
 
 
 
 
 
      
 

 
 

I 

θ

θ

CF

O

M

N
S

α 

A 

P 

Q 

Figure 2 
  CF = FS = f 
  CO//IS 
  CM//AP 
  CN//AQ 

  FCO α= ⇒FO f α= ×  

  MCO OCN θ= = ⇒MO f θ= ×  

 We draw a straight line parallel to IS passing through the center C. The line intersects 
the focal plane at O. We have FO ≈ f × α  . 
 Starting from C, we draw two lines in both sides of the line CO making with it an 
angle θ. These two lines intersect the focal plane at M and N, respectively. All the rays of 
Cherenkov radiation in the plane of the sketch, striking the mirror and being reflected, 
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intersect at M or N. 
 In three-dimension case, the Cherenkov radiation gives a ring in the focal plane with 
the center at O (FO ≈ f × α) and with the radius MO ≈ f × θ.  
 In the construction, all the lines are in the plane of the sketch. Exceptionally, the ring 
is illustrated spatially by a dash line.  
 
3. 

 3.1. For the Cherenkov effect to occur it is necessary that 
cn >
v

 , that is  

min
cn =
v

. 

Putting ,  we get      41 2 7 10.n −ζ = − = × P

  4
min min

12 7 10 1 1. cPζ
β

−= × = − = −
v

            (1)                   

Because 

22

2

1

1

Mc Mc Mc KMvpc p
β

β
β

−
= = = =

−

                       (2)                   

then K = 0.094 ; 0.05 ; 0.014 for proton, kaon and pion, respectively. 
 From (2) we can express β through K as 

        
2

1

1 K
β =

+
                     (3)                  

Since  for all three kinds of particles we can neglect the terms of order 
higher than 2 in K . We get 

2 1K <<

     2
2

1 11 1
21

K
K

β− = − ≈
+

= 
2

1
2

Mc
p

⎛ ⎞
⎜ ⎟
⎝ ⎠

                        (3a) 

    2 21 11 1 1
2

K K
β
− = + − ≈ =

2
1
2

Mc
p

⎛ ⎞
⎜ ⎟
⎝ ⎠

           (3b)  

                            
 Putting (3b) into (1), we obtain 



                     39th International Physics Olympiad - Hanoi - Vietnam - 2008 
                                                             
                                 Theoretical Problem No. 2 / Solution 
 
  

 4

      2
min 4

1 1
22 7 10.

P −= ×
×

K

κ

                                (4) 

 
 We get the following numerical values of the minimal pressure:   

minP = 16 atm      for protons, 

minP = 4.6 atm     for kaons, 

minP = 0.36 atm     for pions. 

 3.2. For π 2θ θ=   we have 

                  (5)                   2
π κ κ2 2cos cos cosθ θ θ= = 1−

We denote  

     2
2

1 11 1
21

K
K

ε β= − = − ≈
+

            (6)                   

From (5) we obtain 

      2 2
π κ

1 2 1
n nβ β
= −                                (7)                   

Substituting 1β ε= −  and 1n ζ= +  into (7), we get approximately: 
                                           

      ( )2 2 2 2κ π
1 κ π
2

4 1 14 4 0 05 0 014
3 6 6

.( . ) ( . )K Kε ε
ζ

− ⎡ ⎤= = − = −⎣ ⎦ , 

      1 14
2 2

1 6 atm
2 7 10.

P −= ζ =
×

. 

 The corresponding value of refraction index is n = 1.00162. We get: 

       κθ  = 1.6o ;        . o
π κ2 3 2.θ θ= =

We do not observe the ring image of protons since 
        1 m

2

6atm 16atm inP P= < =  for protons. 
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4. 
 4.1. Taking logarithmic differentiation of both sides of the equation            

1cos
n

θ
β

= , we obtain 

       
sin

cos
θ θ
θ
×Δ

 = 
β
β
Δ

               (8)      

                                                      
 Logarithmically differentiating equation (3a) gives 

       2
1

p
p

β
β

Δ Δ
=

−
                  (9)                   

 Combining (8) and (9), taking into account (3b) and putting approximately 
tanθ θ= , we derive 

       
22 1 K

p p
θ β

pθ β θ
Δ −

= × =
Δ

                (10)                 

 
 We obtain 

 -for kaons  ,  κ 0 05.K = o
κ 1 6 1 6 rad

180
. . πθ = = , and so,  

o
κ 10 51

GeV
.

/p c
θΔ

=
Δ

, 

 -for pions π 0 014.K = , , and             o
π 3 2.θ =

o
π 10 02

GeV
.

/p c
θΔ

=
Δ

 . 

 4.2.  κ π

p
θ θΔ + Δ

≡
Δ

( )
o o1 10 51 0 02 0 53

GeV GeV
. . .

/ /p c c
θΔ
= + =

Δ
. 

 The condition for two ring images to be distinguishable is 

. o
π κ0 1 0 16. ( ) .θ θ θΔ < − =

 It follows  
1 1 6 0 3 GeV

10 0 53
. . /
.

p cΔ < × = . 
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5.  
 5.1. The lower limit of β  giving rise to Cherenkov effect is 

    
1 1

1 33.n
β = = .                                           (11) 

 The kinetic energy of a particle having rest mass M  and energy E  is given by the 
expression 

       
2

2 2 2
2 2

1 1
1 1

McT E Mc Mc Mc
β β

⎡ ⎤
⎢ ⎥= − = − = −
⎢ ⎥− −⎣ ⎦

.     (12) 

Substituting the limiting value (11) of β  into (12), we get the minimal kinetic energy of 
the particle for Cherenkov effect to occur: 

  2 2
min 2

1 1 0 517
11

1 33

.

.

T Mc M

⎡ ⎤
⎢ ⎥
⎢ ⎥= − =⎢ ⎥

⎛ ⎞⎢ ⎥− ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

c        (13) 

                                  
 5.2.  

 For α particles, . min 0 517 3 8 GeV 1 96 GeV. . .T = × =

 For electrons,  . min 0 517 0 51 MeV 0 264 MeV. . .T = × =

 Since the kinetic energy of the particles emitted by radioactive source does not 
exceed a few MeV, these are electrons which give rise to Cherenkov radiation in the 
considered experiment. 
 
6. For a beam of particles having a definite momentum the dependence of the angle θ  
on the refraction index  of the medium is given by the expression n

     
1cos

n
θ

β
=                  (14)               

 6.1. Let δθ  be the difference of θ  between two rings corresponding to two 
wavelengths limiting the visible range, i.e. to wavelengths of 0.4 µm (violet) and     
0.8 µm (red), respectively. The difference in the refraction indexes at these wavelengths 

is ( )v r 0 02 1.n n nδ n− = = − . 

    Logarithmically differentiating both sides of equation (14) gives 
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sin

cos
n

n
θ δθ δ
θ
×

=                                       (15)        

 Corresponding to the pressure of the radiator P = 6 atm we have from 4.2. the values            

πθ = 3.2o , 1.00162.  n =

 Putting approximately tanθ θ=   and  n = 1, we get  o0 033.nδδθ
θ

= = .        

 6.2.  
 6.2.1. The broadening due to dispersion in terms of half width at half height is, 

according to (6.1), o1 0 017
2

.δθ = . 

 6.2.2. The broadening due to achromaticity is, from 4.1., 

o
o10 02 0 3 GeV/c 0 006

GeV/c
. .× = . , that is three times smaller than above. 

    6.2.3. The color of the ring changes from red to white then blue from the inner 
edge to the outer one. 
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Solution 
 

1. For an altitude change , the atmospheric pressure change is : dz
         dp gdzρ= −                                        (1) 
where  is the acceleration of gravity, considered constant, g ρ  is the specific mass of 
air,  which is considered as an ideal gas: 

                         
m p
V RT

μρ = =  

Put this expression in (1) : 

                         
dp g dz
p RT

μ
= −  

 1.1. If the air temperature is uniform and equals , then 0T

                         
0

dp g dz
p RT

μ
= −  

After integration, we have : 

          ( ) ( ) 00 e
g z

RTp z p
μ

−
=                                (2) 

 1.2. If 

           ( ) ( )0T z T z= −Λ                           (3) 

then 

 
( )0

dp g dz
p R T z

μ
= −

⎡ ⎤− Λ⎣ ⎦
               (4)                      

  1.2.1. Knowing that : 

         
( )

( )
( ) ( )( )01 1 0

0 0
ln

d T zdz T z
T z T z

⎡ ⎤− Λ⎣ ⎦= − = − − Λ
−Λ Λ −Λ Λ∫ ∫    

by integrating both members of (4), we obtain : 

          
( )
( )

( )
( ) ( )

0
1

0 0
ln ln ln

p z T zg g
p R T R T

μ μ ⎛ ⎞− Λ Λ
= = ⎜⎜Λ Λ ⎝ ⎠0

z
− ⎟⎟                                 

          ( ) ( ) ( )
0 1

0

g
Rzp z p

T

μ
Λ⎛ ⎞Λ

= −⎜⎜
⎝ ⎠

⎟⎟                    (5) 

 1
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1.2.2. The free convection occurs if: 

           
( )
( )

1
0
zρ

ρ
>  

The ratio of specific masses can be expressed as follows: 

   
( )
( )

( )
( )

( )
( ) ( )

1
0

1
0 0 0

g
Rz p z T z

p T z T

μ

ρ
ρ

−
Λ⎛ ⎞Λ

= = −⎜ ⎟⎜ ⎟
⎝ ⎠

  

       The last term is larger than unity if its exponent is negative: 

    1 0g
R
μ

− <
Λ

 

 Then : 

          
0 029 9 81 K0 034

8 31 m
. . .

.
g

R
μ ×

Λ > = =  

 
2. In vertical motion, the pressure of the parcel always equals that of the surrounding air, 

the latter depends on the altitude. The parcel temperature parcelT  depends on the 

pressure. 
 
 2.1. We can write: 

        parcel parceldT dT dp
dz dp dz

=  

p  is simultaneously the pressure of air in the parcel and that of the surrounding air. 

Expression for parceldT
dp

 

By using the equation for adiabatic processes  and equation of state, 

we can deduce the equation giving the change of pressure and temperature in a 
quasi-equilibrium adiabatic process of an air parcel: 

constpV γ =

        
1

parcel constT p
γ
γ
−

=                                 (6) 

 2
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where  p

V

c
c

γ =  is the ratio of isobaric and isochoric thermal capacities of air. By 

logarithmic differentiation of the two members of (6), we have:                                  

         parcel

parcel

1 0
dT dp
T p

γ
γ
−

+ =  

Or 

       parcel parcel 1dT T
dp p

γ
γ
−

=                             (7) 

Note: we can use the first law of thermodynamic to calculate the heat received by the 

parcel in an elementary process: parcelV
mdQ c dT pdV
μ

= + , this heat equals zero in an 

adiabatic process. Furthermore, using the equation of state for air in the parcel 

parcel
mpV RT
μ

=  we can derive (6) 

Expression for 
dp
dz

           

From (1) we can deduce: 

            
dp pgg
dz RT

μρ= − = −  

where is the temperature of the surrounding air. T

On the basis of these two expressions, we derive the expression for  : parcel /dT dz

          parcel parcel1dT Tg G
dz R T

γ μ
γ
−

= − = −                      (8) 

In general,  is not a constant. G
 
 2.2.  

2.2.1. If at any altitude, parcelT T= , then instead of  in (8), we have : G

        
1 constg

R
γ μ
γ
−

Γ = =                        (9) 

or  

 3
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p

g
c
μ

Γ =                (9’) 

2.2.2. Numerical value: 

         21 4 1 0 029 9 81 K K0 00978 10
1 4 8 31 m m
. . . .

. .
−− ×

Γ = = ≈     

  2.2.3. Thus, the expression for the temperature at the altitude  in this special 
atmosphere (called adiabatic atmosphere) is : 

z

         ( ) ( )0T z T z= −Γ                          (10) 

 2.3. Search for the expression of ( )parcelT z  

Substitute  in (7) by its expression given in (3), we have: T

         
( )

parcel

parcel

1
0

dT g dz
T R T

γ μ
γ
−

= −
z−Λ

 

Integration gives: 

         
( )
( )

( )
( )

parcel

parcel

01 1
0 0

ln ln
T z T zg
T R T

−γ μ
γ

Λ− ⎛ ⎞= − −⎜ ⎟Λ⎝ ⎠
 

Finally, we obtain: 

        ( ) ( ) ( )
( )parcel parcel

0
0

0
T z

T z T
T

Γ
Λ⎛ ⎞− Λ

= ⎜ ⎟⎜ ⎟
⎝ ⎠

                 (11) 

 2.4.  
 From (11) we obtain  

 ( ) ( ) ( )parcel parcel 0 1
0
zT z T

T

Γ
Λ⎛ ⎞Λ

= −⎜ ⎟⎜ ⎟
⎝ ⎠

 

If ( )0z TΛ << , then by putting 
( )0T

x
z

−
=

Λ
, we obtain 

 
( ) ( )

( )

( ) ( ) ( ) ( ) ( )

0

parcel parcel

0
parcel parcel parcel

10 1

0 0 1
0

e

z
x T

z
T

T z T
x

zT T T
T

Γ
−

Γ
−

⎛ ⎞⎛ ⎞= +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞Γ
≈ ≈ − ≈⎜ ⎟⎜ ⎟

⎝ ⎠
0 z−Γ

   

 4
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hence, 

  ( ) ( )parcel parcel 0T z T≈ z−Γ             (12) 

 
3. Atmospheric stability  

In order to know the stability of atmosphere, we can study the stability of the 
equilibrium of an air parcel in this atmosphere. 

 At the altitude , where 0z ( ) ( )parcel 0 0T z T z= , the air parcel is in equilibrium. 

Indeed, in this case the specific mass ρ  of air in the parcel equals 'ρ - that of the 
surrounding air in the atmosphere. Therefore, the buoyant force of the surrounding air on 
the parcel equals the weight of the parcel. The resultant of these two forces is zero. 

   Remember that the temperature of the air parcel ( )parcelT z  is given by (7), in which 

we can assume approximately G = Γ  at any altitude  near z 0z z= .    

 Now, consider the stability of the air parcel equilibrium: 

 Suppose that the air parcel is lifted into a higher position, at the altitude 0z d+  

(with d>0),  ( ) ( )parcel 0 parcel 0T z d T z+ = −Γd  and ( ) ( )0 0T z d T z d+ = −Λ .    

• In the case the atmosphere has temperature lapse rate , we have Λ > Γ

( ) ( )parcel 0 0T z d T z d+ > + , then  'ρ ρ< . The buoyant force is then larger than the 

air parcel weight, their resultant is oriented upward and tends to push the parcel away 
from the equilibrium position. 

 Conversely, if the air parcel is lowered to the altitude  (d>0),             0z d−

( ) ( )parcel 0 0T z d T z d− < −  and then 'ρ ρ>  . 

   The buoyant force is then smaller than the air parcel weight; their resultant is oriented 
downward and tends to push the parcel away from the equilibrium position (see     
Figure 1) 
 So the equilibrium of the parcel is unstable, and we found that: An atmosphere with a 
temperature lapse rate is unstable. Λ > Γ

• In an atmosphere with temperature lapse rate Λ < Γ , if the air parcel is lifted to a 

higher position, at altitude 0z d+  (with d>0),  ( ) ( )parcel 0 0T z d T z d+ < + , then 

 5
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'ρ ρ> . The buoyant force is then smaller than the air parcel weight, their resultant is 
oriented downward and tends to push the parcel back to the equilibrium position. 

  Conversely, if the air parcel is lowered to altitude (d > 0),             0z d−

( ) ( )parcel 0 0T z d T z d− > − and then 'ρ ρ< . The buoyant force is then larger than the 

air parcel weight, their resultant is oriented upward and tends to push the parcel also back 
to the equilibrium position (see Figure 2). 
 So the equilibrium of the parcel is stable, and we found that: An atmosphere with a 
temperature lapse rate is stable. Λ < Γ
 

   z 
 

z0+d 
z0

 z0-d 
 

 
 

parcelT T> ⇒ parcelρ ρ<      up↑ 

parcelT T< ⇒ parcelρ ρ>    down↓ 

 
 
 

unstable 

0   ( )0T z               T 

T  Tparcel 

Γ      Λ 

Λ > Γ  
 
 
 
 
 
 
 
 
 
 

Figure 1 
 

   z 
 

z0+d 
z0

 z0-d 
 

 
 

parcelT T< ⇒ parcelρ ρ>  down ↓ 

parcelT T> ⇒ parcelρ ρ<    up↑ 

 
 
 

 stable 

0      ( )0T z               T

Tparcel T   

Λ   Γ

Λ < Γ  
 
 
 
 
 
 
 
 
 
 

Figure 2 
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• In an atmosphere with lapse rate Λ = Γ , if the parcel is brought from equilibrium 
position and put in any other position, it will stay there, the equilibrium is indifferent. An 
atmosphere with a temperature lapse rateΛ = Γ is neutral 
 
  3.2. In a stable atmosphere, withΛ < Γ , a parcel, which on ground has temperature 

( )parcel 0T  > ( )0T  and pressure ( )0p equal to that of the atmosphere, can rise and 

reach a maximal altitude , where h ( )parcelT h = ( )T h . 

 In vertical motion from the ground to the altitude , the air parcel realizes an 

adiabatic quasi-static process, in which its temperature changes from 

h

( )parcel 0T  to 

( ) ( )parcelT h T= h . Using (11), we can write:       

   
( )

( )
( )

( )

( ) ( )

parcel parcel0 0
1

0
0 1

0

T Th
T T h hT

T

Γ
−
Λ⎛ ⎞Λ

− = =⎜ ⎟⎜ ⎟ ⎛ ⎞Λ⎝ ⎠ −⎜ ⎟⎜ ⎟
⎝ ⎠

 

   
( ) ( ) ( )

1

1
parcel1 0

0
h T T

T

Γ
−
Λ

−⎛ ⎞Λ
− = ×⎜ ⎟⎜ ⎟

⎝ ⎠
0  

   

   
( ) ( ) ( )- -

parcel1 0
0
h T T

T

Λ Λ
−

Λ Γ Λ ΓΛ
− = × 0  

   

( ) ( ) ( )

( ) ( ) ( )

- -
parcel

parcel

1 0 1 0 0

1 0 0 0

h T T T

T T T

Λ Λ
−

Λ Γ Λ Γ

Λ Γ
−
Λ−Γ Γ−Λ

⎡ ⎤
= − ×⎢ ⎥Λ ⎢ ⎥⎣ ⎦

⎡ ⎤
= −⎢ ⎥Λ ⎢ ⎥⎣ ⎦

 

So that the maximal altitude  has the following expression: h

         ( ) ( )( )
( )( )

1

parcel

01 0
0

T
h T

T

Γ Γ−Λ

Λ

⎡ ⎤
⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥= − ⎜Λ ⎟⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥

⎣ ⎦

                (13) 
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4. 
 Using data from the Table, we obtain the plot of  versus T  shown in Figure 3. z

 

0
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300
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C(20.8oC; 119 m)

B(21.0oC; 96 m)

A( 22oC; 0 m)
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A
lti

tu
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 [m
]

 

Figure 3 
 

 4.1. We can divide the atmosphere under 200m into three layers, corresponding to the 
following altitudes: 

1)     0 <  < 96 m,     z 3
1

21 5 20 1 K15 4 10
91 m

. . . −−
Λ = = × . 

2)    96 m <  < 119 m,   , isothermal layer.  z 2 0Λ =

3)    119 m <  < 215 m, z 3
22 20 1 K0 02
215 119 m

. .−
Λ = − = −

−
.  

In the layer 1), the parcel temperature can be calculated by using (11) 

       ( )parcel 96m 294 04 K 294.0 K.T = ≈  that is 21.0oC 

In the layer 2), the parcel temperature can be calculated by using its expression in 

isothermal atmosphere ( ) ( ) ( )parcel parcel 0
0

exp zT z T
T

⎡ ⎤Γ
= −⎢ ⎥

⎢ ⎥⎣ ⎦
. 

 8
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The altitude 96 m is used as origin, corresponding to 0 m. The altitude 119 m 
corresponds to 23 m. We obtain the following value for parcel temperature:  

            ( )parcel 119 m 293 81 K.T =  that is 20.8oC 

 4.2. In the layer 3), starting from 119 m, by using (13) we find the maximal elevation 
 = 23 m, and the corresponding temperature 293.6 K (or 20.6 h oC).  

 Finally, the mixing height is 
          119 + 23 = 142 m.  H =
And  

          ( )parcel 142 m 293 6 K.T =   that is  20.6oC 

 From this relation, we can find ( )parcel 119 m 293 82 K.T ≈  and . 23 mh =

Note: By using approximate expression (12) we can easily find ( )parcelT z = 294 K and 

293.8 K at elevations 96 m and 119 m, respectively. At 119 m elevation, the difference 
between parcel and surrounding air temperatures is 0.7 K (= 293.8 – 293.1), so that the 

maximal distance the parcel will travel in the third layer is 0.7/( )3Γ −Λ = 0.7/0.03 = 23 m.  

 
5.     

Consider a volume of atmosphere of Hanoi metropolitan area being a parallelepiped 
with height , base sides L and W. The emission rate of CO gas by motorbikes from 
7:00 am to 8:00 am 

H

              M = 800 000 × 5 × 12 /3600 = 13 300 g/s 
The CO concentration in air is uniform at all points in the parallelepiped and denoted 

by ( )C t .  

5.1. After an elementary interval of time , due to the emission of the motorbikes, 
the mass of CO gas in the box increases by

dt
Mdt . The wind blows parallel to the short 

sides W, bringing away an amount of CO gas with mass ( )LHC t udt . The remaining 

part raises the CO concentration by a quantity  in all over the box. Therefore: dC

   ( )Mdt LHC t udt LWHdC− =  

or  

 9
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       ( )dC u MC t
dt W LWH

+ =                                (14) 

5.2. The general solution of (14) is : 

      ( ) exp ut MC t K
W LH

⎛ ⎞= − +⎜ ⎟
⎝ ⎠ u

          (15) 

From the initial condition ( )0C 0= , we can deduce : 

       ( ) 1 expM utC t
LHu W

⎡ ⎤⎛ ⎞= − −⎜ ⎟⎢ ⎝ ⎠⎣ ⎦
⎥                        (16) 

 
5.3. Taking as origin of time the moment 7:00 am, then 8:00 am corresponds to 

=3600 s. Putting the given data in (15), we obtain : t

      ( ) ( ) 33600 s 6 35 1 0 64 2 3 mg/m. . .C = × − =  
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Solution 

Task 1 
1. 

 1.1.   25±1 o0T = C 

( )samp 0V T = 573.9 mV 

With different experiment sets,  may differ from the above value within ±40 mV. sampV

Note for error estimation: 
Vδ Vδ and   are calculated using the specs of the multimeter: ±0.5% reading digit +2 

on the last digit. Example: if V = 500mV,  the error δV = 500×0.5% + 0.2 = 2.7 mV ≈ 3 
mV. 

( )0 574 3 mVsampV T = ±Thus, . 

( )0sampV TAll values of within 505÷585 mV are acceptable. 

 1.2. Formula for temperature calculation: 

samp samp 0 0( ) ( )V V T T Tα= − −From Eq (1):  

( )o
samp 50 CV  = 523.9 mV 

( )o
samp 70 CV  = 483.9 mV 

( )o
samp 80 CV  = 463.9 mV 

( ) ( )samp samp 0 0V V T T Tδ δ δ= + − αError calculation:  

Example:  = 495.2 mV , then  sampV samp 2 7 0 03 50 25 3 45mV 3 5mV. . ( ) . .Vδ = + × − = ≈  

Thus: 

( )o
samp 50 CV  = 524±4 mV 

( )o
samp 70 CV  = 484±4 mV 

 1
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( )o
samp 80 CV = 464±5 mV 

The same rule for acceptable range of  as in 1.1 is applied. sampV

 
2. 
 2.1. Data of cooling-down process without sample: 
 

t (s) V ΔV (mV) (±0.2mV)  (mV) (±3mV) samp

0 492 -0.4 
10 493 -0.5 
20 493 -0.5 
30 494 -0.6 
40 495 -0.7 
50 496 -0.7 
60 497 -0.8 
70 497 -0.8 
80 498 -0.9 
90 499 -1.0 
100 500 -1.0 
110 500 -1.1 
120 501 -1.1 
130 502 -1.2 
140 503 -1.2 
150 503 -1.3 
160 504 -1.3 
170 504 -1.4 
180 505 -1.5 
190 506 -1.6 
200 507 -1.6 
210 507 -1.7 
220 508 -1.7 
230 508 -1.8 
240 509 -1.8 
250 509 -1.8 
260 510 -1.9 
270 511 -1.9 

 2
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280 512 -1.9 
290 512 -2.0 
300 513 -2.0 
310 514 -2.1 
320 515 -2.1 
330 515 -2.1 
340 516 -2.1 
350 516 -2.2 
360 517 -2.2 
370 518 -2.3 
380 518 -2.3 
390 519 -2.3 
400 520 -2.4 
410 520 -2.4 
420 521 -2.5 
430 521 -2.5 
440 522 -2.5 
450 523 -2.6 
460 523 -2.6 

The acceptable range of ΔV is  ±40 mV. There is no fixed rule for the change in ΔV with 
(this depends on the positions of the dishes on the plate, etc.) T

 
 2.2. 

Graph 1 

490
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t [s]

V
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m
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 The correct graph should not have any abrupt changes of the slope. 
 
 2.3. 

Graph 2 

-3

-2

-1

0

490 500 510 520 530

Vsamp[mV]

Δ
V

[m
V]

 
 
 
 

 
 
 
 

 
 
 
 

 
 

 
 The correct graph should not have any abrupt changes of the slope. 
 
3. 
 3.1. Dish with substance 

t (s) V ΔV (mV) (±0.2mV)  (mV) (±3mV) samp

0 492 -4.6 
10 493 -4.6 
20 493 -4.6 
30 494 -4.6 
40 495 -4.6 
50 496 -4.6 
60 497 -4.6 
70 497 -4.5 
80 498 -4.5 
90 499 -4.5 
100 500 -4.5 
110 500 -4.5 
120 501 -4.5 
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130 502 -4.6 
140 503 -4.6 
150 503 -5.1 
160 503 -5.6 
170 503 -6.2 
180 503 -6.5 
190 504 -6.6 
200 505 -6.5 
210 506 -6.4 
220 507 -6.3 
230 507 -6.1 
240 508 -5.9 
250 509 -5.7 
260 510 -5.5 
270 511 -5.3 
280 512 -5.1 
290 512 -5.0 
300 513 -4.9 
310 514 -4.8 
320 515 -4.7 
330 515 -4.7 
340 516 -4.6 
350 516 -4.6 
360 517 -4.5 
370 518 -4.5 
380 518 -4.4 
390 519 -4.4 
400 520 -4.4 
410 520 -4.4 
420 521 -4.4 
430 521 -4.3 
440 522 -4.3 
450 523 -4.3 
460 523 -4.3 
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 3.2. 
Graph 3 
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 The correct Graph 3 should contain a short plateau as marked by the arrow in the 
above figure. 
 
 3.3. 
           Graph 4 
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 The correct Graph 4 should have an abrupt change in ΔV, as shown by the arrow in 
the above figure. 
Note: when the dish contains the substance, values of ΔV may change compared to those 
without the substance. 

 
4. 

 4.1.  is shown in Graph 3. Value  = (503±3) mV. From that, = 60.5 o
sV sV sT C can 

be deduced. 

 4.2.  is shown in Graph 4. Value = (503±3) mV. From that, = 60.5 o
sV sV sT C can 

be deduced. 
 
 4.3. Error calculations, using root mean square method: 
 

0
0

( ) ( )s
s

V T V TT T T
α 0 A−

= + = + Error of  :  sT , in which A is an intermediate 

variable. 

( ) ( )2
0= +sT T Aδ δ δ 2

 Therefore error of  can be written as sT , in which d… is 

the error. 
 Error for A is calculated separately: 

[ ] 2 2
00

0

( ) ( )( ) ( )
( ) ( )

ss

s

V T V TV T V TA
V T V T

δ δαδ
α α

⎧ ⎫−− ⎪ ⎪ ⎛ ⎞= +⎨ ⎬ ⎜ ⎟− ⎝ ⎠⎪ ⎪⎩ ⎭
 

in which we have: 

[ ] [ ] [ ]2 2
0 0( ) ( ) ( ) ( )s sV T V T V T V Tδ δ− = + δ  

 Errors of other variables in this experiment: 
  dT =1oC 0

( )0V Tδ  = 3 mV, read on the multimeter. 

  da = 0.03 mV/oC 
  dV(Ts)ª 3 mV 
From the above constituent errors we have: 

  [ ]0 4 24( ) ( ) .sV T V T mVδ − ≈

 7
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2.1 CAδ ≈ °   

Finally, the error of   is: 2 5 C.sTδ ≈ °sT  

Hence, the final result is: =60±2.5 osT C 

 
Note: if the student uses any other reasonable error calculation method that leads to 
approximately the same result, it is also accepted. 

 8
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Task 2 
1.  

 1.1. ±1 C 0 26T = o

2. 
 2.1. Measured data with the lamp off 
t (s) ΔV(T ) (mV) (±0.2mV) 0

0 19.0
10 19.0
20 19.0
30 19.0
40 19.0
50 18.9
60 18.9
70 18.9
80 18.9
90 18.9

100 19.0
110 19.0
120 19.0

 
 Values of ΔV(T0) can be different from one experiment set to another. The acceptable 
values lie in between -40÷+40 mV. 
 
 2.2. Measured data with the lamp on 
t (s) ΔV (mV) (±0.2mV) 

0 19.5
10 21.9
20 23.8
30 25.5
40 26.9
50 28.0
60 29.0
70 29.9
80 30.7
90 31.4

 9
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100 32.0
110 32.4
120 32.9

 
 When illuminated (by the lamp) values of ΔV may change 10 ÷ 20 mV compared to 
the initial situation (lamp off). 
  
2.3. Measured data after turning the lamp off 
 
t (s) ΔV (mV) (±0.2mV) 

0 23.2
10 22.4
20 21.6
30 21.0
40 20.5
50 20.1
60 19.6
70 19.3
80 18.9
90 18.6

100 18.4
110 18.2
120 17.9

 
3. Plotting graph 5 and calculating k 

( ) ( )0lny V T V⎡ ⎤= Δ − Δ⎣ ⎦ 3.1. x t= t;  

Note: other reasonable ways of writing expressions for x and y that also leads to a linear 
relationship using ln are also accepted. 
 
 3.2. Graph 5 
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 3.3. Calculating k: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

k
C

 

Note: Error of lated in 5.5. Students are not asked to give error of

=  0.0109 s-1 and C = 0.69 J/K, thus: k = 7.52×10-3 W/K

k will be calcu  k in this 

. Plotting Graph 6 and calculating E 

 4.1. 

step. The acceptable value of k lies in between 6×10-3 ÷ 9×10-3 W/K depending on the 
experiment set.  
 
4

 1 exp kt−⎡ ⎤⎛ ⎞x
C

= − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
; ( ) ( )0y V T V t= Δ −Δ  

 4.2. 
 
 
 
 
 
 
 
 
 
 
 Graph 6 should 
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be substantially linear, with the slope in between 15÷25 mV, depending on the 
experiment set. 
 
 4.3. From the slope of Graph 6 and the area of the detector orifice we obtain          
E = 140 W/m2. The area of the detector orifice is 

4 2  with error: det

det

5%R
R
δ

=  2 3 2
det det 13 10 5 30 10 mS Rπ π − −= = × × = ×( ) .

 Error of E will be calculated in 5.5. Students are not asked to give error of E in this 
step. The acceptable value of E lies in between 120 ÷ 160 W/m2, depending on the 
experiment set. 
 
5. 
 5.1. Circuit diagram: 
 
 

mA
mV 

Solar cell 

 

5.2. Measurements of V and I  
V (mV) (±0.3÷3mV) I (mA) (±0.05÷0.1mA) P (mW)  

 
 

18.6 ±0.3 11.7 0.21 
33.5  11.7 0.39 
150  11.5 1.72 
157  11.6 1.82 
182 ±1 11.4 2.08 
2 7  11.2 3.00 6
40 2 9.23 3.70 2 ±
448 6.70 3.02 
459 5.91 2.74 
468 5.07 2.37 
473 ±3 4.63 2.20 
480  3.81 1.86 
485  3.24 1.57 
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0

1

2

3

4

2.5 5.0 7.5 10.0 12.5

I [mA]

W
]

487  3.12 1.54 
489  3.13 1.55 

 
 

P
 [m

5.3. 
Graph 7 

 
 
 
 
 

 
 

 
 
 
 
 
 
 
 5.4. Pmax = 3.7±0.2 m
 e acceptable valu max lies in between 3÷4.5 ent 
s
 xpression for t ciency 

 219 24mm 10 m−= × ×  

 Then 

 

 
W 

e of PTh  mW, depending on the experim
et. 

5.5. E he effi

2 6S 450=cell

max
max

cell

0 058P
E S

η = =
×

.  

lculation: 

 

 Error ca
2 22

max cell⎛ ⎞
max max

max cell

P SE
P E S
δ δδδη η
⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
, in which Scell is the area of the 

solar cell. 
 

 max

max

P
P
δ

 is estimated from Graph 7, typical value ª 6 % 
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 cell

cell

S
S
δ

 : error from the millimeter measurement (with the ruler), typical value ª  % 

 E is calculated from averaging the ratio (using Graph 6): 

 

 5

2
0 d

1

V T V t E RB
k kt
C

etπ αΔ − Δ
= =

⎛ ⎞− −⎜ ⎟
⎝ ⎠

( ) ( )

exp
  

in which B is an intermediate variable, Rdet is the radius of the detector orifice. 

 2
kBE

Rπ α
=

det

 

Calculation of error of E: 

 
22 2

4 RE k B 2

R
δδ

E k B
δ δ δα

α
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎠ ⎝ ⎠⎝ ⎠
det

det

 

 is

⎝ ⎠ ⎝ ⎠ ⎝

k  calculated from the regression of: 

 0 ⎛ ⎞Δ = Δ −⎜ ⎟
⎝ ⎠

( )exp kT T t
C

, hence 0Δ = Δ −ln ln ( ) kT T
C

 t

 set  then
From the regression, we can calculate the error of m: 

 

=/k C m  =k mC  We

2 1 0 2m r
m
δ

≈ − ≈( ) . %  

 
2 2k m C

k m C
δ δ δ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

We derive the expression for the error of ηmax: 
2 2 22 2 2

max cell
max max

max cell

4P S RB m C
P S B R m C
δ δ δ 2δ δ δ δαδη η

α
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
det

det

 
Typical values for maxη  and other constituent errors: 
 0 058max .η ≈  

 5=max

maxP
%Pδ

; 0 6B
B
δ

≈ . % ; 0 2m
m
δ

≈ . % ; cell

cell

5%
S
Sδ 5≈det

det

%R
R
δ

≈ ; ; 

 14



                 39th International Physics Olympiad - Hanoi - Vietnam - 2008                                   

                                Experimental Problem / Solution 

                             

3≈ %C
C
δ

; 3%k
k
δ

≈ 10 5. %E
E
δ

≈ 1 5δα
α

≈ . %   ; ; 

Finally: 

δ
 max 12.7%

max

η
η

= ; 0 0074max .δη ≈  

and 

 ( )5 8 0 8max %. .η = ±  

 
ote: if the student uses any other reasonable error me od that leads to approximately 

the same result, it is also accepted. 

 

 

 

 

 
 
 

 

 

 
 

N th
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THEORETICAL PROBLEM No. 1 

 

EVOLUTION OF THE EARTH-MOON SYSTEM 

 

Scientists can determine the distance Earth-Moon with great precision. They achieve 

this by bouncing a laser beam on special mirrors deposited on the Moon´s surface by 

astronauts in 1969, and measuring the round travel time of the light (see Figure 1). 

 

 

 
 

With these observations, they have directly measured that the Moon is slowly receding 

from the Earth. That is, the Earth-Moon distance is increasing with time. This is 

happening because due to tidal torques the Earth is transferring angular momentum to 

the Moon, see Figure 2. In this problem you will derive the basic parameters of the 

phenomenon. 

 

  

Figure 1. A laser beam sent 

from an observatory is used 

to measure accurately the 

distance between the Earth 

and the Moon. 



 
 

 

 

 

 

 

 

 

 

1. Conservation of Angular Momentum. 

 

Let 1L  be the present total angular momentum of the Earth-Moon system. Now, make 

the following assumptions: i) 1L  is the sum of the rotation of the Earth around its axis 

and the translation of the Moon in its orbit around the Earth only. ii) The Moon’s orbit 

is circular and the Moon can be taken as a point. iii) The Earth’s axis of rotation and the 

Moon’s axis of revolution are parallel. iv) To simplify the calculations, we take the 

motion to be around the center of the Earth and not the center of mass. Throughout the 

problem, all moments of inertia, torques and angular momenta are defined around the 

axis of the Earth. v) Ignore the influence of the Sun.  

 

1a Write down the equation for the present total angular momentum of the 

Earth-Moon system. Set this equation in terms of EI , the moment of 

inertia of the Earth; 1Eω , the present angular frequency of the Earth’s 

rotation; 1MI , the present moment of inertia of the Moon with respect to 

the Earth´s axis; and 1Mω , the present angular frequency of the Moon’s 

orbit. 

0.2 

 

This process of transfer of angular momentum will end when the period of rotation of 

the Earth and the period of revolution of the Moon around the Earth have the same 

duration. At this point the tidal bulges produced by the Moon on the Earth will be 

aligned with the line between the Moon and the Earth and the torque will disappear. 

 

 

Figure 2. The Moon’s gravity produces tidal deformations or “bulges” in the Earth. 

Because of the Earth’s rotation, the line that goes through the bulges is not aligned 

with the line between the Earth and the Moon. This misalignment produces a torque 

that transfers angular momentum from the Earth’s rotation to the Moon’s 

translation. The drawing is not to scale. 



1b Write down the equation for the final total angular momentum 2L of the 

Earth-Moon system. Make the same assumptions as in Question 1a. Set 

this equation in terms of EI , the moment of inertia of the Earth; 2ω , the 

final angular frequency of the Earth’s rotation and Moon’s translation; 

and 2MI , the final moment of inertia of the Moon. 

0.2 

 

 

1c Neglecting the contribution of the Earth´s rotation to the final total 

angular momentum, write down the equation that expresses the angular 

momentum conservation for this problem. 

0.3 

 

2. Final Separation and Final Angular Frequency of the Earth-Moon System. 

 

Assume that the gravitational equation for a circular orbit (of the Moon around the 

Earth) is always valid. Neglect the contribution of the Earth´s rotation to the final total 

angular momentum. 

 

2a Write down the gravitational equation for the circular orbit of the Moon 

around the Earth, at the final state, in terms of EM , 2ω , G and the final 

separation 2D  between the Earth and the Moon. EM  is the mass of the 

Earth and G  is the gravitational constant. 

0.2 

 

 

2b Write down the equation for the final separation 2D  between the Earth 

and the Moon in terms of the known parameters, 1L , the total angular 

momentum of the system, EM and MM , the masses of the Earth and 

Moon, respectively, and G . 

0.5 

 

2c Write down the equation for the final angular frequency 2ω  of the Earth-

Moon system in terms of the known parameters 1L , EM , MM  and G . 

0.5 

 

Below you will be asked to find the numerical values of 2D  and 2ω . For this you need 

to know the moment of inertia of the Earth.  

 

2d Write down the equation for the moment of inertia of the Earth EI  

assuming it is a sphere with inner density iρ  from the center to a radius 

ir , and with outer density oρ  from the radius ir  to the surface at a 

radius or  (see Figure 3).  

0.5 

 

 

 



  
 

 

 

 Determine the numerical values requested in this problem always to two significant 

digits. 

 

 

2e Evaluate the moment of inertia of the Earth EI , using 4103.1 ×=iρ kg m
-3
, 

6105.3 ×=ir m, 3100.4 ×=oρ  kg m
-3
, and 6104.6 ×=or m.  

0.2 

 

The masses of the Earth and Moon are 24100.6 ×=EM  kg and 22103.7 ×=MM kg, 

respectively. The present separation between the Earth and the Moon is 8

1 108.3 ×=D m. 

The present angular frequency of the Earth’s rotation is 5

1 103.7 −×=Eω s
-1
. The present 

angular frequency of the Moon’s translation around the Earth is 6

1 107.2 −×=Mω s
-1
, and 

the gravitational constant is 11107.6 −×=G m
3
 kg

-1
 s
-2
. 

 

 

2f Evaluate the numerical value of the total angular momentum of the 

system, 1L . 

0.2 

 

 

2g Find the final separation 2D in meters and in units of the present 

separation 1D . 

0.3 

 

 

2h Find the final angular frequency 2ω  in s
-1
, as well as the final duration of 

the day in units of present days. 

0.3 

 

 

Figure 3. The Earth as a sphere 

with two densities, 
iρ  and 

oρ . 

 



Verify that the assumption of neglecting the contribution of the Earth´s rotation to the 

final total angular momentum is justified by finding the ratio of the final angular 

momentum of the Earth to that of the Moon. This should be a small quantity. 

 

2i Find the ratio of the final angular momentum of the Earth to that of the 

Moon.  

 

0.2 

 

3. How much is the Moon receding per year? 

 

Now, you will find how much the Moon is receding from the Earth each year. For this, 

you will need to know the equation for the torque acting at present on the Moon. 

Assume that the tidal bulges can be approximated by two point masses, each of massm , 

located on the surface of the Earth, see Fig. 4. Let θ  be the angle between the line that 

goes through the bulges and the line that joins the centers of the Earth and the Moon.  

 

 
 

 
 

 

 

3a Find
cF , the magnitude of the force produced on the Moon by the closest 

point mass.  

 

0.4 

 

 

3b Find fF , the magnitude of the force produced on the Moon by the farthest  

point mass.   

0.4 

 

Figure 4.  Schematic diagram to estimate the torque produced on the Moon by the 

bulges on the Earth. The drawing is not to scale. 



You may now evaluate the torques produced by the point masses.  

 

3c Find the magnitude of
cτ , the torque produced by the closest point mass.  0.4 

 

3d Find the magnitude of fτ , the torque produced by the farthest point mass. 0.4 

 

3e Find the magnitude of the total torque τ  produced by the two masses. 

Since 1Dro <<  you should approximate your expression to lowest 

significant order in 
1/Dro . You may use that axx a +≈+ 1)1( , if 1<<x .   

1.0 

 

 

3f Calculate the numerical value of the total torque τ , taking into account 

that o3=θ  and that 16106.3 ×=m  kg  (note that this mass is of the order 

of 810− times the mass of the Earth). 

0.5 

 

Since the torque is the rate of change of angular momentum with time, find the increase 

in the distance Earth-Moon at present, per year. For this step, express the angular 

momentum of the Moon in terms of MM , EM , 1D  and G  only. 

 

3g Find the increase in the distance Earth-Moon at present, per year.  1.0 

 

Finally, estimate how much the length of the day is increasing each year. 

 

3h Find the decrease of 1Eω  per year and how much is the length of the day 

at present increasing each year.  

 

1.0 

 

4. Where is the energy going? 

 

In contrast to the angular momentum, that is conserved, the total (rotational plus 

gravitational) energy of the system is not. We will look into this in this last section. 

 

4a Write down an equation for the total (rotational plus gravitational) energy 

of the Earth-Moon system at present, E . Put this equation in terms of EI , 

1Eω  ,  MM , EM , 1D  and G  only. 

0.4 

 

4b Write down an equation for the change inE , E∆ , as a function of the 

changes in  1D  and in 1Eω . Evaluate the numerical value of E∆  for a 

year, using the values of changes in  1D  and in 1Eω found in questions 3g 

and 3h.  

0.4 



 

Verify that this loss of energy is consistent with an estimate for the energy dissipated as 

heat in the tides produced by the Moon on the Earth. Assume that the tides rise, on the 

average by 0.5 m, a layer of water =h   0.5 m deep that covers the surface of the Earth 

(for simplicity assume that all the surface of the Earth is covered with water). This 

happens twice a day. Further assume that 10% of this gravitational energy is dissipated 

as heat due to viscosity when the water descends. Take the density of water to be 
310=waterρ  kg m

-3
, and the gravitational acceleration on the surface of the Earth to be 

8.9=g  m s
-2
. 

 

4c What is the mass of this surface layer of water? 0.2 

 

4d Calculate how much energy is dissipated in a year? How does this 

compare with the energy lost per year by the Earth-Moon system at 

present?  

0.3 

 

 

 



 

     

 

 

Answer Form 

Theoretical Problem No. 1 

Evolution of the Earth-Moon System 

 

     1.  Conservation of Angular Momentum 
 

1a  0.2 

 

1b  0.2 

 

 

1c  0.3 

 

2. Final Separation and Angular Frequency of the Earth-Moon System. 

 

 

2a  0.2 

 

 

2b  0.5 

 

 

2c  0.5 

 

2d  

 

0.5 

 



 

     

 

 

 

2e 
 

 

0.2 

 

2f 
 

0.2 

 

2g  

 

0.3 

 

2h  

 

0.3 

 

2i  0.2 

 

3. How much is the Moon receding per year? 

 

 

3a  0.4 

 

3b  0.4 

 



 

     

 

 

 

3c  0.4 

 

 

3d  0.4 

 

 

3e  1.0 

 

 

3f  0.5 

 

 

3g  1.0 



 

     

 

 

 

3h  1.0 

 

4. Where is the energy going? 

 

4a  0.4 

 

4b  0.4 

 

4c  0.2 

 

 

4d  0.3 

 

                                                               



THEORETICAL PROBLEM 2 

 

DOPPLER LASER COOLING AND OPTICAL MOLASSES 

 

The purpose of this problem is to develop a simple theory to understand the so-called 

“laser cooling” and “optical molasses” phenomena. This refers to the cooling of a beam 

of neutral atoms, typically alkaline, by counterpropagating laser beams with the same 

frequency. This is part of the Physics Nobel Prize awarded to S. Chu, P. Phillips and C. 

Cohen-Tannoudji in 1997. 

 

 
 

 

The image above shows sodium atoms (the bright spot in the center) trapped at the 
intersection of three orthogonal pairs of opposing laser beams. The trapping region is 
called “optical molasses” because the dissipative optical force resembles the viscous 

drag on a body moving through molasses. 

 

In this problem you will analyze the basic phenomenon of the interaction between a 

photon incident on an atom and the basis of the dissipative mechanism in one 

dimension. 

 

 

PART I: BASICS OF LASER COOLING 

 

Consider an atom of mass m  moving in the +x  direction with velocity v . For 
simplicity, we shall consider the problem to be one-dimensional, namely, we shall 

ignore the y  and z  directions (see figure 1). The atom has two internal energy levels. 
The energy of the lowest state is considered to be zero and the energy of the excited 

state to be   hω0, where π2/h=h . The atom is initially in the lowest state. A laser beam 

with frequency ωL  in the laboratory is directed in the −x  direction and it is incident on 
the atom. Quantum mechanically the laser is composed of a large number of photons, 

each with energy   hωL  and momentum   −hq. A photon can be absorbed by the atom and 
later spontaneously emitted; this emission can occur with equal probabilities along the 

+x  and −x  directions. Since the atom moves at non-relativistic speeds, v /c <<1 (with 
c  the speed of light) keep terms up to first order in this quantity only. Consider also 

1/ <<mvqh , namely, that the momentum of the atom is much larger than the 



momentum of a single photon. In writing your answers, keep only corrections linear in 

either of the above quantities. 

 

 
 

Fig.1 Sketch of an atom of mass m  with velocity v  in the +x  direction, colliding with a 
photon with energy   hωL  and momentum   −hq. The atom has two internal states with 
energy difference   hω0. 

 

Assume that the laser frequency ωL  is tuned such that, as seen by the moving atom, it is 

in resonance with the internal transition of the atom.  Answer the following questions:  

 

1. Absorption. 

 

1a Write down the resonance condition for the absorption of the photon.  0.2 

 

1b Write down the momentum pat  of the atom after absorption, as seen in the 

laboratory.  

0.2 

 

1c Write down the total energy εat  of the atom after absorption, as seen in the 

laboratory. 

0.2 

 

 

2. Spontaneous emission of a photon in the −x  direction. 
 

At some time after the absorption of the incident photon, the atom may emit a photon in 

the −x  direction.  
 

2a Write down the energy of the emitted photon, εph , after the emission 

process in the −x  direction, as seen in the laboratory.  

0.2 

 

2b Write down the momentum of the emitted photon pph , after the emission 

process in the −x  direction, as seen in the laboratory. 

0.2 

 



 

2c Write down the momentum of the atom pat , after the emission process in 

the −x  direction, as seen in the laboratory. 
0.2 

 

 

2d Write down the total energy of the atom εat , after the emission process in 

the −x  direction, as seen in the laboratory. 
0.2 

 

 

3. Spontaneous emission of a photon in the +x  direction.  
 

At some time after the absorption of the incident photon, the atom may instead emit  a 

photon in the x+  direction.  

 

3a Write down the energy of the emitted photon, εph , after the emission 

process in the x+  direction, as seen in the laboratory.  

0.2 

 

3b Write down the momentum of the emitted photon pph , after the emission 

process in the x+  direction, as seen in the laboratory. 

0.2 

 

 

3c Write down the momentum of the atom pat , after the emission process in 

the x+ direction, as seen in the laboratory. 

0.2 

 

 

3d Write down the total energy of the atom εat , after the emission process in 

the x+  direction, as seen in the laboratory. 

0.2 

 

 

4. Average emission after the absorption. 

 

The spontaneous emission of a photon in the x−  or  in the x+  directions occurs with 

the same probability. Taking this into account, answer the following questions. 

 

4a Write down the average energy of an emitted photon, εph , after the 

emission process. 

0.2 

 

4b Write down the average momentum of an emitted photon pph , after the 

emission process. 

0.2 

 

 

4c Write down the average total energy of the atom εat , after the emission 

process. 

0.2 



 

4d Write down the average momentum of the atom pat , after the emission 

process. 

0.2 

 

5. Energy and momentum transfer. 

 

Assuming a complete one-photon absorption-emission process only, as described 

above, there is a net average momentum and energy transfer between the laser radiation 

and the atom.  

 

5a Write down the average energy change ∆ε  of the atom after a complete 
one-photon absorption-emission process. 

0.2 

 

 

5b Write down the average momentum change ∆p  of the atom after a 
complete one-photon absorption-emission process. 

0.2 

 

6. Energy and momentum transfer by a laser beam along the +x  direction. 
 

Consider now that a laser beam of frequency ′ ω L  is incident on the atom along the +x  
direction, while the atom moves also in the +x  direction with velocity v . Assuming a  
resonance condition between the internal transition of the atom and the laser beam, as 

seen by the atom, answer the following questions: 

 

6a Write down the average energy change ∆ε  of the atom after a complete 
one-photon absorption-emission process. 

0.3 

 

 

6b Write down the average momentum change ∆p  of the atom after a 
complete one-photon absorption-emission process. 

0.3 

 

 

PART II: DISSIPATION AND THE FUNDAMENTALS OF OPTICAL 

MOLASSES 

 

Nature, however, imposes an inherent uncertainty in quantum processes. Thus, the fact 

that the atom can spontaneously emit a photon in a finite time after absorption, gives 

as a result that the resonance condition does not have to be obeyed exactly as in the 

discussion above. That is, the frequency of the laser beams ωL  and ′ ω L  may have any 
value and the absorption-emission process can still occur. These will happen with 

different (quantum) probabilities and, as one should expect, the maximum probability 

is found at the exact resonance condition. On the average, the time elapsed between a 

single process of absorption and emission is called the lifetime of the excited energy 

level of the atom and it is denoted byΓ−1. 

 

Consider a collection of N  atoms at rest in the laboratory frame of reference, and a 



laser beam of frequency ωL  incident on them. The atoms absorb and emit 

continuously such that there is, on average, Nexc  atoms in the excited state (and 

therefore, N − Nexc  atoms in the ground state). A quantum mechanical calculation 

yields the following result:  

Nexc = N
ΩR

2

ω0 −ωL( )2 + Γ2

4
+ 2ΩR

2

 

 

where ω0 is the resonance frequency of the atomic transition and ΩR  is the so-called 

Rabi frequency; ΩR
2  is proportional to the intensity of the laser beam. As mentioned 

above, you can see that this number is different from zero even if the resonance 

frequency ω0 is different from the frequency of the laser beamωL . An alternative way 

of expressing the previous result is that the number of absorption-emission processes 

per unit of time isNexcΓ . 
 

 

Consider the physical situation depicted in Figure 2, in which two counter propagating 

laser beams with the same but arbitrary frequency ωL  are incident on a gas of N  
atoms that move in the +x  direction with velocityv . 
 

 
Figure 2. Two counter propagating laser beams with the same but arbitrary frequency 

ωL  are incident on a gas of N  atoms that move in the +x  direction with velocityv .  
 

7. Force on the atomic beam by the lasers. 

 

7a With the information found so far, find the force that the lasers exert on 

the atomic beam. You should assume that qmv h>> . 

1.5 

 

8. Low velocity limit. 

 

Assume now that the velocity of the atoms is small enough, such that you can expand 

the force up to first order in v . 
 

8a Find an expression for the force found in Question (7a), in this limit. 1.5 

 

Using this result, you can find the conditions for speeding up, slowing down, or no 

effect at all on the atoms by the laser radiation. 

 



8b Write down the condition to obtain a positive force (speeding up the 

atoms). 

0.25 

 

 

8c Write down the condition to obtain a zero force. 0.25 

 

 

8d Write down the condition to obtain a negative force (slowing down the 

atoms). 

0.25 

 

8e Consider now that the atoms are moving with a velocity v−  (in the x−  

direction). Write down the condition to obtain a slowing down force on 

the atoms. 

0.25 

 

 

9. Optical molasses. 

 

In the case of a negative force, one obtains a frictional dissipative force. Assume that 

initially, at 0=t , the gas of atoms has velocity 0v . 

 

9a In the limit of low velocities, find the velocity of the atoms after the laser 

beams have been on for a timeτ .  
1.5 

 

 

9b Assume now that the gas of atoms is in thermal equilibrium at a 

temperatureT0. Find the temperature T  after the laser beams have been 
on for a timeτ . 

0.5 

 

This model does not allow you to go to arbitrarily low temperatures. 



 

     

 

 

 

Answer Form 

Theoretical problem No. 2 

 

                 DOPPLER LASER COOLING AND OPTICAL MOLASSES 

 

 

 

PART I: BASICS OF LASER COOLING 

 

1. Absorption. 

 

1a  0.2 

 

1b  0.2 

 

1c  0.2 

 

 

2. Spontaneous emission in the −x  direction. 
 

 

2a  0.2 

 

2b  0.2 

 

 



 

     

 

 

 

2c  0.2 

 

 

2d  0.2 

 

 

3. Spontaneous emission in the +x  direction. 
 

3a  0.2 

 

3b  0.2 

 

 

3c  0.2 

 

 

3d  0.2 

 

 

4. Average emission after absorption. 

 

4a  0.2 



 

     

 

 

 

 

4b  0.2 

 

 

4c  0.2 

 

 

4d  0.2 

 

 

 

5. Energy and momentum transfer. 

 

 

5a  0.2 

 

 

5b  0.2 

 

6. Energy and momentum transfer by a laser beam along the +x  direction. 
 

 

6a  0.3 

 

 



 

     

 

 

 

6b  0.3 

 

 

PART II: DISSIPATION AND THE FUNDAMENTALS OF OPTICAL 

MOLASSES 

 

7. Force on the atomic beam by the lasers. 

 

 

7a  1.5 

 

8. Low velocity limit. 

 

 

8a  1.5 

 

 

8b  0.25 

 

 



 

     

 

 

 

8c  0.25 

 

 

8d  0.25 

 

 

8e  0.25 

 

 

9. Optical molasses 

 

 

9a  1.5 

 

 

9b  0.5 

 

 

 

                                                            



THEORETICAL PROBLEM No. 3 

 

WHY ARE STARS SO LARGE? 

 

The stars are spheres of hot gas. Most of them shine because they are fusing hydrogen 

into helium in their central parts. In this problem we use concepts of both classical and 

quantum mechanics, as well as of  electrostatics and thermodynamics, to understand 

why stars have to be big enough to achieve this fusion process and also derive what 

would be the mass and radius of the smallest star that can fuse hydrogen. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Our Sun, as most stars, shines 

as a result of thermonuclear fusion of 

hydrogen into helium in its central 

parts. 

USEFUL CONSTANTS 

Gravitational constant = 11107.6 −×=G  m
3
 kg

-1
 s
2 

Boltzmann´s constant = 23104.1 −×=k J K
-1 

Planck’s constant = 34106.6 −×=h  m
2
 kg s

-1
 

Mass of the proton = 27107.1 −×=pm kg 

Mass of the electron = 31101.9 −×=em kg 

Unit of electric charge = 19106.1 −×=q C 

Electric constant (vacuum permittivity) = 12

0 109.8 −×=ε  C
2 
N
-1 
m

-2 

Radius of the Sun = 8100.7 ×=SR m 

Mass of the Sun = 30100.2 ×=SM kg 



 

 

 

 

1. A classical estimate of the temperature at the center of the stars. 

 

Assume that the gas that forms the star is pure ionized hydrogen (electrons and protons 

in equal amounts), and that it behaves like an ideal gas. From the classical point of view, 

to fuse two protons, they need to get as close as 1510− m for the short range strong 

nuclear force, which is attractive, to become dominant. However, to bring them together 

they have to overcome first the repulsive action of Coulomb’s force. Assume classically 

that the two protons (taken to be point sources) are moving in an antiparallel way, each 

with velocity
rmsv , the root-mean-square (rms) velocity of the protons, in a one-

dimensional frontal collision.  

 

1a  What has to be the temperature of the gas,
cT , so that the distance of 

closest approach of the protons, cd , equals 1510− m? Give this and all 

numerical values in this problem up to two significant figures. 

1.5 

 

  

2. Finding that the previous temperature estimate is wrong. 

To check if the previous temperature estimate is reasonable, one needs an independent 

way of estimating the central temperature of a star. The structure of the stars is very 

complicated, but we can gain significant understanding making some assumptions. Stars 

are in equilibrium, that is, they do not expand or contract because the inward force of 

gravity is balanced by the outward force of pressure (see Figure 2). For a slab of gas the 

equation of hydrostatic equilibrium at a given distance r from the center of the star, is 

given by 

2r

MG

r

P rr ρ−=
∆
∆

, 

where P is the pressure of the gas, G  the gravitational constant, rM the mass of the star 

within a sphere of radius r , and rρ is the density of the gas in the slab.  

 



  

 

An order of magnitude estimate of the central temperature of the star can be obtained 

with values of the parameters at the center and at the surface of the star, making the 

following approximations: 

co PPP −≈∆ , 

where cP  and oP  are the pressures at the center and surface of the star, respectively. 

Since oc PP >> , we can assume that 

cPP −≈∆ . 

Within the same approximation, we can write 

Rr ≈∆ , 

where R is the total radius of the star, and 

MMM Rr =≈ , 

with M the total mass of the star. 

The density may be approximated by its value at the center, 

cr ρρ ≈ . 

You can assume that the pressure is that of an ideal gas. 

2a Find an equation for the temperature at the center of the star, cT , in terms 

of the radius and mass of the star and of physical constants only. 

0.5 

 

 

Figure 2. The stars 

are in hydrostatic 

equilibrium, with the 

pressure difference 

balancing gravity. 



We can use now the following prediction of this model as a criterion for its validity: 

  

2b Using the equation found in (2a) write down the ratio RM /  expected for 

a star in terms of physical constants and 
cT only.  

0.5 

 

2c Use the value of  cT  derived in section (1a) and find the numerical value 

of the ratio RM /  expected for a star.  

0.5 

 

2d Now, calculate the ratio )(/)( SunRSunM , and verify that this value is 

much smaller than the one found in (2c). 

0.5 

 

3. A quantum mechanical estimate of the temperature at the center of the 

stars 

 

The large discrepancy found in (2d) suggests that the classical estimate for cT obtained 

in (1a) is not correct. The solution to this discrepancy is found when we consider 

quantum mechanical effects, that tell us that the protons behave as waves and that a 

single proton is smeared on a size of the order of pλ , the de Broglie wavelength. This 

implies that if
cd , the distance of closest approach of the protons is of the order of pλ , 

the protons in a quantum mechanical sense overlap and can fuse.  

 

3a 
 Assuming that 

2/12

p

cd
λ

=  is the condition that allows fusion, for a proton 

with velocity rmsv , find an equation for cT in terms of physical constants 

only. 

1.0 

 

3b  Evaluate numerically the value of cT obtained in (3a).  0.5 

 

3c  Use the value of  cT  derived in (3b) to find the numerical value of the 

ratio RM /  expected for a star, using the formula derived in (2b). Verify 

that this value is quite similar to the ratio )(/)( SunRSunM  observed.  

0.5 

 

Indeed, stars in the so-called main sequence (fusing hydrogen) approximately do follow 

this ratio for a large range of masses. 

 

 



4. The mass/radius ratio of the stars. 

 

The previous agreement suggests that the quantum mechanical approach for estimating 

the temperature at the center of the Sun is correct.  

 

4a  Use the previous results to demonstrate that for any star fusing hydrogen, 

the ratio of mass M to radius R is the same and depends only on physical 

constants. Find the equation for the ratio RM / for stars fusing hydrogen.  

0.5 

 

5. The mass and radius of the smallest star. 

The result found in (4a) suggests that there could be stars of any mass as long as such a 

relationship is fulfilled; however, this is not true.  

The gas inside normal stars fusing hydrogen is known to behave approximately as an 

ideal gas. This means that ed , the typical separation between electrons is on the average 

larger that eλ , their typical de Broglie wavelength. If closer, the electrons would be in a 

so-called degenerate state and the stars would behave differently. Note the distinction in 
the ways we treat protons and electrons inside the star. For protons, their de Broglie 

waves should overlap closely as they collide in order to fuse, whereas for electrons their 

de Broglie waves should not overlap in order to remain as an ideal gas.   

The density in the stars increases with decreasing radius. Nevertheless, for this order-of-

magnitude estimate assume they are of uniform density. You may further use that 

ep mm >> . 

 

5a  Find an equation for en , the average electron number density inside the 

star. 

0.5 

 

5b  Find an equation for ed , the typical separation between electrons inside 

the star. 

0.5 

 

5c 
 Use the 

2/12

e
ed

λ≥  condition to write down an equation for the radius of 

the smallest normal star possible. Take the temperature at the center of the 

star as typical for all the stellar interior.  

1.5 

 



 

 

6. Fusing helium nuclei in older stars. 

 

As stars get older they will have fused most of the hydrogen in their cores into helium 

(He), so they are forced to start fusing helium into heavier elements in order to continue 

shining. A helium nucleus has two protons and two neutrons, so it has twice the charge 

and approximately four times the mass of a proton. We saw before that 
2/12

p

cd
λ

= is the 

condition for the protons to fuse.  

 

6a  Set the equivalent condition for helium nuclei and find )(Hevrms , the rms 

velocity of the helium nuclei and )(HeT , the temperature needed for 

helium fusion.  

0.5 

 

5d  Find the numerical value of the radius of the smallest normal star 

possible, both in meters and in units of solar radius.  

0.5 

5e  Find the numerical value of the mass of the smallest normal star possible, 

both in kg and in units of solar masses.  

0.5 



 

     

 

 

 

Answer Form 

Theoretical Problem No. 3 

Why are stars so large? 

 

1) A first, classic estimate of the temperature at the center of the stars. 

 

 

1a  

 

 

 

1.5 

 

          2) Finding that the previous temperature estimate is wrong.  

 

2a  

 

 

 

0.5 

 

 

2b  

  

0.5 

 

 

2c  

 

0.5 

 



 

     

 

 

 

2d  

 

0.5 

 

       3) A quantum mechanical estimate of the temperature at the center of the stars 

 

3a  

 

 

1.0 

 

 

3b  0.5 

 

3c  

 

0.5 

 

        4) The mass/radius ratio of the stars. 

 

4a  

 

0.5 

 



 

     

 

 

 

 

5) The mass and radius of the smallest star. 

 

5a  0.5 

 

5b  0.5 

 

5c  

 

 

1.5 

 

5d  

 

0.5 

 

 

5e  

 

0.5 

 



 

     

 

 

 

6) Fusing helium nuclei in older stars. 

 

6a  

 

0.5 

  



IPhO2009 

 

Experimental Competition 

                                                     Wednesday, July 15, 2009 

 

The experimental part of this Olympiad consists of two problems. In Problem 1 

the aim is to measure the wavelength of a diode laser, and in Problem 2 the goal is to 

measure the birefringence of a material called mica.  

 

Please read this first: 

1. The total time available is 5 hours for the experimental competition. 

2. Use only the pencils provided. 

3. Use only the front side of the paper sheets. 

4. Each problem is presented in the question form, marked with a Q in the upper 

left corner.  

5. You must summarize the answers you have obtained in the answer form, marked 

with an A in the upper left corner.  

6. In addition, there is a set of working sheets, marked with a W in the upper left 

corner, where you may write your calculations.  

7. In addition, write down the Problem Number (1 or 2) on the top of the answer 

forms and working sheets. 

8. Write on the working sheets of paper whatever you consider is required for the 

solution of the problem. Please use as little text as possible; express yourself 

primarily in equations, numbers, figures, and plots. 

9. For each problem and each of the forms (question form, answer form and 

working sheets), fill in the boxes at the top of each sheet of paper used by writing 

your student number (Student Number), the progressive page number (Page No.) 

and the total number of pages used (Total No. of Pages). If you use some 

working sheets of paper for notes that you do not wish to be marked, do not 

destroy it. Instead, mark it with a large X across the entire working sheet and do 

not include it in your numbering. 

10. At the end of the exam, arrange all sheets for each problem in the following 

order:  

• answer form (including graph paper for your plots). 

• used working sheets in order  

• the working sheets that you do not wish to be considered (marked with the 

large X)  

• unused working sheets 

• printed question form.  

Place the papers of each problem set inside the folder and leave everything on 

your desk. You are not allowed to take any sheets of paper out of the room nor 

any device of the experimental kit. 

11. The devices and materials for the experiments are contained in two separate 

packing layers within the box. The photographs of the sets are in the next page. 

Some devices are LABELED. For each experiment check that all the material is 

in the box. If during the experiments you find that any of the devices is not 

working properly, please ask for a replacement. 
 



 
 

 

 
 

 



DIODE LASER EQUIPMENT AND MOVABLE MIRROR. 

 

In both experimental setups you should need a diode laser, with its holder and 

power supply, and a mirror on a mechanical movable mount.  

 

Before you decide on which problem to work first, we suggest that you mount 

the laser and the mirror, as indicated in Figure 0. Use the following material: 

 

1) Wooden optical table. 

2) Diode laser equipment. Includes the diode laser, support post, "S" clamp and 

power supply box (LABEL A). See photograph for mounting instructions. DO NOT 

LOOK DIRECTLY INTO THE LASER BEAM. 

3) A mirror on a movable mount with two adjusting knobs and support post 

(LABEL B). See photograph for mounting instructions. CAUTION: mount the support 

post to the optical table without touching the mirror. Take off the paper cover after 

you have mounted the mirror. 
 

Mount the above devices as indicated in Figure 0. The alignment of the laser beam will 

be done later on. NOTE: Although we have provided you with optional Allen wrenches, 

everything can be left fingertight.  

 

 
 

 

Figure 0. Mounting the laser and the mirror. 
 

 

 

 

 

 

 

 

 



 

 

 
Diode laser, support post, "S" clamp and power supply box (LABEL A). 

 

 

                 
Mirror on a movable movable mount with two adjusting knobs and support post 

(LABEL B). 



 

EXPERIMENTAL PROBLEM 1 

 

DETERMINATION OF THE WAVELENGTH OF A DIODE LASER 

 

 MATERIAL 
 

 In addition to items 1), 2) and 3), you should use: 

 

4)  A lens mounted on a square post (LABEL C). 

5)  A razor blade in a slide holder to be placed in acrylic support, (LABEL D1) and 

mounted on sliding rail (LABEL D2). Use the screwdriver to tighten the support if 

necessary. See photograph for mounting instructions. 

6)  An observation screen with a caliper scale (1/20 mm) (LABEL E). 

7)  A magnifying glass (LABEL F). 

8)  30 cm ruler (LABEL G). 

9)  Caliper (LABEL H). 

10) Measuring tape (LABEL I). 

11) Calculator.  

12) White index cards, masking tape, stickers, scissors, triangle squares set. 

13) Pencils, paper, graph paper.  

 

 

 
 

Razor blade in a slide holder to be placed in acrylic support (LABEL D1) and mounted on 

sliding rail (LABEL D2). 

 



EXPERIMENT DESCRIPTION 

 

 
You are asked to determine a diode laser wavelength. The particular feature of this 

measurement is that no exact micrometer scales (such as prefabricated diffraction gratings) 

are used. The smallest lengths measured are in the millimetric range. The wavelength is 

determined using light diffraction on a sharp edge of a razor blade. 

 

 

  

                           
Figure 1.1 Typical interference fringe pattern. 

 

 

 

 

Once the laser beam (A) is reflected on the mirror (B), it must be made to pass through a 

lens (C), which has a focal length of a few centimeters. It can now be assumed that the focus 

is a light point source from which a spherical wave is emitted. After the lens, and along its 

path, the laser beam hits a sharp razor blade edge as an obstacle. This can be considered to 

be a light source from which a cylindrical wave is emitted. These two waves interfere with 

each other, in the forward direction, creating a diffractive pattern that can be observed on a 

screen. See Figure 1.1 with a photograph of a typical pattern. 

 

 

 

 

There are two important cases, see Figures 1.2 and 1.3.  

 

 



 
 

 

Figure 1.2. Case (I). The razor blade is before the focus of the lens. Figure is not at scale. B 

in this diagram is the edge of the blade and F is the focal point. 

 

 

 
 

Figure 1.3. Case (II). The razor blade is after the focus of the lens. Figure is not at scale. B 

in this diagram is the edge of the blade and F is the focal point.  

 

 

 

 

 

 



EXPERIMENTAL SETUP 
 

Task 1.1 Experimental setup (1.0 points). Design an experimental setup to obtain the 

above described interference patterns. The distance L0 from the focus to the screen should 

be much larger than the focal length.  

 

• Make a sketch of your experimental setup in the drawing of the optical table 

provided. Do this by writing the LABELS of the different devices on the drawing of 

the optical table. You can make additional simple drawings to help clarify your 

design.  

• You may align the laser beam by using one of the white index cards to follow the 

path.  

• Make a sketch of the laser beam path on the drawing of the optical table and write 

down the height h of the beam as measured from the optical table.  

 

WARNING: Ignore the larger circular pattern that may appear. This is an effect due 

to the laser diode itself.  

 

Spend some time familiarizing yourself with the setup. You should be able to see of the 

order of 10 or more vertical linear fringes on the screen. The readings are made using the 

positions of the dark fringes. You may use the magnifying glass to see more clearly the 

position of the fringes. The best way to observe the fringes is to look at the back side of 

the illuminated screen (E). Thus, the scale of the screen should face out of the optical table. 

If the alignment of the optical devices is correct, you should see both patterns (of Cases I 

and II) by simply sliding the blade (D1) through the rail (D2). 

 

THEORETICAL CONSIDERATIONS 
 

Refer to Figure 1.2  and 1.3 above. There are five basic lengths: 

 

 L0 : distance from the focus to the screen. 

 Lb  : distance from the razor blade to the screen, Case I. 

 La  : distance from the razor blade to the screen, Case II. 

 LR (n) : position of the n-th dark fringe for Case I.  

 LL (n) : position of the n-th dark fringe for Case II.  

 

The first dark fringe, for both Cases I and II, is the widest one and corresponds to n = 0. 

 

Your experimental setup must be such that LR (n) << L0,Lb  for Case I and LL (n) << L0,La  

for Case II. 

 

The phenomenon of wave interference is due to the difference in optical paths of a wave 

starting at the same point. Depending on their phase difference, the waves may cancel each 



other (destructive interference) giving rise to dark fringes; or the waves may add 

(constructive interference) yielding bright fringes. 

 

A detailed analysis of the interference of these waves gives rise to the following condition to 

obtain a dark fringe, for Case I:  

 

∆ I(n) = n + 5

8

 
 
 

 
 
 λ        with     n = 0, 1, 2, …    (1.1) 

 

and for Case II: 

 

∆ II(n) = n + 7

8

 
 
 

 
 
 λ      with     n = 0, 1, 2, …    (1.2) 

 

where λ  is the wavelength of the laser beam, and ∆ I and ∆ II are the optical path differences 

for each case. 

 

The difference in optical paths for Case I is, 

 

∆ I(n) = (BF + FP) − BP      for each     n = 0, 1, 2, …  (1.3) 

 

while for Case II is, 

 

∆ II(n) = (FB + BP) − FP        for each     n = 0, 1, 2, …  (1.4) 

 

 

Task 1.2 Expressions for optical paths differences (0.5 points). Assuming LR (n) << L0,Lb  

for Case I and LL (n) << L0,La  for Case II in equations (1.3) and (1.4) (make sure your setup 

satisfies these conditions), find approximated expressions for ∆ I(n)  and ∆ II(n)  in terms of 

L0,  Lb ,  La,  LR (n) and LL (n). You may find useful the approximation 1+ x( )r ≈1+ rx  if 

x <<1.  

 

The experimental difficulty with the above equations is that L0, LR (n)  and  LL (n)  cannot be 

accurately measured. The first one because it is not easy to find the position of the focus of 

the lens, and the two last ones because the origin from which they are defined may be very 

hard to find due to misalignments of your optical devices.  

 

To solve the difficulties with LR (n)  and LL (n) , first choose the zero (0) of the scale of  the 

screen (LABEL E) as the origin for all your measurements of  the fringes. Let 0Rl  and 0Ll  be 

the (unknown) positions from which LR (n)  and )(nLL  are defined. Let lR (n)  and lL (n)  be 

the positions of the fringes as measured from the origin (0) you chose. Therefore 

 

LR (n) = lR (n) − l0R        and        LL (n) = lL (n) − l0L    (1.5) 



 

 PERFORMING THE EXPERIMENT. DATA ANALYSIS. 
 

Task 1.3 Measuring the dark fringe positions and locations of the blade (3.25 points).  

 

• For both Case I and Case II, measure the positions of the dark fringes lR (n)  and 

lL (n)  as a function of the number fringe n. Write down your measurements in Table 

I; you should report no less than 8 measurements for each case.  

• Report also the positions of the blade Lb  and La , and indicate with its LABEL the 

intrument you used. 

• IMPORTANT SUGGESTION: For purposes of both simplification of analysis and 

better accuracy, measure directly the distance d = Lb − La  with a better accuracy than 

that of Lb  and La ; that is, do not calculate it from the measurements of Lb  and La . 

Indicate with its LABEL the instrument you used. 

 

Make sure that you include the uncertainty of your measurements.  

 

Task 1.4 Data analysis. (3.25 points). With all the previous information you should be able 

to find out the values of 0Rl  and 0Ll , and, of course, of the wavelength λ .  

 

• Devise a procedure to obtain those values. Write down the expressions and/or 

equations needed.  

• Include the analysis of the errors. You may use Table I or you can use another one to 

report your findings; make sure that you label clearly the contents of the columns of 

your tables.  

• Plot the variables analyzed. Use the graph paper provided. 

• Write down the values for 0Rl  and 0Ll , with uncertainties.  

 

Task 1.5 Calculating λ . Write down the calculated value for λ . Include its uncertainty and 

the analysis to obtain it. SUGGESTION:  In your formula for λ , wherever you find 

Lb − La( ) replace it by d  and use its measured value. (2 points).  

 

  

 



 Answer Form 

Experimental Problem No. 1 

Diode laser wavelength  

 

Task 1.1 Experimental setup. 

 

 

 
 

 

1.1 Sketch the laser path in drawing and write down the height h of the beam 

as measured from the table 

 

h =    

1.0 

 

Task 1.2 Expressions for optical path differences. 

 

1.2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5 



Task 1.3 Measuring the dark fringe positions and locations of the blade. Use 

additional sheets if necessary. 

TABLE I    

 

n lR  lL    

     

     

     

     

     

     

     

     

     

     

     

     

     

     

 

 



1.3 Report positions of the blade and label of instrument: 

 

 

 

 

Lb =                                                                 LABEL:  

 

La =                                                                 LABEL: 

 

d = Lb − La =                                                    LABEL: 

 

3.25 

 

 

 

Task 1.4 Performing a statistical and graphical analysis. 

 

1.4  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.25 



Task 1.5 Calculating λ . 

 

1.5  

Write down the value of λ . 

 

λ = 
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EXPERIMENTAL PROBLEM 2 

BIREFRINGENCE OF MICA 

 
In this experiment you will measure the birefringence of mica (a crystal widely used in 

polarizing optical components). 

 

MATERIAL 
 

 In addition to items 1), 2) and 3), you should use, 

 

14) Two polarizing films mounted in slide holders, each with an additional acrylic 

support (LABEL J). See photograph for mounting instructions. 

15)  A thin mica plate mounted in a plastic cylinder with a scale with no numbers; 

acrylic support for the cylinder (LABEL K). See photograph for mounting 

instructions. 

16)  Photodetector equipment. A photodetector in a plastic box, connectors and foam 

support. A multimeter to measure the voltage of the photodetector (LABEL L). 

See photograph for mounting  and connecting instructions. 

17) Calculator. 
18) White index cards, masking tape, stickers, scissors, triangle squares set. 

19) Pencils, paper, graph paper.  
 

                       
 

Polarizer mounted in slide holder with 

acrylic support (LABEL J). 

 

Thin mica plate mounted in cylinder with 

a scale with no numbers, and acrylic 

support (LABEL K).



 

 
A photodetector in a plastic box, connectors and foam support. A multimeter to measure the 

voltage of the photodetector (LABEL L). Set the connections as indicated. 

 

DESCRIPTION OF THE PHENOMENON 
 

Light is a transverse electromagnetic wave, with its electric field lying on a plane 

perpendicular to the propagation direction and oscillating in time as the light wave travels.  

 

If the direction of the electric field remains in time oscillating  along a single line, the wave 

is said to be linearly polarized, or simply, polarized. See Figure 2.1. 

 

 
 

Figure 2.1 A wave travelling in the y-direction and polarized in the z-direction. 

y 



 

A polarizing film (or simply, a polarizer) is a material with a privileged axis parallel to its 

surface, such that, transmitted light emerges polarized along the axis of the polarizer. Call 

(+) the privileged axis and (-) the perpendicular one.  

 

                    
Figure 2.2 Unpolarized light normally incident on a polarizer. Transmitted light is polarized 

in the (+) direction of the polarizer. 

 

Common transparent materials (such as window glass), transmit light with the same 

polarization as the incident one, because its index of refraction does not depend on the 

direction and/or polarization of the incident wave. Many crystals, including mica, however, 

are sensitive to the direction of the electric field of the wave. For propagation perpendicular 

to its surface, the mica sheet has two characteristic orthogonal axes, which we will call Axis 

1 and Axis 2. This leads to the phenomenon called birefringence. 

 
Figure 2.3  Thin slab of mica with its two axes, Axis 1 (red) and Axis 2 (green). 

 

Let us analyze two simple cases to exemplify the birefringence. Assume that a wave 

polarized in the vertical direction is normally incident on one of the surfaces of the thin 

slab of mica. 

 



Case 1) Axis 1 or Axis 2 is parallel to the polarization of the incident wave. The trasmitted 

wave passes without changing its polarization state, but the propagation is characterized as if 

the material had either an index of refraction n1 or n2 . See Figs. 2.4 and 2.5. 

 
 

Figure 2.4 Axis 1 is parallel to polarization of incident wave. Index of refraction is n1. 

 
Figure 2.5 Axis 2 is parallel to polarization of incident wave. Index of refraction is n2 . 

 

Case 2) Axis 1 makes an angle θ  with the direction of polarization of the incident wave. 
The transmitted light has a more complicated polarization state. This wave, however, can be 

seen as the superposition of two waves with different phases, one that has polarization 

parallel to the polarization of the incident wave (i.e. "vertical") and another that has 

polarization perpendicular to the polarization of the incident wave (i.e. "horizontal").  

 



 
Figure 2.6 Axis 1 makes and angle θ  with polarization of incident wave 
Call IP  the intensity of the wave transmitted parallel to the polarization of the incident 

wave, and IO  the intensity of the wave transmitted perpendicular to polarization of the 

incident wave. These intensities depend on the angle θ , on the wavelength λ  of the light 
source, on the thickness L  of the thin plate, and on the absolute value of the difference of 
the refractive indices, n1 − n2 . This last quantity is called the birefringence of the material. 

The measurement of this quantity is the goal of this problem. Together with polarizers, 

birefringent materials are useful for the control of light polarization states. 

 

We point out here that the photodetector measures the intensity of the light incident on it, 

independent of its polarization.  

 
The dependence of IP (θ)  and IO (θ)  on the angle θ  is complicated due to other effects not 

considered, such as the absorption of the incident radiation by the mica. One can obtain, 

however, approximated but very simple expressions for the normalized intensities I P (θ)  and 
I O (θ) , defined as, 

 

I P (θ) = IP (θ)
IP (θ) + IO (θ)

  (2.1)  

 

and 

 

I O (θ) = IO (θ)
IP (θ) + IO (θ)

  (2.2)  

It can be shown that the normalized intensities are (approximately) given by, 

 

I P (θ) =1− 1
2

1− cos∆φ( )sin2(2θ)  (2.3) 

and 

 



I O (θ) = 1
2

1− cos∆φ( )sin2(2θ)   (2.4) 

 

where ∆φ  is the difference of phases of the parallel and perpendicular transmitted waves. 

This quantity is given by, 

 

∆φ = 2πL

λ
n1 − n2   (2.5) 

 

where L  is the thickness of the thin plate of mica, λ  the wavelength of the incident 
radiation and n1 − n2  the birefringence. 

 
 

 

EXPERIMENTAL SETUP 
 

Task 2.1 Experimental setup for measuring intensities. Design an experimental setup for 

measuring the intensities IP  and IO  of the transmitted wave, as a function of the angle θ  of 
any of the optical axes, as shown in Fig. 2.6. Do this by writing the LABELS of the different 

devices on the drawing of the optical table. Use the convention (+) and (-) for the direction 

of the polarizers. You can make additional simple drawings to help clarify your design.  

 

Task 2.1 a) Setup for IP  (0.5 points). 

Task 2.1 b) Setup for IO  (0.5 points). 

 

Laser beam alignment. Align the laser beam in such a way that it is parallel to the table and 

is incident on the center of the cylinder holding the mica. You may align by using one the 

white index cards to follow the path. Small adjustments can be made with the movable 

mirror. 

 

Photodetector and the multimeter. The photodetector produces a voltage as light impinges 

on it. Measure this voltage with the multimeter provided.  The voltage produced is linearly 

proportional to the intensity of the light. Thus, report the intensities as the voltage produced 

by the photodetector. Without any laser beam incident on the photodetector, you can 

measure the background light intensity of the detector. This should be less than 1 mV. Do 

not correct for this background when you perform the intensity measurements. 

 

WARNING: The laser beam is partially polarized but it is not known in which direction. 

Thus, to obtain polarized light with good intensity readings, place a polarizer with either its 

(+) or (–) axes vertically in such a way that you obtain the maximum transmitted intensity in 

the absence of any other optical device. 

 



MEASURING INTENSITIES 
 

Task 2.2 The scale for angle settings. The cylinder holding the mica has a regular 

graduation for settings of the angles. Write down the value in degrees of the smallest interval 

(i.e. between two black consecutive lines). (0.25 points).  

 

Finding (approximately) the zero of θ  and/or the location of the mica axes. To facilitate 

the analysis, it is very important that you find the appropriate zero of the angles. We suggest 

that, first, you identify the location of one of the mica axes, and call it Axis 1. It is almost 

sure that this position will not coincide with a graduation line on the cylinder.  Thus, 

consider the nearest graduation line in the mica cylinder as the provisional origin for the 

angles. Call θ  the angles measured from such an origin. Below you will be asked to provide 

a more accurate location of the zero of θ . 

 

Task 2.3 Measuring IP  and IO . Measure the intensities IP  and IO  for as many angles θ  as 
you consider necessary. Report your measurements in Table I. Try to make the 

measurements for IP  and IO  for the same setting of the cylinder with the mica, that is, for a 

fixed angle θ . (3.0 points). 
 

Task 2.4 Finding an appropriate zero for θ . The location of Axis 1 defines the zero of the 

angle θ . As mentioned above, it is mostly sure that the location of Axis 1 does not coincide 

with a graduation line on the mica cylinder. To find the zero of the angles, you may proceed 

either graphically or numerically. Recognize that the relationship near a maximum or a 

minimum may be approximated by a parabola where: 

 

I(θ ) ≈ aθ 2 + bθ + c  
 

and the minimum or maximum of the parabola is given by, 

            θ m = − b

2a
. 

 

Either of the above choices gives rise to a shift δθ  of all your values of θ  given in 
Table I of Task 2.3, such that they can now be written as angles θ  from the appropriate zero, 

θ = θ + δθ . Write down the value of the shift δθ  in degrees. (1.0 points). 
  

DATA ANALYSIS. 

 

Task 2.5 Choosing the appropriate variables. Choose I P (θ)  or I O (θ)  to make an analysis 

to find the difference of phases ∆φ . Identify the variables that you will use. (0.5 point). 

 

 

 

 



Task 2.6 Data analysis and the phase difference.  

 

• Use Table II to write down the values of the variables needed for their analysis. 

Make sure that you use the corrected values for the angles θ . Include uncertainties. 
Use graph paper to plot your variables. (1.0 points). 

 

• Perform an analysis of the data needed to obtain the phase difference ∆φ . Report 

your results including uncertainties. Write down any equations or formulas used in 

the analysis. Plot your results. (1.75 points). 

 

• Calculate the value of the phase difference∆φ  in radians, including its uncertainty. 

Find the value of the phase difference in the interval 0,π[ ]. (0.5 points). 
 

Task 2.7 Calculating the birefringence n1 − n2 . You may note that if you add 2Nπ  to the 

phase difference ∆φ , with N any integer, or if you change the sign of the phase, the values 

of the intensities are unchanged. However, the value of the birefringence n1 − n2  would 

change. Thus, to use the value ∆φ  found in Task 2.6 to correctly calculate the birefringence, 

you must consider the following: 

 

∆φ = 2πL

λ
n1 − n2         if        L < 82 ×10−6  m 

or 

2π − ∆φ = 2πL

λ
n1 − n2         if      L > 82 ×10−6  m  

 

 

where the value L  of the thickness of the slab of mica you used is written on the cylinder 

holding it. This number is given in micrometers (1 micrometer = 10
-6
 m). Assign 1×10−6m 

as the uncertainty for L . For the laser wavelength, you may use the value you found in 

Problem 1 or the average value between 620 ×10−9 m and 750 ×10−9  m, the reported range 

for red in the visible spectrum. Write down the values of L  and λ  as well as the 
birefringence n1 − n2  with its uncertainty. Include the formulas that you used to calculate 

the uncertainties. (1.0 points). 



 

 

 

Answer Form 

Experimental Problem No. 2 

Birefringence of mica 

Task 2.1 a) Experimental setup for IP . (0.5 points) 

 

  

 

 

 

Task 2.1 b) Experimental setup for IO . (0.5 points) 

 

 
 

 

 

 

2.1  1.0 

 

 

 

 



 

 

 

Task 2.2 The scale for angles. 
 

2.2 The angle between two consecutive black lines is 

 
θint =  

0.25 

 

 

Tasks 2.3 Measuring IP  and IO  .Use additional sheets if necessary. 

 

TABLE I 

θ  (degrees) IP  IO  

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   



 

 

 

 

 

2.3  3.0 

 

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   



 

 

 

Task 2.4 Finding an appropriate zero for θ . 

 

2.4  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.0 

 

 

 

 

 



 

 

 

Task 2.5 Choosing the appropriate variables. 

 

 

2.5  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5 

 

 

 



 

 

 

Task 2.6 Statistical analysis and the phase difference. 

 

 

2.6  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.25 

 

 



 

 

 

2.6  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

2.6  
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TABLE II  

(Use additional sheets if necessary) 

θ  (degrees)   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

 

 

 

 



 

 

 

Task 2.7 Calculating the birefringence n1 − n2 . 

 

2.7 Write down the width of the plate of mica you used, 

 

L = 
 

Write down the wavelength you use, 

 

λ = 
  

Calculate the birefringence 

 

n1 − n2 = 
 

Write down the formulas you used for the calculation of the uncertainty of 

the birefringence. 
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THEORETICAL PROBLEM No. 1 

 

EVOLUTION OF THE EARTH-MOON SYSTEM 

 

SOLUTIONS 

 

     1.  Conservation of Angular Momentum 
 

1a 
1111 MMEE IIL    0.2 

 

1b 
2222  ME IIL   0.2 

 

 

1c 
122111 LIII MMMEE    0.3 

 

2. Final Separation and Angular Frequency of the Earth-Moon System. 

 

 

2a 
EMGD 3

2

2

2  0.2 

 

 

2b 

2

2

1
2

ME MMG

L
D   

0.5 

 

 

2c 

3

1

322

2
L

MMG ME  
0.5 

 

2d The moment of inertia of the Earth will be the addition of the moment of 

inertia of a sphere with radius or  and density o  and of a sphere with 

radius ir  and density oi   : 

)]([
3

4

5

2 55

oiiooE rrI 


 . 

 

0.5 

 

 

2e 3755 100.8)]([
3

4

5

2
 oiiooE rrI 


kg m

2 

 

0.2 

 

2f 34

1111 104.3  MMEE IIL   kg m
2 

s
-1 0.2 

 



 

2g 8

2 104.5 D m, that is  12 4.1 DD   

 

0.3 

 

2h 6

2 106.1  s
-1

, that is, a period of 46 days. 

 

0.3 

 

 

2i Since 32

2 103.1 EI  kg m
2 

s
-1 

and 34

22 104.3 MI  kg m
2 

s
-1 

, the 

approximation is justified since the final angular momentum of the Earth 

is 1/260 of that of the Moon. 

 

0.2 

 

3. How much is the Moon receding per year? 

 

 

3a Using the law of cosines, the magnitude of the force produced by the mass 

m closest to the Moon will be: 

)cos(2 1

22

1 oo

M
c

rDrD

MmG
F


  

0.4 

 

3b Using the law of cosines, the magnitude of the force produced by the mass 

m farthest to the Moon will be: 

)cos(2 1

22

1 oo

M
f

rDrD

MmG
F


  

0.4 

 

 

3c Using the law of sines, the torque will be 
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2/1
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3d Using the law of sines, the torque will be 

2/3

1
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1

10

2/1

1

22

1

10

)]cos(2[

)sin(

)]cos(2[

)sin(










oo

M

oo

ff
rDrD

DrMmG

rDrD

Dr
F





  

0.4 

 

 

3e 

3

1

2

1

2

1

2

1

2

1

2
2

10

)cos()sin(6

)
)cos(3

2

3
1

)cos(3

2

3
1()sin(

D

rMmG

D

r

D

r

D

r

D

r
DrMmG

oM

oooo
Mfc








 

 

1.0 

 

 



3f 
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101.4
)cos()sin(6


D

rMmG oM 
 N m 
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3g Since EM MGD 3

1

2

1 , we have that the angular momentum of the Moon is 

  2/1

1

2/1

3

1

2

111 EM
E

MMM MGDM
D

MG
DMI 








  

The torque will be: 

   
  tD

DMGM

t

DMGM EMEM











2/1

1

1

2/12/1

1

2/1

2

)(
  

So, we have that 
2/1

1
1

2










EM MG

D

M

t
D


 

That for 7101.3 t s = 1 year, gives 034.01 D m. 

This is the yearly increase in the Earth-Moon distance. 

1.0 

 

 

3h We now use that 

t

I EE




 1

  

from where we get  

E

E
I

t



 1  

that for 7101.3 t  s = 1 year gives 
14

1 106.1  E s
-1

.  

If EP is the period of time considered, we have that: 

E

E

E

E

P

P



 1



 

since 41064.81  dayPE s, we get 
5109.1  EP s. 

This is the amount of time that the day lengthens in a year.  

 

1.0 

 

 

4. Where is the energy going? 

 

 

4a The present total (rotational plus gravitational) energy of the system is: 

1

2

1

2

1
2

1

2

1

D

MMG
IIE ME

MMEE   . 

Using that  

EM MGD 3

1

2

1 , we get 

0.4 



1

2

1
2

1

2

1

D

MMG
IE ME

EE    

 

4b 
12

1

11
2

1
D

D

MMG
IE ME

EEE   , that gives 

19100.9 E J 

0.4 

 

4c 
waterowater hrM   24 kg = 17106.2  kg. 0.2 

 

 

4d 191 103.91.036525.0   daysdaymMgE waterwater J. Then, the 

two energy estimates are comparable. 

0.3 

 

  



THEORETICAL PROBLEM 2 

 

SOLUTION 

 

DOPPLER LASER COOLING AND OPTICAL MOLASSES 

 

The key to this problem is the Doppler effect (to be precise, the longitudinal Doppler 

effect): The frequency of a monochromatic beam of light detected by an observer 

depends on its state of motion relative to the emitter, i.e. the observed frequency is 

 














c

v

cv

cv
1

/1

/1



 

 

where 



v  is the relative speed of emitter and observer and 



  the frequency of the 

emitter. The upper-lower signs correspond, respectively, when source and observer 

move towards or away from each other. The second equality holds in the limit of low 

velocities (non-relativistic limit). 

 

The frequency of the laser in the lab is 



L ; 



0 is the transition frequency of the atom; 

the atom moves with speed 



v  towards the incident direction of the laser: 

 

It is important to point out that the results must be given to first significant order in 



v /c  

or mvq / . 

 

PART I: BASICS OF LASER COOLING 

 

1. Absorption. 

 

1a Write down the resonance condition for the absorption of the photon.  











c

v
L 10   

0.2 

 

1b Write down the momentum 



pat  of the atom after absorption, as seen in the 

laboratory 

c
mvqpp L

at


   

0.2 

 

1c Write down the energy 



at of the atom after absorption, as seen in the 

laboratory 

 

L
at

at

mv

m

p
  

22

2

0

2

 

0.2 

 

 

 

 

 

 



2. Spontaneous emission in the 



x  direction. 

 

 

First, one calculates the energy of the emitted photon, as seen in the lab reference frame. 

One must be careful to keep the correct order; this is because the velocity of the atom 

changes after the absorption, however, this is second order correction for the emitted 

frequency: 

 

m

q
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v
ph


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

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 
         with 10  

thus, 
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
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2a Write down the energy of the emitted photon, 



ph, after the emission 

process in the 



x  direction, as seen in the laboratory.  

Lph    

0.2 

 

2b Write down the momentum of the emitted photon 



pph , after the emission 

process in the 



x  direction, as seen in the laboratory. 

cp Lph /  

0.2 

 

Use conservation of momentum (see 1b): 

  

qppp phat   

 

2c Write down the momentum of the atom 



pat , after the emission process in 

the 



x  direction, as seen in the laboratory. 



pat  p mv 

0.2 

 

 

2d Write down the energy of the atom 



at, after the emission process in the 



x  direction, as seen in the laboratory. 

 



at 
p2

2m

mv2

2
 

0.2 

 

 



3. Spontaneous emission in the 



x  direction. 

 

The same as in the previous questions, keeping the right order 

 

3a Write down the energy of the emitted photon, 



ph, after the emission 

process in the x  direction, as seen in the laboratory. 






































c

v

c

v

c

v

c

v
LLph 211110    

0.2 

 

3b Write down the momentum of the emitted photon 



pph , after the emission 

process in the x  direction, as seen in the laboratory. 











c

v

c
p L

ph 21


 

0.2 

 

 

3c Write down the momentum of the atom 



pat , after the emission process in 

the x direction, as seen in the laboratory. 

c
mv

c

v

c
qppqpp LL

phat

 
 221 








  

0.2 

 

 

3d Write down the energy of the atom 



at, after the emission process in the 

x  direction, as seen in the laboratory. 











mv

qmv

m

pat
at


21

22

22

  

0.2 

 

 

4. Average emission after absorption. 

 

The spontaneous emission processes occur with equal probabilities in both directions. 

 

4a Write down the average energy of an emitted photon, 



ph, after the 

emission process. 









 

c

v
Lphphph 1

2

1

2

1
   

0.2 

 

4b Write down the average momentum of an emitted photon 



pph , after the 

emission process. 

order second    0
2

1

2

1









 

c

v

mv

q
mv

c

v

c
ppp L

phphph


 

0.2 

 

 

4c Write down the average energy of the atom 



at, after the emission process. 









 

mv

qmv
atatat


1

22

1

2

1 2

  

0.2 



 

 

4d Write down the average momentum of the atom 



pat , after the emission 

process. 

c
pppp L

atatat


 

2

1

2

1
 

0.2 

 

 

 

5. Energy and momentum transfer. 

 

Assuming a complete one-photon absorption-emission process only, as described 

above, there is a net average momentum and energy transfer between the laser and the 

atom. 

 

5a Write down the average energy change 



 of the atom after a complete 

one-photon absorption-emission process. 

c

v
qv L

before

at

after

at  
2

1

2

1
  

0.2 

 

 

5b Write down the average momentum change 



p  of the atom after a 

complete one-photon absorption-emission process. 

c
qppp Lbefore

at

after

at


   

0.2 

 

6. Energy and momentum transfer by a laser beam along the 



x  direction. 

 

 

6a Write down the average energy change 



 of the atom after a complete 

one-photon absorption-emission process. 

c

v
qv L

before

at

after

at   
2

1

2

1
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6b Write down the average momentum change 



p  of the atom after a 

complete one-photon absorption-emission process. 

c
qppp Lbefore

at

after

at





  

0.3 

 

 

PART II: DISSIPATION AND THE FUNDAMENTALS OF OPTICAL 

MOLASSES 

 

 

Two counterpropagating laser beams with the same but arbitrary frequency 



L  are 

incident on a beam of 



N  atoms that move in the 



x  direction with (average) velocity 



v . 



7. Force on the atomic beam by the lasers. 

 

On the average, the fraction of atoms found in the excited state is given by, 

 



Pexc 
Nexc

N


R

2

0 L 
2

2

4
 2R

2

 

 

where 



0 is the resonance frequency of the atoms and 



R  is the so-called Rabi 

frequency; 



R

2  is proportional to the intensity of the laser beam. The lifetime of the 

excited energy level of the atom is



1. 

 

The force is calculated as the number of absorption-emission cycles, times the 

momentum exchange in each event, divided by the time of each event. CAREFUL! 

One must take into account the Doppler shift of each laser, as seen by the atoms: 

 

 

7a With the information found so far, find the force that the lasers exert on 

the atomic beam. You must assume that qmv  . 
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1.5 

 

8. Low velocity limit. 

 

Assume now the velocity to be small enough in order to expand the force to first order 

in 



v . 

 

8a Find an expression for the force found in Question (7a), in this limit. 

 

v
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F L
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8b Write down the condition to obtain a positive force (speeding up the 

atom).   



0 L  

0.25 

 

 

8c Write down the condition to obtain a zero force. 



0 L  
0.25 

 

 



8d Write down the condition to obtain a negative force (slowing down the 

atom).  



0 L  … this is the famous rule “tune below resonance for cooling 

down” 

0.25 

 

 

8e Consider now that the atoms are moving with a velocity v  (in the x  

direction). Write down the condition to obtain a slowing down force on 

the atoms. 



0 L  … i.e. independent of the direction motion of the atom. 

0.25 

 

 

9. Optical molasses 

 

In the case of a negative force, one obtains a frictional dissipative force. Assume that 

initially, 0t , the gas of atoms has velocity 0v .  

 

9a In the limit of low velocities, find the velocity of the atoms after the laser 

beams have been on for a time .  



F  v m
dv

dt
 v

 v  v0e
t /m

      



 can be read from (8a) 

 

1.5 

 

 

9b Assume now that the gas of atoms is in thermal equilibrium at a 

temperature



T0 . Find the temperature 



T  after the laser beams have been 

on for a time



 . 

 

Recalling that 



1

2
mv2 

1

2
kT in 1 dimension, and using 



v  as the average 

thermal velocity in the equation of (9a), we can write down  



T T0e
2t /m  

0.5 

 



Answers 

Theoretical Problem No. 3 

 

Why are stars so large? 

1) A first, classic estimate of the temperature at the center of the stars. 

 

1a We equate the initial kinetic energy of the two protons to the electric 

potential energy at the distance of closest approach: 

c

rmsp
d

q
vm

0

2
2

4
)

2

1
(2


 ; and since 

2

2

1

2

3
rmspc vmTk  , we obtain 

9

0
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q
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c

c

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1.5 

 

          2) Finding that the previous temperature estimate is wrong.  

 

2a Since we have that 

2r

MG

r

P rr 



, making the assumptions given above, we obtain that: 

R

MG
P c

c


 . Now, the pressure of an ideal gas is 

p

cc
c

m

Tk
P

2
 , where k  is Boltzmann´s constant, cT  is the central 

temperature of the star, and pm  is the proton mass. The factor of 2 in the 

previous equation appears because we have two particles (one proton and 

one electron) per proton mass and that both contribute equally to the 

pressure. Equating the two previous equations, we finally obtain that: 

Rk

mMG
T

p

c
2

  

0.5 

 

 

2b From section (2a) we have that: 

p

c

mG

Tk

R

M 2
   

0.5 

 

 



 

2c From section (2b) we have that, for 9105.5 cT K:  

 24104.1
2


p

c

mG

Tk

R

M
 kg m

-1
. 

0.5 

 

2d For the Sun we have that: 

21109.2
)(

)(


SunR

SunM
 kg m

-1
 , that is, three orders of magnitude smaller. 

0.5 

 

       3) A quantum mechanical estimate of the temperature at the center of the stars 

 

3a We have that 
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p
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h
 , and since 

2
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3
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3b 
6
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c


 K. 
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3c From section (2b) we have that, for 6107.9 cT K:

 

21104.2
2


p

c

mG
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M
 kg m

-1
 ; while for the Sun we have that: 

21109.2
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 kg m
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        4) The mass/radius ratio of the stars. 

 

4a Taking into account that 0.5 



p

c
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 , and that 
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5) The mass and radius of the smallest star. 

 

5a 
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e
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5c We assume that 
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5d 
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5e The mass to radius ratio is: 
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6) Fusing helium nuclei in older stars. 

 

6a For helium we have that 
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4
2/12

0

2

Hevm

h

Hevm

q

rmsHermsHe




; from where we get 
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We now use: 
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This value is of the order of magnitude of the estimates of stellar models. 
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 Answer Form 

Experimental Problem No. 1 

Diode laser wavelength  

 

Task 1.1 Experimental setup. 

 

 
 

 

           (0.75) 

 

 

1.1 Sketch the laser path in drawing of Task 1.1 and Write down the height h 

of the beam as measured from the table 

 

h ± ∆h = 5.0 ± 0.05( )×10−2  m   (0.25) 

1.0 



 
 

 
 

 

Experimental setup for measurement of diode laser wavelength 

Task 1.2 Expressions for optical path differences. 

 



1.2 The path differences are 

 

Case I: (0.25) 

 

∆ I(n) = (BF + FP) − BP = (Lb − L0) + L0
2 + LR

2 (n) − Lb
2 + LR

2 (n)

        = (Lb − L0) + L0 1+ LR
2 (n)
L0

2 − Lb 1+ LR
2 (n)
Lb

2

using   1+ x ≈1+ 1
2

x

        ≈ (Lb − L0) + L0 1+ 1
2

LR
2 (n)
L0

2

 

 
 

 

 
 − Lb 1+ 1

2
LR

2 (n)
Lb

2

 

 
 

 

 
 

⇒    ∆ I(n) ≈ 1
2

LR
2 (n)

1
L0

− 1
Lb

 

 
 

 

 
 

 

 

Case II: (0.25) 

 

∆ II(n) = (FB + BP) − FP = (L0 − La ) + La
2 + LL

2 (n) − L0
2 + LL

2 (n)

        ≈ (L0 − La ) + La 1+ LL
2 (n)
La

2
− L0 1+ LL

2 (n)
L0

2

using   1+ x ≈1+ 1

2
x

        ≈ (L0 − La ) + La 1+ 1

2

LL
2 (n)

La
2

 

 
 

 

 
 − L0 1+ 1

2

LL
2 (n)

L0
2

 

 
 

 

 
 

⇒    ∆ II(n) ≈ 1
2

LL
2 (n)

1
La

− 1
L0

 

 
 

 

 
 
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Task 1.3 Measuring the dark fringe positions and locations of the blade. Use 

additional sheets if necessary. 

TABLE I    

 

 

n lR (n) ± 0.1( )×10−3  m lL (n) ± 0.1( )×10−3  m  xR  xL  

0 -7.5 1.1 0.791 0.935 

1 -10.1 3.7 1.275 1.369 

2 -12.4 6.4 1.620 1.696 

3 -14.0 8.2 1.903 1.968 

4 -15.6 10.0 2.151 2.208 

5 -17.2 11.4 2.372 2.424 

6 -18.4 12.2 2.574 2.622 

7 -19.7  2.761  

8 -20.7  2.937  

9 -22.0  3.102  

10 -23.0  3.260  

11 -24.1  3.410  

     

     

     

 

 



 

1.3 Report positions of the blade and their difference with higher precision: 

 

 

Lb ± ∆Lb = (653±1) ×10−3  m   (0.25)  LABEL (I) (measuring tape) 

 

La ± ∆La = (628 ±1) ×10−3  m  (0.25) LABEL (I) (measuring tape) 

 

d = Lb − La = 24.6 ± 0.1( )×10−3   m  (0.25) LABEL (H) (caliper) 

 

3.25 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 



 
 

 

 

 

Task 1.4 Performing a statistical and graphical analysis. 

 



1.4 A procedure: 

 

From the condition of dark fringes and Task 1.2, we have 

 

1
2

LR
2 (n)

1
L0

− 1
Lb

 

 
 

 

 
 = n + 5

8

 
 
 

 
 
 λ  

 

and 

 

1
2

LL
2 (n)

1
La

− 1
L0

 

 
 

 

 
 = n + 7

8

 
 
 

 
 
 λ  

 

Using (1.5), LR (n) = lR (n) − l0R    and    LL (n) = lL (n) − l0Lwe can rewrite 

 

1
2

lR (n) − l0R( )2 1
L0

− 1
Lb

 

 
 

 

 
 = n + 5

8

 
 
 

 
 
 λ

⇒   lR (n) = 2LbL0

Lb − L0

λ n + 5
8

+ l0R

 

 

and 

 

1
2

lL (n) − l0L( )2 1
La

− 1
L0

 

 
 

 

 
 = n + 7

8

 
 
 

 
 
 λ

⇒   lL (n) = 2LaL0

L0 − La

λ n + 7
8

+ l0L

 

 

These can be cast as equations of a straight line, y = mx + b. 
 

Case I:  

yR = lR         xR = n + 5
8
         mR = 2LbL0

Lb − L0

λ         bR = l0R  

 

Case II:  

yL = lL         xL = n + 7
8
         mL = 2LaL0

L0 − La

λ         bL = l0L  

 

                                                                

 

Perform least squares analysis of above equations. In Table I, we write 

down the values xR  and xL . 

 

One finds: 

 

mR ± ∆mR = (−6.39 ± 0.07) ×10−3  m 

 

3.25 



mL ± ∆mL = (6.83 ± 0.19) ×10−3  m 

 

and (values of  
0Rl  and 

0Ll ) 

 

l0R ± ∆l0R = bR ± ∆bR = −2.06 ± 0.17( )×10−3  m 

 

l0L ± ∆l0L = bL ± ∆bL = −5.33 ± 0.36( )×10−3  m  

 

The equations used in the least squares analysis: 

 

m =
N xn yn −

n=1

N

∑ xn

n=1

N

∑ yn′
n′=1

N

∑

∆
 

b =
xn

2 yn′
n ′=1

N

∑ −
n=1

N

∑ xn

n=1

N

∑ xn′ yn′
n′=1

N

∑

∆
 

 

where 

∆ = N xn
2 −

n=1

N

∑ xn

n=1

N

∑
 

 
 

 

 
 

2

 

 

with N  the number of data points. 

The uncertainty is calculated as 

 

∆m( )2 = N
σ 2

∆
   ,   ∆b( )2 = σ 2

∆
xn

2

n=1

N

∑       with, 

 

σ 2 = 1
N − 2

yn − b − mxn( )2

n=1

N

∑  

                                                                  

REFERENCE: P.R. Bevington, Data Reduction and Error Analysis for 

the Physical Sciences, McGraw-Hill, 1969. 

 

 

 

Task 1.5 Calculating λ . 
 

1.5 From any slope and the value of L0 one finds, 

 

λ = Lb − La

2LaLb

mR
2 mL

2

mR
2 + mL

2
 

 

Using the suggestion to replace d = Lb − La , we can write 

 

2.0 



λ = d

2LaLb

mR
2 mL

2

mR
2 + mL

2
 

 

 

λ ± ∆λ = (663± 25) ×10−9  m 

 

The uncertainty may range from 15 to 30 nanometers. 

 

A precise measurement of the wavelength is λ ± ∆λ = (655 ± 1) ×10−9  m . 

 

The formula for the uncertainty, 

 

∆λ = ∂λ
∂d

 
 
 

 
 
 

2

∆d2 + ∂λ
∂La

 

 
 

 

 
 

2

∆La
2 + ∂λ

∂Lb

 

 
 

 

 
 

2

∆Lb
2 + ∂λ

∂mR

 

 
 

 

 
 

2

∆mR
2 + ∂λ

∂mL

 

 
 

 

 
 

2

∆mL
2  

 

one finds, 

 

∂λ
∂d

= λ
d
 ,  

∂λ
∂Lb

= λ
Lb

  , 
∂λ
∂La

= λ
La

   and    
∂λ

∂mR

= 2mL
2

mR

λ
mL

2 + mR
2
 

 

and analogously for the other slope. 

 

One can calculate directly these quantities. However, one may note that 

the errors due to La , Lb  and d are negligible. Moreover, mR
2 ≈ mL

2    and    

La ≈ Lb  . This implies, 

 

∂λ
∂mR

≈ λ
mR

≈ ∂λ
∂mL

 . Thus, 

 

∆λ ≈ 2
λ

mL

∆mL ≈ 25 ×10−9( )   m  

 



Answer Form 

Experimental Problem No. 2 

Birefringence of mica 

Task 2.1 a) Experimental setup for IP . (0.5 points) 

  
 

 

Task 2.1 b) Experimental setup for IO . (0.5 points) 

 
 

2.1  1.0 

 

 



 
 

 

 

Experimental setup for measurement of mica birefringence 

 

 

Task 2.2 The scale for angles. 
 

2.2 The angle between two consecutive black lines is 

 

θint = 3.6 degrees because there are 100 lines. 

0.25 

 

 

 

 

Tasks 2.3 Measuring IP  and IO  .Use additional sheets if necessary. 

 

TABLE I (3 points) 

θ  (degrees) IP ±1( )×10−3   V IO ±1( )×10−3   V 

-3.6 46.4 1.1 

0 48.1 0.2 

3.6 47.0 0.6 

7.2 46.0 2.0 

10.8 42.3 4.9 

14.4 38.2 9.0 

18.0 33.9 12.5 



 

 

 

 

21.6 27.7 17.9 

25.2 23.4 22.0 

28.8 17.8 27.0 

32.4 12.5 31.7 

36.0 8.8 34.8 

39.6 5.2 38.0 

43.2 3.6 39.4 

46.8 3.2 39.6 

50.4 4.5 38.7 

54.0 6.9 36.6 

57.6 10.3 33.6 

61.2 14.7 29.4 

64.8 20.1 24.7 

68.4 25.4 19.7 

72.0 30.5 14.7 

75.6 36.6 10.2 

79.2 40.7 6.1 

82.8 44.3 3.2 

86.4 46.9 1.0 

90.0 47.8 0.2 

93.6 47.0 0.4 

97.2 45.7 2.0 



 
 

Parallel IP  and perpendicular IO  intensities vs angle θ . 
 

 

 

GRAPH NOT REQUIRED! 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Task 2.4 Finding an appropriate zero for θ . 

 



2.4 a) Graphical analysis  

 

The value for the shift is δθ = −1.0 degrees.        
 

Add the graph paper with the analysis of this Task. 

 

b) Numerical analysis 

 

From Table I choose the first three points of θ  and IO (θ ) : 
(intensities in millivolts) 

 

x1,y1( )= −3.6,1.1( )      x2, y2( )= 0,0.2( )        x3, y3( )= 3.6,0.6( ) 
 

We want to fit y = ax 2 + bx + c . This gives three equations: 

 

1.1 = a(3.6)2 − b(3.6) + c

0.2 = c

0.6 = a(3.6)2 + b(3.6) + c

second in first ⇒    b = −0.9 + a(3.6)2

3.6
 

in third   ⇒    0.6 = a (3.6)2 + (3.6)2( )− 0.9 + 0.2

⇒   a = 0.050         b = −0.069

 

 

The minimum of the parabola is at: 

 

θ min = − b

2a
≈ 0.7  degrees 

 

Therefore, δθ = −0.7  degrees. 
 

 

 

 

 

 

 

 

 

1.0 

 

 

 

 



 
 

 

 

 

 

 

Task 2.5 Choosing the appropriate variables. 

 

 



2.5 Equation (2.4) for the perpendicular intensity is 

I O (θ) = 1
2

1− cos∆φ( )sin2(2θ)
 

 

This can be cast as a straight line y = mx + b, with 

 

y = I O (θ)    ,  x = sin2(2θ)  and m = 1

2
1− cos∆φ( ) 

from which the phase may be obtained. 

 

 

NOTE: This is not the only way to obtain the phase difference. One may, 

for instance, analyze the 4 maxima of either I P (θ)  or I O (θ) . 
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Task 2.6 Statistical analysis and the phase difference. 

 

 

2.6 To perform the statistical analysis, we shall then use 

 

y = I O (θ)    and  x = sin2(2θ)  . 
 

1.0 



Since for θ : 0 → π
4

,  x : 0 →1, we use only 12 pairs of data points to 

cover this range, as given in Table II. 

 

x may be left without uncertainty since it is a setting. The uncertainty in y 

may be calculated as 

∆I O = ∂I O
∂IO

 

 
 

 

 
 

2

∆IO
2 + ∂I P

∂IP

 

 
 

 

 
 

2

∆IP
2  and one gets 

 

∆I O =
IO

2 + IP
2

(IO + IP )2 ∆IO ≈ 0.018, approximately  the same for all values. 

 

 

 

TABLE II 

θ  (degrees) x = sin2(2θ) y = I O ± 0.018  

2.9 0.010 0.013 

6.5 0.051 0.042 

10.1 0.119 0.104 

13.7 0.212 0.191 

17.3 0.322 0.269 

20.9 0.444 0.392 

24.5 0.569 0.484 

28.1 0.690 0.603 

31.7 0.799 0.717 

35.3 0.890 0.798 

38.9 0.955 0.880 

42.5 0.992 0.916 

 

 

 

 

 

2.6 We now perform a least square analysis for the variables y vs x in Table 

II. The slope and y-intercept are: 

 

m ± ∆m = 0.913± 0.012 
 

b ± ∆b = −0.010 ± 0.008                        
 

The formulas for this analysis are: 

1.75 



m =
N xn yn −

n=1

N

∑ xn

n=1

N

∑ yn′
n′=1

N

∑

∆
 

b =
xn

2 yn′
n ′=1

N

∑ −
n=1

N

∑ xn

n=1

N

∑ xn′ yn′
n′=1

N

∑

∆
 

 

where 

∆ = N xn
2 −

n=1

N

∑ xn

n=1

N

∑
 

 
 

 

 
 

2

 

 

with N  the number of data points. 

The uncertainty is calculated as 

 

∆m( )2 = N
σ 2

∆
   ,   ∆b( )2 = σ 2

∆
xn

2

n=1

N

∑       with, 

 

σ 2 = 1

N − 2
yn − b − mxn( )2

n=1

N

∑  

 

with N = 12 in this example.  

 

Include the accompanying plot or plots.    
 

 

 

 

 

 

 

 

 

 

 



 
2.6 Calculate the value of the phase ∆φ  in radians in the interval 0,π[ ]. 

From the slope m = 1

2
1− cos∆φ( ), one finds 

∆φ ± ∆(∆φ) = 2.54 ± 0.04        

 

Write down the formulas for the calculation of the uncertainty. 

 

We see that, 

 

0.5 



∆m = ∂m

∂∆φ
∆(∆φ) = 1

2
sin(∆φ)∆(∆φ) , therefore,  ∆(∆φ) = 2∆m

sin(∆φ)
 . 

 

 

 

 

 

Task 2.7 Calculating the birefringence n1 − n2 . 

 

2.7 Write down the width of the slab of mica you used, 

 

L ± ∆L = (100 ± 1) ×10−6  m  

 

Write down the wavelength you use, 

 

λ ± ∆λ = (663± 25) ×10−9  m (from Problem 1) 

 

Calculate the birefringence 

 

n1 − n2 ± ∆ n1 − n2 = (3.94 ± 0.16) ×10−3 

 

 

The birefringence is between 0.003 and 0.005. Nominal value 0.004 

 

Write down the formulas you used for the calculation of the uncertainty of 

the birefringence. 

 

Since the width L > 82 micrometers, we use 

 

2π − ∆φ = 2πL

λ
n1 − n2  

 

The error is 

 

∆ n1 − n2 =
∂ n1 − n2

∂λ
 

 
 

 

 
 

2

∆λ2 +
∂ n1 − n2

∂L

 

 
 

 

 
 

2

∆L2 +
∂ n1 − n2

∂∆φ
 

 
 

 

 
 

2

∆(∆φ)2  

 

∆ n1 − n2 =
n1 − n2

λ
 

 
 

 

 
 

2

∆λ2 +
n1 − n2

L

 

 
 

 

 
 

2

∆L2 + λ
2πL

 
 
 

 
 
 

2

∆(∆φ)2  

1.0 

 

 

 

 



 Since the data may appear somewhat disperse and/or the errors in the 

intensities may be large, a graphical analysis may be performed. 

 

In the accompanying plot, it is exemplified a simple graphical analysis: 

first the main slope is found, then, using the largest deviations one can 

find two extreme slopes. 

 

The final result is, 

 

m = 0.91± 0.08           and           b = −0.01± 0.04  
 

The calculation of the birefringence and its uncertainty follows as before. 

One now finds, 

 

n1 − n2 ± ∆ n1 − n2 = (3.94 ± 0.45) ×10−3. 

 

A larger (more realistic) error. 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 



 
 

Comparison of experimental data (normalized intensities I P  and I O) with fitting 

(equations (2.3) and (2.4)) using the calculated value of the phase difference ∆φ . 

 

 

 

GRAPH NOT REQUIRED! 
 




