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1. Use only the ball pen provided.
2. Your graphs should be drawn on the answer sheets attached to the problem.
3. Your solutions should be written on the sheets of paper attached to the problems.
4. Write at the top of the first page of each problem:
@ The total number of pages in your solution to the problem
@ Your name and code number



Theoretical Problem 1
RELATIVISTIC PARTICLE

In the theory of special relativity the relation between energy E and momentum P
or a free particle with rest mass my is

E=,p’c® +mic’ =mc?
When such a particle is subject to a conservative force, the total energy of the
particle, which is the sum of /p®c* +mic* and the potential energy, is conserved. If

the energy of the particle is very high, the rest energy of the particle can be ignored
(such a particle is called an ultra relativistic particle).

1) consider the one dimensional motion of a very high energy particle (in which
rest energy can be neglected) subject to an attractive central force of constant
magnitude f. Suppose the particle is located at the centre of force with initial
momentum po at time t=0. Describe the motion of the particle by separately
plotting, for at least one period of the motion: x against time t, and momentum
p against space coordinate x. Specify the coordinates of the “turning points” in
terms of given parameters po and f. Indicate, with arrows, the direction of the
progress of the mothon in the (p, X) diagram. There may be short intervals of
time during which the particle is not ultrarelativistic. However, these should be
neglected.

Use Answer Sheet 1.

2) A meson is a particle made up of two quarks. The rest mass M of the meson is
equal to the total energy of the two-quark system divided by c?.

Consider a one--dimensional model for a meson at rest, in which the two
quarks are assumed to move along the x-axis and attract each other with a force
of constant magnitude f It is assumed they can pass through each other freely.
For analysis of the high energy motion of the quarks the rest mass of the quarks
can be neglected. At time t=0 the two quarks are both at x=0. Show separately
the motion of the two quarks graphically by a (x, t) diagram and a (p, X)
diagram, specify the coordinates of the “turning points” in terms of M and f,
indicate the direction of the process in your (p, X) diagram, and determine the
maximum distance between the two quarks.

Use Answer Sheet 2.

3) The reference frame used in part 2 will be referred to as frame S the Lab frame,
referred to as S moves in the negative x-direction with a constant velocity
v=0.6c. the coordinates in the two reference frames are so chosen that the point



x=0 in S coincides with the point x'=0 in S" at time t=t"=0. Plot the
motion of the two quarks graphically in a (x', t') diagram. Specify the
coordinates of the turning points in terms of M, f and c, and determine the
maximum distance between the two quarks observed in Lab frame S'.

Use Answer Sheet 3.

The coordinates of particle observed in reference frames Sand S” are related
by the Lorentz transformation

X' = y(x+ fict)

t'=y(t+ﬂ§)

where g =vic,y=1/,/1- B> and v is the velocity of frame S moving

relative to the frame S".
4) For a meson with rest energy Mc?=140 MeV and velocity 0.60c relative to the
Lab frame S’, determine its energy E’ inthe Lab Frame S".

ANSWER SHEET 1 ANSWER SHEET 2
1) | t 2) | )
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Quarkl Quadrk2

The maximum distance between
the two quarks is d=



ANSWER SHEET 3

3) The maximum distance between the
!/ !/ - -
| RS two quarks observed in S’ frame is
d =
t
5 -

Theoretical Problem 1—Solution
1) 1a. Taking the force center as the origin of the space coordinate x and the zero
potential point, the potential energy of the particle is

U(x)=f[x] 1)
The total energy is

W = /p?c? + mc* + f | x|.
1b. Neglecting the rest energy, we get

W= plc+f|x], 2)

Since Wis conserved throughout the motion, so we have

W= plc+ f | x]=p,C, 3)
Let the x axis be in the direction of the initial momentum of the particle,
pc+ fx = p,C when x>0, p>0;
— pc+ fx=p,c when x>0, p<O0;
— fy— when } 4)
pc— fx= p,C x<0, p>0;
when
— pc— fx=p,C x<0, p<0.
The maximum distance of the particle from the origin, let it be L, corresponds to p=0.
Itis
L=p,c/f.
1c. From Eqg. 3 and Newton’s law
- f, 0;
o * (5)
dt f, x<0
we can get the speed of the particle as
% — £ @ =cC, (6)
dt| f|dt




i.e. the particle with very high energy always moves with the speed of light except that
it is in the region extremely close to the points x=+L. The time for the particle to
move from origin to the point x =L, let it be denoted by 7, is

r=L/c=p,/f.
So the particle moves to and for between x=L and x=-L with speed c and period

4r =4p,/ f . The relation between x and t is

X =Ct, 0<t<r
Xx=2L—ct, T<t<2r, )
X=2L-ct, 27 <t <3,
X=ct—-4L, 3r<t<4r,
The required answer is thus as given in Fig. 1 and Fig. 2.
| X | P
A
Li--- , Pg
. \B D/t
o) T ZT\’:V T X
T l L\ O L
L ¥ ///
T = pof L=poc/f
L= poff "Po
Fig. 1 Fig. 2
2) The total energy of the two-quark system can be expressed as
MC2:|p1|C+|p2|C+f|X1_X2|’ (8)

where x;, X, are the position coordinates and p,, p, are the momenta of quark 1

and quark 2 respectively. For the rest meson, the total momentum of the two quarks is
zero and the two quarks move symmetrically in opposite directions, we have

p=p+p,=0, Pr=—0 X ==X;. 9)
Let po denote the momentum of the quark 1 when it is at x=0, then we have

Mc® =2p,c  or p, = Mc/2 (10)
From Eq. 8, 9 and 10, the half of the total energy can be expressed in terms of p, and

x, of quark 1:

PC P lC+ T Ix], (11)

just as though it is a one particle problem as in part 1 (Eqg. 3) with initial momentum
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p, = Mc/2. From the answer in part 1 we get the (X, t) diagram and (p, x) diagram of

the motion of quark 1 as shown in Figs. 3 and 4. For quark 2 the situation is similar
except that the signs are reversed for both x and p; its (x, t) and (p, X) diagrams are
shown in Figs. 3 and 4.

The maximum distance between the two quarks as seen from Fig. 3 is

d=2L=2p,c/f=Mc*/f. (12)
X¢: solid line
X1y X2 .
\ Xo: dash line
A E
Lo .
' \B” | “E/t
ol . i /‘Z’W{\‘
I VAN :
L B D
T = Mc/2f
L=Mc%/2f
Fig. 3

A Po=Mc/2 ks
Fig. 4a Quarkl
Fig. 4b Quark2

3) The reference frame Smoves with a constant velocity V=0.6c¢ relative to the Lab
frame S" inthe X' axis direction, and the origins of the two frames are coincident at
the beginning (t=t'=0). The Lorentz transformation between these two frames is
given by:

X' = y(x+ ft),

t'=y(t+ px/c), (13)

where B=V/c, and y=1/41- 4% . With V=0.6c, we have B=3/5, and

y =5/4. Since the Lorenta transformation is linear, a straight line in the (x, t) diagram



transforms into a straight line the (x’, t') diagram, thus we need only to calculate the
coordinates of the turning points in the frame S'.

For quark 1, the coordinates of the turning points in the frames Sand S’ are as
follows:

Frame S Frame S
X Y X = y(% + Bcty) t =yt +px 1€
5 3 5 3
=—Xx +—Ct =—t,+—x/cC
PR PR
0 0 0 0
L T y(l+ p)L=2L y(d+ p)r =27
0 27 2;/,8L=§L 2}/r=§2'
2 2
-L 3r y(38-)L=L y(3-p)r =3¢
0 4z 4ypL =3L 4yt =57

where L= p,c/f=Mc*/2f, r=p,/f=Mc/2f.

For quark 2, we have

Frame S Frame S
X, t, X, =y(X, + pct,) t, =y(t, + /X, /c)
5 3 5 3
=ZX2 +th2 :th +ZX2/C
0 0 0 0
1 1
Lt ~-pL=-JL ru-pyr =t
0 2t 2;/,BL=§L 2}/T=§Z'
2 2
7 9
L 3r ;/(3ﬂ+1)L=EL 7/(3+,B)z'=§r
0 4z 4yplL =3L 4yt =57

With the above results, the (x’, t") diagrams of the two quarks are shown in Fig. 5.
The equations of the straight lines OA and OB are:

X (') = ct’; 0<t <y(+ f)r=2r; (14a)

X (t) = —ct'; OSt’Sy(l—,B)z':%z' (14b)



. L . 1
The distance between the two quarks attains its maximum d’ when t'= ET , thus we
have maximum distance

d' = 2cy(Ll— B)r = 2y(1— B)L = '\g‘; . (15)

1 !
Ty 1 X2
{ x,: solid lines
N epop e ————

L=Mc*/2f z,: dashed lines E !

3.5LfF—I—t++ -—— i & "——K_‘
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Fig. 5
4) It is given the meson moves with velocity V=0.6 crelative to the Lab frame, its
energy measured in the Lab frame is

2
M _ 1 140-175Mev.
1-p%> 03

E'=

Grading Scheme
Part 1 2 points, distributed as follows:
0.4 point for the shape of x(t) in Fig. 1;
0.3 point for 4 equal intervals in Fig. 1;
(0.3 for correct derivation of the formula only)
0.1 each for the coordinates of the turning points A and C, 0.4 point in total,
0.4 point for the shape of p(x) in fig. 2; (0.2 for correct derivation only)

0.1 each for specification of p,, L=p,c/f, —p,, —L and arrows, 0.5 point

in total.
(0.05 each for correct calculations of coordinate of turning points only).
Part 2 4 points, distributed as follows:

0.6 each for the shape of x,(t) and x,(t), 1.2 points in total,

0.1 each for the coordinates of the turning points A, B, D and E in Fig. 3, 0.8 point
in total;



0.3 each for the shape of p,(x) and p,(x,), 0.6 pointin total;

0.1 each for p, =Mc/2, L=Mc’/2f, —p,, —L and arrows in Fig. 4a and
Fig. 4b, 1 point in total;
0.4 point for d = Mc?/ f
Part 3 3 point, distributed as follows:
0.8 each for the shape of x/(t") and X, (t"), 1.6 points in total;

0.1 each for the coordinates of the turning points A, B, D and E in Fig. 5, 0.8 point
in total; (0.05 each for correct calculations of coordinate of turning points

only).
0.6 point for d’=Mc?/2f .

Part 4 1 point (0.5 point for the calculation formula; 0.5 point for the numerical value
and units)



Theoretical Problem 2
SUPERCONDUCTING MAGNET

Super conducting magnets are widely used in laboratories. The most common
form of super conducting magnets is a solenoid made of super conducting wire. The
wonderful thing about a superconducting magnet is that it produces high magnetic
fields without any energy dissipation due to Joule heating, since the electrical
resistance of the superconducting wire becomes zero when the magnet is immersed in
liquid helium at a temperature of 4.2 K. Usually, the magnet is provided with a
specially designed superconducting switch, as shown in Fig. 1. The resistance r of the

switch can be controlled: either r=0 in the superconducting state, or r =r, in the

normal state. When the persistent mode, with a current circulating through the magnet
and superconducting switch indefinitely. The persistent mode allows a steady magnetic
field to be maintained for long periods with the external source cut off.

The details of the superconducting switch are not given in Fig. 1. It is usually a
small length of superconducting wire wrapped with a heater wire and suitably
thermally insulated from the liquid helium bath. On being heated, the temperature of
the superconducting wire increases and it reverts to the resistive normal state. The

typical value of r, is a few ohms. Here we assume it to be 5Q . The inductance of a

superconducting magnet depends on its size; assume it be 10 H for the magnet in Fig. 1.
The total current | can be changed by adjusting the resistance R.

This problem will be graded by the plots only!

The arrows denote the positive direction of I, I; and I,.

1

L o

Power lf r-———=f-——- —-—

switch K

Superconducting
switch

Super-
Power ..'E‘__. E d - _Vconducting
source .= _ d’ 1 magmet

Variable
resistor

7

The enclosed part with dashed line

is immersed in liquid helium bath
at temperature 4. 2K,

Fig. 1
1) If the total current | and the resistance r of the superconducting switch are controlled

10



to vary with time in the way shown in Figs, 2a and 2b respectively, and assuming
the currents I, and I, flowing through the magnet and the switch respectively are
equal at the beginning (Fig. 2c and Fig. 2d), how do they vary with time from t; to

t4? Plot your answer in Fig. 2c and Fig. 2d
i.I

0.51, - Fig.2a
ﬂ---—.—p.—.— ——q-——q-—-q--h‘
12} [ ty Ly
lf
o e -
2b
t
° t t £y L
I
2% S -
0'510.-—-—-—————-—-—-—--—--.--; 2C
b e e e . e — — —— i — i
o ‘3 ‘g t! “ .
7 S
’ 2d

——— ———— - —

t
- o e o — —— i — ———

o h t; ty t
2) Suppose the power switch K is turned on at time t=0 when r=0, 1,=0 and R=7.5Q,
and the total current 1 is 0.5A. With K kept closed, the resistance r of the
superconducting switch is varied in he way shown in Fig. 3b. Plot the

corresponding time dependences of I, I; and I, in Figs. 3a, 3c and 3d respectively.

il
0. SA = = — = = e )
, Fig. 3a
D T A ——— ——— ——
0 1 2 3 min
r
npF—-r—yc-—-———-—-==—-
3b
t
0 1 2 3 min_
| 1
0.5AF ~———— =~~~ ———-—— 3c
t
.__—J—-—.-J-——-t-—-.———--——.
0 1 2 3 min
R
0.5AF == == = — —————— 3d
¢
0 - T T T = = ——

3) Only small currents, less than 0.5A, are allowed to flow through the
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superconducting switch when it is in the normal state, with larger currents the
switch will be burnt out. Suppose the superconducting magnet is operated in a
persistent mode, i. e. 1=0, and I;=i;(e. g. 20A), 1,=-i1, as shown in Fig. 4, from t=0
to t=3min. If the experiment is to be stopped by reducting the current through the
magnet to zero, how would you do it? This has to be done in several operation steps.
Plot the corresponding changes of I, r, I; and I, in Fig. 4

Fig. 4a
t
- —— e g = e —
0 3 6 g 12 min
r
N e
: 4b
————— —— o e —
0 3 6 9 12 min
I,
20/ prmm—y — — — e —— = — =~ - — 4Ac
t
e e e e e e = =
0 3 6 9 12 min
‘I:
20AF " T~ ————"— - ~7 ="
t 4d
Ol-— =4 - - ——+ - — -
3 6 9 12 min
—-20Ap————————— — ————

4) Suppose the magnet is operated in a persistent mode with a persistent current of 20A
(t=0 to t=3min. See Fig. 5). How would you change it to a persistent mode with a
current of 30a? plot your answer in Fig. 5.

1
30A | —_—— -
Y Fig. 5a
t
——— o — —— o s, i
0 3 6 9 12 15 min
N
Fufm————————————— - 5b

A— ——— ——— —— —— ] {— -

=l
0 3 6 9 12 15-min

30A b e e —— 5¢c
EUA-—_ ——————————— ——
t
A e = = e e ——
0 3 6 9 12  15min

12



’I:
30AL
20Ap———————— — ———
Y . 5d
3 6 9 12 15min
ROA e
BOAp——m—— ——— —————

Theoretical Problem 2—Solution
1) For t=t; to t3

Since r =0, the voltage across the magnet V,, = Ldl, /dt =0, therefore,

1
|1:|1(t1):§|0;
|2=|—|l=|—%|o.

For t=t; to t4

Since 1,=0 at t=t3, and | is kept at %IO after

t=t,, V, =1,r, =0, therefore, I, and I, will not change.

0-5Iof — ~ —~ --- Fig. 6a
o ———t == - ——
t) {> 13 s t
-
Fafr === = === = -~—-- 6b
o t) t ts 1 -
o
£
0. 51, —— 6c
e e e e e b ———

. o b Lz t3 L, t

6d
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2)For t=0 to t=1min:

Since r=0, V,, =Ldl,/dt=0
I, =1,(0)=0
l,=1-1,=05A.

At t=1min, r suddenly jumps from O to r,, I will drop from E/R to

E/(R+r,) instantaneously, because I, can not change abruptly due to the

inductance of the magnet coil. For E/R=0.5A, R=7.5Q and R, =5Q. | will drop
to 0.3A.

For t=1 minto 2 min:

[, I, and I, gradually approach their steady values:

I =E=0.5A,
R
I, =1=05A
l,=0.
The time constant
L(R+r,)
T=—"".
Rr

n

When L=10H, R=75Q and r, =5Q, 7 =3sec.

For t=2minto 3 min:

Since r=0, I, and |, will not change, that is

I, =05Aand 1,=0

'r
0.5A ———
0. 3Af-~--- 7 ¢ Fig. 7a
0 —— e — e — e — oA
1 2 3 min
,
r‘ -—- saffi T @ - e - - - e 7b
t
- -
0 1 2 3 min
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I
—————— —---r---——-t-

0 1 2 3 min

I,
O SA e e e e o e e -
o 3“&:‘:_‘& LT

0 1 2 3 min

3) The operation steps are:
First step

Turn on power switch K, and increase the total current | to 20 A, i. e. equal to 1,.
Since the superconducting switch is in the state r =0, so that V,, =L dl,/dt=0,

that is, I, can not change and 1, increases by 20A, in other words, I, changes

from —20Ato zero.
Second step

Switch r fromOto r,.
Third step

Gradually reduce | to zero while keeping 1, <0.5A: since I,=V,, /r, and
V_=Ldl, /dt, when L=10H, r, =5Q, the requirement I, <0.5A corresponds to
dl, /dt <0.25A/sec, that is, a drop of <15Ain 1 min. In Fig. 8 dI /dt ~0.1A/sec and

dl, /dt isaround this value too, so the requirement has been fulfilled.
Final step
Switch r to zero when V,, =0 and turn off the power switch K. These results

are shown in Fig. 8.

Fig. 8a

8b

8c

15



8d

4) First step and second step are the same as that in part 3, resultingin I, =0.
Third step Increase | by 10 A to 30 A with a rate subject to the requirement
I, <0.5A.

Fourth step Switch r to zero when V,, =0.
Fifth step Reduce | to zero, I, =30 A will not change because V,, is zero.

I, =1—1, will change to —30 A. The current flowing through the magnet is thus

closed by the superconducting switch.

Final step Turn off the power switch K. The magnet is operating in the persistent
mode.

These results are shown in Fig. 9.

—— e .

0 3 6 9 12 15min

9b

9c

9d

Grading Scheme
Part 1, 2 points:

0.5 point for each of I, I, from t=t to t, and I,, I, from t=t, to t,.

Part 2, 3 points:

0.3 point for each of I, I, from t=0 to 1 min, |, I, |, at t=1 min,

16



and 1,, I, I, from t=1 to2 min;

0.2 point for eachof 1, I,,and 1, from t=2 to 3 min.

Part 3, 2 points:
0.25 point for each section in Fig. 8 from t =3 to 9 min, 8 sections in total.
Part 4, 3 points:
0.25 point for each section in Fig. 9 from t =3 to 12 min, 12 sections in total.
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Theoretical Problem 3
COLLISION OF DISCSWITH SURFACE FRICTION

A homogeneous disc A of mass m and radius Ra moves translationally on a smooth
horizontal x-y plane in the x direction with a velocity V (see the figure on the next
page). The center of the disk is at a distance b from the x-axis. It collides with a
stationary homogeneous disc B whose center is initially located at the origin of the
coordinate system. The disc B has the same mass and the same thickness as A, but its
radius is Rg. It is assumed that the velocities of the discs at their point of contact, in the
direction perpendicular to the line joining their centers, are equal after the collision. It
is also assumed that the magnitudes of the relative velocities of the discs along the line
joining their centers are the same before and after the collision.

1) For such a collision determine the X and Y components of the velocities of the two

discs after the collision, i. e. V,,, V., Vg and Vg, intermsof m, R,, Ry,
V and b.

2) Determine the kinetic energies E) for disc Aand E; for disc B after the collision

intermsof m, R,, Ry, V and b.

Theoretical Problem 3—Solution
1) When disc A collides with disc B, let n be the unit vector along the normal to
the surfaces at the point of contact and t be the tangential unit vector as shown in the

figure. Let ¢ be the angle between n and the x axis. Then we have

b=(R,+R;)sing
The momentum components of A and B along n and t before collision are:

mV,, =mV cosep, mV,, =0,

18



mV, =mVsing, mVy =0.
Denote the corresponding momentum components of A and B after collision by

mV,,, mVg,, mV,,and mVg. Let @, and @, be the angular velocities of A and

B about the axes through their centers after collision, and 1, and I, be their

corresponding moments of intertia. Then,

1 1
IA:EmR/Z_\, IB :EmRé
The conservation of momentum gives
mV cose = mV,, + mVg,, (1)
mVsing =mV, + mV,/, (2)

The conservation of angular momentum about the axis through O gives
mVb=mV, (R, + Ry) + 1,0, + | s (3)
The impulse of the friction force exerted on B during collision will cause a

momentum change of mV,, along t and produces an angular momentum |,m,

simultaneously. They are related by.

MVLR, = | gog (4)

y
A
b,
A
(]
g

oNe
B

During the collision at the point of contact A and B acquires the same tangential

[«

velocities, so we have
V/-’\t —wR, = Vét —wgRy (5)

It is given that the magnitudes of the relative velocities along the normal direction
of the two discs before and after collision are equal, i. e.

Vcosp =Vg, —V,,- (6)

From Egs. 1 and 6 we get

19



V. =0,

Vg, =V Cose.
From Egs. 2 to 5, we get
, 5, .
V. =€Vsm(p,
, 1.
Vg :EVsmgo,
o, =Vsm(p’
3R,
o, =Vsm(p.
3R,

The x and y components of the velocities after collision are:

. 5vb?

V, =V, cosp+V, sihnpg=—————, 7

Ax An QrVysIing G(RA+RB)2 (M
_ B5Vby/(R, + Ry)? —b?

V,, =V, sing+V, cosp = , 8
Ay an SN @V ® G(RA+RB)2 8

Ve =Vg cose+Vg Sing = 1—L 9)
Bx Bn ¢ Bt ¢ 6(RA+RB)2 ’

5Vhy/(R, + Ry)? —b?

Vg, =-Vg, Singp+Vg cosp=— : 10
By gn >IN @ + Vg Q 6(RA+RB)2 (10)
2) After the collision, the kinetic energy of disc A is
1 1 3mvV *b?
E.==mV2Z+V2)+=1 ,0=———— 11
A 2 (VAx Ay) 2 AYa 8(RA+RB)2 ( )
while the kinetic energy of disc B is
2
£y = Tz ey Sz = vz - M1 (g
2 2 2 12(R, + Rg)

Grading Scheme

1. After the collision, the velocity components of discs A and B are shown in Eq. 7,
8, 9 and 10 of the solution respectively. The total points of this part is 8. 0. If the result
in which all four velocity components are correct has not been obtained, the point is
marked according to the following rules.

20



0.8 point for each correct velocity component;

0.8 point for the correct description of that the magnitudes of the relative velocities
of the discs along the line joining their centers are the same before and after the
collision.

0.8 point for the correct description of the conservation for angular momentum;

0.8 point for the correct description of the equal tangential velocity at the touching
point;

0.8 point for the correct description of the relation between the impulse and the
moment of the impulse.

2. After the collision, the kinetic energies of disc A and disc B are shown in Egs.
11 and 12 of the solution respectively.

1.0 point for the correct kinetic energies of disc A;

1.0 point for the correct kinetic energies of disc B;

The total points of this part is 2.0
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XXV INTERNATIONAL PHYSICS OLYMPIAD
BEIJING,PEOPLE’S REPUBLIC OF CHINA
PRACTICAL COMPETITION
July 15, 1994
Time available: 2.5 hours
READ THISFIRST!

INSTRUCTIONS:
1. Use only the ball pen provided.
2. Your graphs should be drawn on the answer sheets attached to the problem.
3. Write your solution on the marked side of the paper only.
4. The draft papers are provided for doing numerical calculations and draft drawings.
5. Write at the top of every page:
@ The number of the problem
@ The number of the page of your report in each problem
@ The total number of pages in your report to the problem
@ Your name and code number
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EXPERIMENTAL PROBLEM 1
Determination of light reflectivity of a transparent dielectric surface.

Experimental Apparatus

1. He-Ne Laser(~1.5mW).The light from this laser is not linearly polarized.

2. Two polarizers (P1, P;) with degree scale disk (Fig. 1), one (P;) has been
mounted in front of the laser output window as a polarizer, and another one can be
fixed in a proper place of the drawing board by push-pins when it is necessary.

3. Two light intensity detectors (D1, D2) which consisted of a photocell and a
microammeter (Fig. 2).

4. Glass beam splitter(B).

5. Transparent dielectric plate, whose reflectivity and refractive index are to be
determined.

6. Sample table mounted on a semicircular degree scale plate with a coaxial swivel
arm(Fig. 3).

7. Several push-.pins for fixing the sample table on the drawing board and as its
rotation axis.

8. Slit aperture and viewing screen for adjusting the laser beam in the horizontal
direction and for alignment of optical elements.

9. Lute for adhere of optical elements in a fixed place.

10. Wooden drawing board.

11. Plotting papers

Experiment Requirement

1. Determine the reflectivity of the p-component as a function of the incident angle
(the electric field component, parallel to the plane of incidence is called the
p-component).

(@) Specify the transmission axis of the polarizer (A) by the position of the marked
line on the degree scale disk in the p-componet measurement(the transmission
axis is the direction of vibration of the electric field vector of the transmitted
light).

(b) Choose any one of the light intensity detector and set its micro-ammeter at the
range of "x5". Verify the linear relation ship between the light intensity and
the micro-ammeter reading. Draw the optical schematic diagram. Show your
measured data and calculated results(including the calculation formula)in
the farm of a table. Plot the linear relationship curve.
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(c) Determine the reflectivity of the p-component as a function of the incident
angle. Draw the optical schematic diagram. Show your measured data and
calculated reflectivity(including the calculation formula)in the form of a table.
Plot the reflectivity as a function of the incident angle.

2. Determine the refractive index of the sample as accurate as possible.
Explanation and Suggestion

1. Laser radiation avoid direct eye exposure.

2. Since the output power of the laser beam may fluctuate from time to time, the
fluctuation of light output has to be monitored during the performance of the
experiment and a correction of the experimental results has to be made.

3. The laser should be lighting all the time, even when you finish your experiment
and leave the examination hall, the laser should be keeping in work.

4. The reflected light is totally plane polarized at an incident angle &, while

tgd, = n (refractive index).

Fig. 1 polarizers with degree scale disk

s

il
\@ N

o X1
[ @ X0z_ X5
OFF
to the “INPUT” of the micro-ammeter o A @
mPUT MULTIPLE

Fig. 2 Light intensity detector

24



(1) Insert the plug of photocell into the “INPUT” socket of microammeter

(2) Switching on the microammeter.
(3) Blocd off the light entrance hole in front of the photocell and adjust the scale

reading of micro ammeter to “0”.
(4) Set the “Multiple” knob to a proper range.

Push-pin for fixing the sample table
on the drawing board and as its
.rotation axis

Sample table mounted on a semicircuiar
degree scale plate with a coaxlal swivel

Fig.3 Sample table mounted on a semicircular degree scale plate
Experimental Problem 1——Solution
1. (a) Determine the transmission axis of the polarizer and the Brewster angle &, of

the sample by using the fact that the rerlectivity of the p-component R =0 at

the Brewster angle.

Change the orientation of the transmission axis of P, , specified by the position of

the marked line on the degree scale disk () and the incident angle (&.) successively

until the related intensity 1, =0.

Sample
| :

Laser - ——
1

L / Light intensity detector

Now the incident light consists of p-component only and the incident angle is 6;, the
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corresponding values y, and @, are shown below:

W, 140.0° 322.0° 141.0° 322.5°

0 56.4° 56.4° 56.2° 56.2°

w, =1405°+£0.5° or 322.3° +0.1°

The Brewster angle 6, is56.3° £0.1°

1. (b) Verification of the linear relationship between the light intensity and the
microammenter reading.

P
i L - D

The intensity the transmitted light passing through two polarized B, and P,
obeys Malus’ law
1(8) =1,cos* 0
where 1, is the intensity of the light polarized by p, and incident, | is the

intensity of the transmitted light, and & is the angle between the transmission axes of
P, and p,. Thus we can obtain light with various intensities for the verification by

using two polarizers.
The experimental arrangement is shown in the figure.

The light intensity detector D, serves to monitor the intensity fluctuation of the
incident beam (the ratio of I, to I, remain unchanged), and D, measures I,. Let
i,(0) and i,(@) be the readings of D, and D, respectively, and y,(d) be the
reading of the marked line position. i, =0 when 6 =90° , the corresponding v,
IS y,(90° ), and the value of & correspondingto v, is

0=y, —y,(90°) £90°|
Data and results;
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v,(90°) = 4°

W, 94.0° 64.0° 49.0° 34.0° 4.0°

0 0.0° 30.0° 45.0° 60.0° 90.0°
i, (0) uA 6.3%1 57x1 57%1 57%1 57%1
i, (0) uA 18.7X5 12.7X5 8.2X5 4.0X5 0.0X5

From the above data we can obtain the values of 1(€)/1,(6¢) from the formula

1) _i,(0) ,(0)
I, 1,(0) i,(0)

and compare them with cos®é@ for examining the linear relationship. The results

obtained are:

0 0.0° 30.0° 45.0° 60.0° 90.0°
cos? o 1.00 0.75 0.50 0.25 0.00
1@/, 1.00 0.75 0.49 0.24 0.00

i20) ir(o)
i2(0)" i,(8)
1. 00
0.50
cos 24
0 0.50 1.00

1. (c) Reflectivity measurement

The experimental arrangement shown below is used to determine the ratio of 1,
to 1, which is proportional to the ratio of the reading (i,,) of D, to the

corresponding reading (i,,) of D;.

P B
— | \ .

| &

I

27



Then used the experimental arrangement shown below to measure the relativity

R, of the sample at various incident angle (¢) while the incident light consists of

p-component only. Let i,(¢) and i,(9) be the readings of D, and D,

respectively.

Then the reflectivity is

R (@)= @ _1O) s

I0 Il(e) i20
Data and results:
v, =140.5°
i, =19.8x5uA
I =13.3LA
() i,(0) i, (uA) R,(0)
5 15.1X0.2 11.1 0.037
10 14.9X0.2 11.2 0.036
20 13.3X0.2 11.1 0.032
30 11.4X0.2 12.2 0.025
40 7.8X0.2 14.7 0.014
50 2.3X0.2 16.9 0.0037
53 0.7X0.2 11.3 0.0017
55 0.3X0.2 11.3 0.00059
56.3 (dark) ~0 11.5 ~0
58 0.3X0.2 11.5 0.0007
60 1.1X0.2 135 0.0024
64 6.5X0.2 16.7 0.011
66 7.8X0.2 11.8 0.018
68 16.3X0.2 15.0 0.029
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72 5.3X0.1 11.7 0.061
76 13.1X1 14.0 0.13
80 4.4X5 11.7 0.25
84 9.1X5 145 0.42
The curve of reflectivity of p-component as a function of incident in plexiglass
R.(6)
0.5
0.4r
0.3}
0.2}
0.1
"""."ﬁ\_ef(c) 6.

0 10 20 30 40 50 60 70 80

2. The Brewster angle &, can be found from the above date as

6 =56.3°+£0.2°
The index of refraction can be calculated as

n=tand, =1.50+0.01

Thesourcesof errorsare:
1. Detector sensitivity is low.
2. The incident light does not consist of p-component only:.
3. The degree scales are not uniform.

EXPERIMENTAL PROBLEM 1: Grading Scheme(10 points)
Part 1. Reflectivity of the p-component. 7 points, distributed asfollows.
a. Determination of the transmission axis of the polarizer (A) in p-component
measurement, 1 point.

(Error less than +2°, 1.0point;

error less than +3°, 0.7point;

error less than +4°, 0.3point;
error less than +=5° , 0.1 point.)

b. Verification of the linearity of the light intensity detector(2 points). Draws the
optical schematic diagram correctly, 1.0 point; (Without the correction of the
fluctuation of the light intensity, 0.4 point only);
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Uses 1/1,~cos”*@ figure to show the “linearity”, 0.5 point;

Tabulate the measured data(with 5 points at least)correctly, 0.5 point.

c. Determination of the reflectivity of the p-component of the light as a function of
incident angle, 4 points, distributed as follows.
Draws the optical schematic diagram correctly and tabulate the measured data
perfectly, 2.0 points;
Plot the reflectivity as the function of incident angle with indication of errors, 2
points.

Part 2. Determination of therefractive index of sample, 3 point.
Brewster angle of sample, 1 point;

(Error less than +1°, 1.0point;
error less than +2°, 0.5point;
error less than +3°, 0.2point;
error larger than +3°, 0 point.)

The refractive index of sample, 0.5 point.
Discussion and determination of errors, 1.5 points.

EXPERIMENTAL PROBLEM 2
Black Box
Given a black box with two similar terminals. There are no more than three passive
elements inside the black box. Find the values of elements in the equivalent circuit
between the terminals. This box is not allowed to be opened.
Experimental Apparatus

1. Double channel oscilloscope with a panel illustration, showing the name and
function of each knob

2. Audio frequency signal generator with a panel illustration, showing the name
and function of each knob

3. Resistance box with a fixed value of 100 ohm(< £0.5%)

4. Several connecting wires

5. For the coaxial cables, the wire in black color at the terminal is grounded.

6. Log-log paper, semi-log paper, and millimeter paper are provided for use if
necessary
Note: The knobs, which were not shown on the panel illustration of the “signal

generator” and *“oscilloscope”, have been set to the correct positions. It should
not be touched by the student.

Experimental Requirements

1. Draw the circuit diagram in your experiment.
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2. Show your measured data and the calculated results in the form of tables. Plot
the experimental curves with the obtained results on the coordinate charts
provided(indicate the title of the diagram and the titles and scale units of the
coordinate axes)

3. Given the equivalent circuit of the black box and the names of the elements with
their values in the equivalent circuit(write down the calculation formulas).

Instructions

1. Do your experiment in the frequency range between 100 Hz and 50kHz.

2. The output voltage of the signal generator should be less than 1.0V
(peak-to-peak). Set the “Out Attenuation” switch to “20” db position and it
should not be changed.

3. On connecting the wires, be careful to manage the wiring so as to minimize the
50Hz interference from the electric mains.

Instruction for Using XD2 Type Frequency Gener ator

1. Set the “Out Attenuation” to “20” db position and it should not be changed.

2. Set the “Damping Switch” to “Fast” position.

3. The indication of the voltmeter of the signal generator is the relative value, but

not the true value of the output.

4. Neglect the error of the frequency readings.

Note: For XD22 Type Audio Frequency generator, there is no “Damping Switch”, and

the “output” switch should be set to the sine “~” position.

Instruction for Using SS-5702 Type Oscilloscope

1. Keep the “V mode” switch in “Dual” position.

2. The “Volts/div” (black) and the “variable control” (red) vary the gain of the
vertical amplifier, and when the “variable control” (red) is ill the fully
clockwise position, the black setting are calibrated.

3. The “Times/div” (Black) varies the horizontal sweep rate from 0.5 u s/div to
0.2s/div, and they are calibrated when the “variable control” (red) is in the fully
clockwise CAL position.

4. The “Trigging Source” (Trigging sweep signal) is used to select the trigging
signal channel and the" level™ control is used to adjust the amplitude of the
trigging signal.

5. Measuring accuracy: £4%.

Instruction for Using “ Resistance Box”

The resistance of the “Resistance Box” has been set to a value of 1000hm, and it

should not be changed.
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Experimental poblem 2...... Solution
1. The circuit diagram is shown in Fig. 1

CHI(V.
A .l (‘:4:)'_- L
=
“plack"box| £ Vs .
l Fain
“signal” B CH2(V )
generator T

resistance "box| [R(1000Q) Ve

-+ —_
Fig. 1
We have the relation:
| =V
R 1
V. V.

Z+R= Z+R _ Z+RR
| VA

2. Measure the values of V, . and V. at various frequencies (f), the measured data

and calculated value of Z+R are shown in table I. “The Z+R-f curve is plotted in Fig. 2

Z+R(Q) (Z+R)—f

10. OK}

1. 00K }

100 1 .
100 1. 00K 10. 0K f(Hz)

Tablel. The magnitude of impedance verus frequency

f (x10° Hz) U,.r (V) U,mVpp Z + R(x10°Q)
0.100 0.600 22.0 2.73
0.200 0.600 45.0 133
0.400 0.600 94.0 0.638
0.700 0.300 92.0 0.326
0.900 0.300 121 0.248
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1.00
1.10
1.16
1.25
1.50
2.00
4.00
8.00
15.0
30.0
50.0

0.300
0.300
0.300
0.300
0.300
0.300
0.300
0.600
0.600
0.600
0.600

136
140
141
140
120
88.0
78.0
38.0
20.0
10.0
6.0

0.220
0.214
0.213
0.214
0.250
0.341
0.769
1.58
3.00
6.00
10.0

From table 1 and Fig. 2, we got the conclusions:

(1) Current resonance (minimum of Z) occurs & f, ~1.16x10°Hz.

(2) f(f,, Zcf, Ap~-x/2. The impedance of the “black box” at low

frequency is dominated by a inductance.

3) tHf,, Zocf, Ap~n/2. The impedance of the “black box” at high

frequency is dominated by a inductance.

(4) Equivalent circuit of the “black box”; r, L and C connected in series shown in

Fig. 3.

Fig. 3

3. Determination of the valuesof r, L and C.

@ r

At resonance frequency f,
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Then

V. V.
Z+R:%:ﬂR:r+R
R

From table 1, r + R=213Q, it is given R=100Q2, so the equivalent resistance
r inFig. 3isequal 113Q.
(b) C

At low frequency, z, ~0 in Fig. 3. So the circuit could be considered as a series

RC circuit.
From phasor diagram, Fig. 4,

1 Vc VV22+R _Vl'ir

_=ZC =—=

Since V2, IV/ . ~6x10"° at f =100Hz, V., can beneglected with respect to

V22+R’ SlY V, Va
i ~ Va.r ~Z+R=273x10°Q
wC I
1
v~ = 0.58uf . i\
o(Z+R) o Viea=1(Z+E)
C =058 . Fig. 4
L

At high frequency, Z, =0 in Fig. 3. So the circuit could be considered as a series

RL circuit. Vi Frer
From phasor diagram, Fig. 5,
|VL = V22+R _VriR 1
Since V2./V};.~45x10" at f=50kHz, V2, can be _
Ve Va
neglected with respectto V/ ., so Fig. 5
szsz\/l—L=|VZ+R|zZ+R=104Q (3)



Z+R

L= =31.8mH.

Error estimation:
It is given, precision of the resistance box reading AR/R = 0.5%
precision of the voltmeter reading AV /V ~ 4%

(1) Resistance r : at resonance frequency f,

Vv
r+R=-2%R
VR

AR _AVyg  AVe | AR 196 +49%+0.5%=8.5%
r+R  V,. Vs R

Ar =16Q
(2) Capacitance C: (Neglect the error of the frequency reading)

1 Z:VZ+RR
oC ™ % Vg

N

AC _AVzr  AVe AR g 80
cC V,. V. R

The approximation V. =V,,, will introduce apercentageerror 0.3%

(3) Inductance L: Similar to the results of capacitance C, but the percentage error
introduced by the approximation V, =V, . is much small (0.003%) and thus
negligible.

AL g5%.
L

Experimental Problem 2: Grading Scheme (10 points maximum)
1. Measuring circuit is correct as shown in Fig.(a)

S CH1(Vz4n)

“ ”
black "box 7z

“singnal” @ CH2(Vx)

generator
R(100Q)

=

|

Fig. a
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2. Correct data table and figure to show the characteristic of the black box
------ 2.0 points
3. The equivalent circuit of the black box, and the names of the elements with their
values in the equivalent circuit are correct
total 6.0 points
(@ R, LandC are connected in series
------ 1.5 point
(L and C are connected in series
------ 1.0 point)
(b) Correct value (error less than 15% ) for each element
------ 0.5 point (X 3)
(error between 15% and 30% 0.3)
(error between 30% and 50% 0.1)
(c) Correct calculation formula for each element
------ 0.5 point (X 3)
(d) Error estimate is reasonable for each element

...... 0.5 points (X 3)
Ooooooooo
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Theoretical Question 1

This is essentially a question in special relativity. The core of the question is part (b) which involves a
simulated experiment. It requires students to combine the concepts of gravitational red shifts, resonance
absorption, Doppler shifts and the graphical interpretation of data.

Overall the question appears to have met its objective of allowing nearly all students to gain a few marks
from part (a). A suprisingly large number of students were able to obtain essentially the correct solution
to part (b) using the appropriate straight-line graph. Part (c) also produced many basically correct
solutions with some of the best students simplifying their soloution to the logical limit. One student
managed to obtain the correct answer making use of the 4-momentum. The very best answers to this
question were almost flawless and demonstrated a very high level of conceptual understanding and the
ability to synthesise ideas from a number of different areas.

Theoretical Question 2

This question is concerned with the propagation of waves in a medium with a varying refractive index
and the different modes of propagation which occur. The responses to this question mirrored the marks
distribution shown in Figure 1 for the overall theory results. A number of students gained near-perfect
marks while an equivalent number gained very few. The most interesting part of the marking arose in
connection with part (a), where the arc radius R specified in the question needs to be established. The
marking team encountered four distinguishable and valid approaches to establishing the result for R.

Part (c) proved to be a useful discriminator between those students who either did, or did not, realise that
a seris of paths, or modes, exists from the source to the receiver. The numerical estimates in part (d),
and intended to assist the markers, required some care in marking according to the way in which students
treated the issue of significant figures during the calculation. Part (e), which led to the conclusion that
the ray with the smallest calue of initial angle will arrive first, was a useful discriminator.

Theoretical Question 3

This question is essentially a problem in mechanics with elements of hydrostatics. It involves the concepts
of Archimedes’ Principle, small oscillations and rotational dynamics applied to an interesting geometry.

One common mistake of interpretation noted by the examiners was to set the length of the rod equal
to the radius rather than to the diameter of the cylinder. In line with the policy on marking, students
were only penalised once for this mistake provided that the rest of their analysis was consistent with this
assumption. The clever aspect of the problem was in part (d) where some students attempted to estimate
the solution to the transcendental equation o — sin acos @ = 1.61 sin ¢, rather than simply checking that
a ~ 1.57(7/2) gave a reasonable result. Students from two teams used numerical methods to obtain a
more precise value for . One student who correctly applied Newton’s method to solve the equation for
« received the special prize for mathematics.

Experimental Question 1

This question was concerned with the motion of small objects (cylinders) in a viscous medium, and was
designed to test as wide a range of experimental skills as possible. In particular the question aimed to
test:

e understanding of the concept of terminal velocity.

e experimental technique; the experiment required careful hand-eye coordination to reduce systematic
effects (for example by dropping the cylinders each time with the same orientation and using multiple
timings to reduce the scatter in the results).

e the ability to graph and interpret data including the use of logarithmic and linear plots and the
interpretation of slopes and intercepts.

e cstimation of uncertainties in the results.



The experiment generally worked as expected. Experimental techniques were uniformly good, and
the students demonstrated excellent manipulative skills. Their main weakness was in the handling of the
determination of the density of the glycerine from the graph of fall time as a function of the density of
the cylinders. Students in general did not measure the intercept on the density axis but calculated the
density from the intercept on the fall time axis and the slope of the graph.

Experimental Question 2

This question made use of a laser pointer to carry out several experiments in optics. The first task
concerned the use of a metal ruler as a diffraction grating. In this experiment the diffraction pattern was
formed by reflection with the incident laser beam at nearly normal incidence to the ruler. (This geometry
is rather different from the more common demonstration where the incident beam is at close to grazing
incidence.) A number of students had difficulty with this geometry and failed to obtain a convincing
pattern.

The second experiment investigated the reflection and transmission of light through transparent media.
The main difficulty with the measurements was that changes in intensity had to be estimated by eye
using a set of calibrated transmission discs. This was much more demanding than using, for example,
a photodiode and multimeter as it required the exercise of considerable experimental judgement. It
therefore provided an excellent test of a student’s experimental technique.

The final experiment was concerned with the scattering of light from a translucent material formed by
adding a few drops of milk to water. The amount of scattering and the reduction in the transmitted
intensity were measured as a function of the concentration of milk. Students had considerable difficulty
with this experiment with some not recognising the phenomena they were meant to be observing. However
the best students were still able to obtain convincing results. The exercise therefore provided good
discrimination between the most able students.



Theoretical Question 1

Gravitational Red Shift and the Measurement of Stellar Mass

(a)

(3 marks)

A photon of frequency f possesses an effective inertial mass m determined by its energy. Assume
that it has a gravitational mass equal to this inertial mass. Accordingly, a photon emitted at the
surface of a star will lose energy when it escapes from the star’s gravitational field. Show that the
frequency shift A f of the photon when it escapes from the surface of the star to infinity is given by

Af  GM
f Rc?

for Af < f where:

e (G = gravitational constant
e R = radius of the star
e ¢ = velocity of light

e M = mass of the star.

Thus, the red-shift of a known spectral line measured a long way from the star can be used to
measure the ratio M/R. Knowledge of R will allow the mass of the star to be determined.

(12 marks)

An unmanned spacecraft is launched in an experiment to measure both the mass M and radius
R of a star in our galaxy. Photons are emitted from He™ ions on the surface of the star. These
photons can be monitored through resonant absorption by He™ ions contained in a test chamber
in the spacecraft. Resonant absorption accors only if the He™ ions are given a velocity towards the
star to allow exactly for the red shifts.

As the spacecraft approaches the star radially, the velocity relative to the star (v = 3c¢) of the He™
ions in the test chamber at absorption resonance is measured as a function of the distance d from
the (nearest) surface of the star. The experimental data are displayed in the accompanying table.

Fully utilize the data to determine graphically the mass M and radius R of the star. There is no
need to estimate the uncertainties in your answer.

Data for Resonance Condition
Velocity parameter B=wv/c (x107°) | 3.352 | 3.279 | 3.195 | 3.077 | 2.955

Distance from surface of star d (x10%m) 38.90 | 19.98 | 13.32 | 8.99 | 6.67

(5 marks)

In order to determine R and M in such an experiment, it is usual to consider the frequency
correction due to the recoil of the emitting atom. [Thermal motion causes emission lines to be
broadened without displacing emission maxima, and we may therefore assume that all thermal
effects have been taken into account.]

(i) (4 marks)
Assume that the atom decays at rest, producing a photon and a recoiling atom. Obtain the
relativistic expression for the energy hf of a photon emitted in terms of AFE (the difference in
rest energy between the two atomic levels) and the initial rest mass mg of the atom.
(ii) (1 mark)
. . L o [(Af
Hence make a numerical estimate of the relativistic frequency shift | —— for the case of
recoil
He™ ions.
Your answer should turn out to be much smaller than the gravitational red shift obtained in
part (b).

Data:



Velocity of light c
Rest energy of He moc?
Bohr energy E,

Gravitational constant G

3.0 x 108ms™!
4 x 938(MeV)
13.622
3 (eV)
6.7 x 10~ 1 Nm2kg 2




Theoretical Question 2

Sound Propagation

Introduction
The speed of propagation of sound in the ocean varies with depth, temperature and salinity. Figure
1(a) below shows the variation of sound speed ¢ with depth z for a case where a minimum speed value
co occurs midway betweeen the ocean surface and the sea bed. Note that for convenience z = 0 at the
depth of this sound speed minimum, z = zg at the surface and z = —z; at the sea bed. Above z =0, ¢
is given by
c=co+bz .

Below z = 0, c is given by
c=cy—bz .

de
In each case b = ‘d— , that is, b is the magnitude of the sound speed gradient with depth; b is assumed
z
constant.
z z
Zg R
c=cy+ bz
0 c
Co
c=c¢y— bz
—Zp S
Figure 1 (a) Figure 1 (b)

Figure 1(b) shows a section of the z—z plane through the ocean, where z is a horizontal direction.
The variation of ¢ with respect to z is shown in figure 1(a). At the position z = 0, = 0, a sound source
S is located. A ‘sound ray’ is emitted from S at an angle 6y as shown. Because of the variation of ¢ with
z, the ray will be refracted.

(a) (6 marks)
Show that the trajectory of the ray, leaving the source S and constrained to the z—x plane forms
an arc of a circle with radius R where

"~ bsinéb,

for 0§90<g

(b) (3 marks)
Derive an expression involving zg, cg and b to give the smallest value of the angle 8y for upwardly
directed rays which can be transmitted without the sound wave reflecting from the sea surface.

(¢) (4 marks)
Figure 1(b) shows the position of a sound receiver H which is located at the position z = 0, z = X.
Derive an expression involving b, X and ¢y to give the series of angles 0y required for the sound ray
emerging from S to reach the receiver H. Assume that zg and z;, are sufficiently large to remove
the possibility of reflection from sea surface or sea bed.



(d)

(2 marks)
Calculate the smallest four values of 6 for refracted rays from S to reach H when
e X =10000 m
e ¢y = 1500 ms™!
e b=0.02000 s~}
(5 marks)
Derive an expression to give the time taken for sound to travel from S to H following the ray path

associated with the smallest value of angle 6y, as determined in part (c). Calculate the value of
this transit time for the conditions given in part (d). The following result may be of assistance:

/ dx T
- = Intan (—)
sinx 2

Calculate the time taken for the direct ray to travel from S to H along z = 0. Which of the two rys
will arrive first, the ray for which 8y = 7/2, or the ray with the smallest value of 6, as calculated
for part (d)?




Theoretical Question 3

Cylindrical Buoy

(a)

(c)

(3 marks)

A buoy consists of a solid cylinder, radius a, length I, made of lightweight material of uniform
density d with a uniform rigid rod protruding directly outwards from the bottom halfway along the
length. The mass of the rod is equal to that of the cylinder, its length is the same as the diameter
of the cylinder and the density of the rod is greater than that of seawater. This buoy is floating in
sea-water of density p.

In equilibrium derive an expression relating the floating angle «, as drawn, to d/p. Neglect the
volume of the rod.

(4 marks)

If the buoy, due to some perturbation, is depressed vertically by a small amount z, it will experience
a nett force, which will cause it to begin oscillating vertically about the equilibtium floating position.
Determine the frequencty of this vertical mode of vibration in terms of «, g and a, where g is the
acceleration due to gravity. Assume the influence of water motion on the dynamics of the buoy is
such as to increase the effective mass of the buoy by a factor of one third. You may assume that a
is not small.

(8 marks)

In the approximation that the cylinder swings about its horizontal central axis, determine the
frequency of swing again in terms of g and a. Neglect the dynamics and viscosity of the water in
this case. The angle of swing is assumed to be small.




(d) (5 marks)
The buoy contains sensitive acelerometers which can measure the vertical and swinging motions
and can relay this information by radio to shore. In relatively calm waters it is recorded that the
vertical oscillation period is about 1 second and the swinging oscillation period is about 1.5 seconds.
From this information, show that the floating angle « is about 90° and thereby estimate the radius
of the buoy and its total mass, given that the cylinder length [ equals a.

[You may take it that p ~ 1000 kgm =2 and g ~ 9.8 ms™2]



Original Theoretical Question 3

The following question was not used in the XXVI IPhO examination.

Laser and Mirror

(a)

Light of frequency f; and speed c is directed at an angle of incidence #; to the normal of a mirror,
which is receding at speed w in the direction of the normal. Assuming the photons in the light beam
undergo an elastic collision in the rest frame of the mirror, determine in terms of 6, and u/c the
angle of reflection 6,. of the light and the reflected frequency f,., with respect to the original frame.

*u

6,0

1 r

fi Jr

[You may assume the following Lorentz transformation rules apply to a particle with energy E and
momentum p:

p| —vE/c? E—ovp
_ _ 7 5o I
pL pL, P 1_ U2/02 ) 1_ 1}2/02 )

where v is the relative velocity between the two inertial frames; p stands for the component of
momentum perpendicular to v and p represents the component of momentum parallel to v.]

A thin rectangular light mirror, perfectly reflecting on each side, of width 2a and mass m, is mounted
in a vacuum (to eliminate air resistance), on essentially frictionless needle bearings, so that it can
rotate about a vertical axis. A narrow laser beam operating continuously with power P is incident
on the mirror, at a distance b from the axis, as drawn.

A
b
[ ]

v

elevation plan

Suppose the mirror is originally at rest. The impact of the light causes the mirror to acquire a
very small but not constant angular acceleration. To analyse the siuation approximately, assume
that at any given stage in the acceleration process the angular velocity w of the mirror is constant
throughout any one complete revolution, but takes on a slightly larger value in the next revolution
due to the angular momentum imparted to the mirror by the light during the preceding revolution.
Ignoring second order terms in the ratio (mirror velocity / ¢), calculate this increment of angular
momentum per revolution at any given value of w. [HINT: You may find it useful to know that
[ sec?6 df = tanb.]

Using the fact that the velocity of recoil of the mirror remains small compared with ¢, derive an
approximate expression for w as a function of time.



As the mirror rotates, there will be instants when the light is reflected from its edge, giving the
reflected ray an angle of somewhat more than 90° with respect to the incident beam.. A screen 10
km away, with its normal perpendicular to the incident beam, intercepts the beam reflected from
near the mirror’s edge. Find the deviation £ of that extreme spot from its initial position (as shown
by the dashed line, when the mirror was almost at rest), after the laser has operated for 24 hours.
You may suppose the laser power is P = 100 W, that the mirror has mass m = 1 gram and that
the geometry of the apparatus corresponds to a = bv/2. Neglect diffraction effects at the edge.

screen




Experimental Question 1

Terminal velocity in a viscous liquid

An object falling in a liquid will eventually reach a constant velocity, called the terminal velocity. The
aim of this experiment is to measure the terminal velocities of objects falling through glycerine.

For a sphere of radius r falling at velocity v through a viscous liquid, the viscous force F is given by
F = 6mnrv. Here 7 is a property of the liquid called the viscosity. In this experiment you will measure
the terminal velocity of metal cylinders (because cylinders are easier to make than spheres). The diameter
of each cylinder is equal to its length, and we will assume the viscous force on such a cylinder is similar
to the viscous force on a sphere of the same diameter, 27:

Feyr = 6mrnr™u (1)

where k = 1, m = 1 for a sphere.

Preliminary

Calculation of terminal velocity (2 marks)

If p is the density of the culinder and p’ is the density of the liquid, show that the terminal velocity vr
of the cylinder is given by
_ 3—m /
vp = Cr*""(p—p') (2)

where C is a constant and derive a expression for C'.

Experiment

Use the equipment available to determine the numerical value of the exponent m (10 marks) and the
density of glycerine (8 marks).

Notes

e For consistency, try to ensure that the cylinders fall in the same orientation, with the axis of the
cylinder horizontal.

e The tolerances on the diameter and the length of the cylinders are 0.05 mm (you need not measure
them yourself).

e There is a brass sieve inside the container that you should use to retrieve the metal cylinders.
Important: make sure the sieve is in place before dropping objects into the glycerine, otherwise you
will not be able to retrieve them for repeat measurements.

e When glycerine absorbs water from the atmosphere, it becomes less viscous. Ensure that the
cylinder of glycerine is covered with the plastic film provided when not in use.

e Do not mix cylinders of different size and different material after the experiment.

Material Density (kgm~3)
Aluminium 2.70 x 103
Titanium 4.54 x 103
Stainless steel 7.87 x 103
Copper 8.96 x 103



Experimental Question 2

Diffraction and Scattering of Laser Light

The aim of this experiment is to demonstrate and quantify to some extent the reflection, diffraction, and
scattering of light, using visible radiation from a Laser Diode source. A metal ruler is employed as a
diffraction grating, and a perspex tank, containing water and diluted milk, is used to determine reflection
and scattering phenomena.

Section 1 (6 marks)

Place the 150 mm length metal ruler provided so that it is nearly normal to the incident laser beam, and
so that the laserr beam illuminates several rulings on it. Observe a number of “spots” of light on the
white paper screen provided, caused by the phenomenon of diffraction.

Draw the overall geometry you have employed and measure the position and separation of these spots
with the screen at a distance of approximately 1.5 metres from the ruler.

Using the relation
NA=hsing

where is the order of diffraction

N
A is the radiation wavelength
h  is the grating period

8 is the angle of diffraction

and the information obtained from your measurements, determine the wavelength of the laser radiation.

Section 2 (4 marks)

Now insert the empty perspex tank provided into the space between the laser and the white paper screen.
Set the tank at approximately normal incidence to the laser beam.

(i) Observe a reduction in the emergent beam intensity, and estimate the percentage value of this re-
duction. Some calibrated transmission discs are provided to assist with this estimation. Remember
that the human eye has a logarithmic response.

This intensity reduction is caused primarily by reflection losses at the aid/perspex boundaries, of
which there are four in this case. THe reflection coefficient for normal incidence at each boundary, R,
which is the ratio of the reflectied to incident intensities, is given by

R ={(n1 —na)/(n1 +na)}?

where n; and ny are the refractive indices before and after the boundary. The corresponding transmission
coefficient, assuming zero absorption in the perspex, is fiven by

T=1-R .

(ii) Assuming a refractive index of 1.59 for the perspex and neglecting the effect of multiple reflections
and cogerence, calculate the intensity transmission coefficient of the empty perspex tank. Compare
this result with the estimate you made in Part (i) of this Section.

Section 3 (1 mark)

Without moving the perspex tank, repeat the observations and calculations in Section 2 with the 50 mL
of water provided in a beaker now added to the tank. Assume the refractive index of water to be 1.33.

Section 4 (10 marks)



(i) Add 0.5 mL (12 drops) of milk (the scattering material) to the 50 mL of water in the perspex tank,
and stir well. Measure as accurately as possible the total angle through which the laser light is
scattered, and the diameter of the emerging light patch at the exit face of the tank, noting that these
quantities are related. Also estimate the reduction in transmitted intensity, as in earlier sections.

(ii) Add a further 0.5 mL of milk to the tank, and repeat the measurements requested in part (i).

(iii) Repeat the process in part (ii) until very little or no transmitted laser light can be observed.

(iv) Determine the relationship between scattering angle and milk concentration in the tank.

)

(v) Use your results, and the relationship

I =Ipe™* =Tk x Iy

Iy is the input intensity

where ) o ]
is the emerging intensity
z is the distance in the tank
I is the attenuation coefficient and equals a constant times the concentration of the scatterer

Tnitk 18 the transmission coefficient for the milk

to obtain an estimate for the value of u for a scatterer concentration of 10%.



Solutions to Theoretical Question 1

Gravitational Red Shift and the Measurement of Stellar Mass

(a)

h
If a photon has an effective inertial mass m determined by its energy then mc? = hf or m = —2f
c

Now, assume that gravitational mass = inertial mass, and consider a photon of energy hf (mass
m = h—2f) emitted upwards at a distance r from the centre of the star. It will lose energy on escape
from the gravitational field of the star.

Apply the principle of conservation of energy:

Change in photon energy (hf; — hff) = change in gravitational energy, where subscript ¢ —
initial state and subscript f — final state.

Whi-hfy = —GMmf—[—%}

o0 T

hip = hpi- SE
GMYL:

hip o= hfi

GM

vty = nfi1- ]

i [-o]

fi re?

H _ ff—fi__GM

o fi re?

The negative sign shows red-shift, i.e. a decrease in f, and an increase in wavelength.
Thus, for a photon emitted from the surface of a star of radius R, we have

a5 _an
f  Re?

Since the change in photon energy is small, (§f < f),

hfi
= 02 .

my >~ m;

The change in photon energy in ascending from r; to ry is given by

7GMmf n GMm;

hfi—hfy =
Tt T
_ GMhfi[1 1
- e
o 1_G_M[l_i]
i c i 7y

In the experiment, R is the radius of the star, d is the distance from the surface of the star to the
spacecraft and the above equation becomes:

fr_,_GMpL 1
E_l 2 [R R+d} (1)

The frequency of the photon must be doppler shifted back from f; to f; in order to cause resonance
excitation of the He™ ions in the spacecraft.
Thus apply the relativistic Doppler principle to obtain:

1+

fro\1-8



where f’ is the frequency as received by He™ ions in the spacecraft, and 3 = v/c.
That is, the gravitationally reduced frequency f; has been increased to f’ because of the velocity
of the ions on the spacecraft towards the star. Since § < 1,

f 1 _1
F=-praas 18
Alternatively, since 8 < 1, use the classical Doppler effect directly.
Thus
f/ ff
1-p
or ;
S
Folr
Since f’ must be equal to f; for resonance absorption, we have
fr
“=1-p 2
7 ®
Substitution of 2 into 1 gives
GM (1 1
=—|=-=— 3
h c? (R R+d> ®)

Given the experimental data, we look for an effective graphical solution. That is, we require a linear
equation linking the experimental data in 8 and d.

Rewrite equation 3:
GM [R+d—R
f=—
c (R+d)R

5= () [a 1]

1 R2¢? 1+R02
ﬁ_ GM ) d G

Inverting the equation gives:

or

1
Graph of = vs.
PR

=/

2
™ intercept = (]}ei]f/l =q

. 1
d
Rc?
The sl i — = A
he slope is (GM)R aR (A)
1 Rc?
The B—intercept is (G—CM> =« (B)

1 1
and the E-intercept is — = (C)



R and M can be conveniently determined from (A) and (B). Equation (C) is redundant. However,

it may be used as an (inaccurate) check if needed.
From the given data:

R=111x10®m
M =5.2 x10%0 kg

From the graph, the slope aR = 3.2 x 10'? m
1 2
The B—intercept o= R—C =0.29 x 10°

GM
Dividing (A) by (B)
B
= ~|1.104 x 108
f= 2% 10° 04> 107 m
Substituting this value of R back into (B) gives:

M= Re*  (1.104 x 10%) x (3.0 x 10%)*
~ga (6.7 x 10711) x (0.29 x1 0%)

or M =5.11 x 103" kg
(c)

Atom before the decay Atom and photon after the decay

() =) +w
m, m

h
For the photon, photon momentum is p = —f and photon energy is £ = hf.
c

Use the mass-energy equivalence, £ = mc?, to relate the internal energy change of the atom

to the rest-mass change. Thus:
AE = (mg = m}) c?
In the laboratory frame of reference the energy before emission is

E = m002

Recalling the relativistic relation
E? = p*c + m3ch

The energy after emission of a photon is

E = /p?c® +m{2c* + hf

where also p = hf/c by conservation of momentum.
Conservation of energy requires that (2) = (3), so that:

(moc® — hf)2 = (hf)* + mact

(m002)2 — 2hfmoc? = m§c4

Carrying out the algebra and using equation (1):

hf(2moc®) = (m2 —m}?)ct
(mo —mg)c?(mo + mp)c?
AE[2mg — (mg — m})]c?
= AE[2moc® — AE)

(1)

(2)



(i)

AFE
hf =AF |1 - ——
f |: 2m002 :|
For the emitted photon,
AFE
hf=AF|1-—

f [ 2mpc? }

If relativistic effects are ignored, then
hfo =AE .

A
Hence the relativistic frequency shift f—f is given by
0

Af _ AE
fo o 2moc2

For He™ transition (n = 2 — 1), applying Bohr theory to the hydrogen-like helium ion gives:

1 1
AE =13.6 x 2* x [12 - 22] =40.8 ev
Also, moc? = 3.752 x 10 eV. Therefore the frequency shift due to the recoil gives

% ~5.44 x 10712

0

Af

This is very small compared to the gravitational red-shift of 7 ~ 1075, and may be ignored

in the gravitational red-shift experiment.



Solutions to Theoretical Question 2

(a)

Snell’s Law may be expressed as
sinf ¢

DU (1)

sin Qo Co

where c is the speed of sound.

Consider some element of ray path ds and treat this as, locally, an arc of a circle of radius R.
Note that R may take up any value between 0 and co. Consider a ray component which is initially
directed upward from S.

N
dz

T ds R
R 1%
. ds
In the diagram, ds = Rd6, or 0 R.
From equation (1), for a small change in speed dc,
cos fdf = 2 % dc
o

For the upwardly directed ray ¢ = ¢y + bz so dc = bdz and

sin fo bdz = cosfdf , hence dz = — 1 cosfdf .
Co sinfy b

We may also write (here treating ds as straight) dz = dscosf. So

Co 1
ds = —db
* 7 Sinf b
Hence i L
S - - Co 1
p7 R 0o b

This result strictly applies to the small arc segments ds. Note that from equation (1), however, it
also applies for all €, i.e. for all points along the trajectory, which therefore forms an arc of a circle
with radius R until the ray enters the region z < 0.

A\
I

&
!

z=0 90)




Here

zg = R — Rsinfy

= R(1—sinbyp)

Co .

— 1—s
bsin@o( sinfo)

from which

. Co
0o = !
o= sm [bzs + co}

ey
S H
x=X
R R
x=0

The simplest pathway between S and H is a single arc of a circle passing through S and H. For
this pathway:
2cocosby  2co

X =2 0y = = —cotf .
Reosbo == g, — o <otbo
Hence
bX
cotg = — .
200

The next possibility consists of two circular arcs linked as shown.

N H
x=0 \*/X

For this pathway:

X 2
5 = 2R cos by = %cot&o .

i.e. bX
thp = — .
cot Up 460

In general, for values of 0y < 7, rays emerging from S will reach H in n arcs for launch angles given

by
bX | tan—1 2nco
2nco | bX
where n =1,2,3,4,...

Note that when n = oo, §y = T as expected for the axial ray.

2
(d)
With the values cited, the four smallest values of launch angle are

0y = cot™! {

n | Oy (degrees)
1 86.19

2 88.09

3 88.73

4

89.04




The ray path associated with the smallest launch angle consists of a single arc as shown:

®N

S H

We seek 5 5
d
foef
1 1 €
Try first:
/2 ds /”/2 Rdf
lig = — = —
1 € 6o C
Using
o
"~ bsind
gives
- 1/”/2 df
270 Jy, sind
so that
t ! int " L 1 tan 20
= — |Intan - = ——Intan —
T ] P
Noting that t13 = 2t15 gives
t *fglntan@
BT 2

For the specified b, this gives a transit time for the smallest value of launch angle cited in the answer
to part (d), of
tlg = 6.6546 s

The axial ray will have travel time given by

X
==
co

For the conditions given,
t13 = 6.6666 s

thus this axial ray travels slower than the example cited for n = 1, thus the n = 1 ray will arrive
first.



Solutions to Theoretical Question 3

(a)

(b)

The mass of the rod is given equal to the mass of the cylinder M which itself is 7a2ld. Thus the
total mass equals 2M = 27a?ld. The mass of the displaced water is surely less than wa2lp (when
the buoy is on the verge of sinking). Using Archimedes’ principle, we may at the very least expect
that

2ra?ld < ma’lp or d < p/2

In fact, with the floating angle o (< 7) as drawn, the volume of displaced water is obtained by
geometry:
2a|

V =la’a —la®sinacosa .

By Archimedes’ principle, the mass of the buoy equals the mass of displaced water. Therefore,
21a?ld = la?p(a — sina cos @), i.e. a is determined by the relation

o —sinacosa = 2dn/p .

If the cylinder is depressed a small distance z vertically from equilibrium, the nett upward restoring
force is the weight of the extra water displaced or gp.2asin a.lz, directed oppositely to z. This is
characteristic of simple harmonic motion and hence the Newtonian equation of motion of the buoy
is (upon taking account of the extra factor 1/3)

3pgsin o
4dtda

8MZ/3 = —2pglzasina or Z+ z2=0 ,

and this is the standard sinusoidal oscillator equation (like a simple pendulum). The solution is of
the type z = sin(w,t), with the angular frequency

[3pg sin 3gsin o
W, = =
: drtda 2a(a — cosasina) ’

where we have used the relation worked out at the end of the first part.




Without regard to the torque and only paying heed to vertical forces, if the buoy is swung by some
angle so that its weight is supported by the nett pressure of the water outside, the volume of water
displaced is the same as in equilibrium. Thus the centre of buoyancy remains at the same distance
from the centre of the cylinder. Consequently we deduce that the buoyancy arc is an arc of a circle
centred at the middle of the cylinder. In other words, the metacentre M of the swinging motion is
just the centre of the cylinder. In fact the question assumes this.

We should also notice that the centre of mass G of the buoy is at the point where the rod touches the
cylinder, since the masses of rod and cylinder each equal M. Of course the cylinder will experience
a nett torque when the rod is inclined to the vertical. To find the period of swing, we first need to
determine the moment of inertia of the solid cylinder about the central axis; this is just like a disc
about the centre. Thus if M is the cylinder mass

2Mg
G
2Mg
0
L

Iy = Ma?/2 <:/ 7“2dm:/ TQ.QMTdT/a)
0 0

The next step is to find the moment of inertia of the rod about its middle,
Loq = / ’ (Mdx/2a).2* = [Ma?/6a]*, = Ma*/3 .
Finally, use the parallel axis theorem to find the moment of inertia of the buoy (cylinder + rod)
about the metacentre M,
Iy = Ma?/2 4 [Ma?/3 + M(2a)?] = 29Ma? /6 .

(In this part we are neglecting the small horizontal motion of the bentre of mass; the water is the
only agent which can supply this force!) When the buoy swings by an angle 6 about equilibrium the
restoring torque is 2M ga sin 6 ~ 2M gaf for small angles, which represents simple harmonic motion
(like simple pendulum). Therefore the Newtonian rotational equation of motion is

129

Inif ~ —2Mgaf , or 6+ 0.
29qa

The solution is a sinusoidal function, 6 « sin(wgt), with angular frequency

wp = +/129/29a .

The accelerometer measurements give

Ty/T, ~ 1.5 or (w,/wy)? ~9/4~225. Hence



3gsin o 29a

2.25 = )
2a(a — sinacos ) 12¢

producing the (transcendental) equation

a—sinacosa >~ 1.61lsina .

Since 1.61 is not far from 1.57 we have discovered that a physically acceptable solution is o ~ 7/2,
which was to be shown. (In fact a more accurate solution to the above transcendental equation
can be found numerically to be a = 1.591.) Setting alpha = 7/2 hereafter, to simplify the algebra,
w? = 3g/ma and 4d/p = 1 to a good approximation. Since the vertical period is 1.0 sec,

1.0 = (27/w.)? = 473a/3g ,

giving the radius a = 3 x 9.8/473 = .237 m.

We can now work out the mass of the buoy (in SI units),

2M = 2ma’ld = 2na’a.p/4 = wap/2 = w x 500 x (.237)% ~ 20.9 kg .



Solutions to Original Theoretical Question 3

(a)

Choose a frame where z is along the normal to the mirror and the light rays define the z—z plane.
For convenience, recording the energy-momentum in the four-vector form, (ps,py,p.,E/c), the
initial photon has

P, = (psinb;,0,pcosb;,p)

where p = E;/c = hf;/c.

AU

fi Jr

By the given Lorentz transformation rules, in the moving mirror frame the energy-momentum of
the incident photon reads

pcosb; —up/c p—upcosb;/c
VI—u?/ T —u?/c?

Assuming the collision is elastic in that frame, the reflected photon has energy-momentum,

Pmirror = <p sin 91" 07

—pcosb; +up/c p—upcosb;/c
VI—uZ/E T\ J1—u?/c2

Tansforming back to the original frame, we find that the reflected photon has

/ .
mirror — (p S 91'7 07

Der = psin 0; y  Dyr = 0
(—pcosb; +up/c) +u(p —upcosb;/c)/c
pZT - 1 2 2
—u?/c
(p—upcosb;/c) +u(—pcosb; +up/c)/c
E./c =
1—u2/c?

Simplifying these expressions, the energy-momentum of the reflected photon in the original frame
is

_ . _ 2 102 _ , 2/ .2
P (psin@i,O,p( cos0; +2u/c —u?cosb;/c*) p(1 —2ucosb;/c+u®/c ))

1—u?/c? ’ 1—u?/c?
Hence the angle of reflection 6,. is given by
Dar sin 0;(1 — u?/c?) tan 6;(1 — u?/c?)

t 07,:——: =
an p.r cost; —2ufc+u?cost;/c? 14 u?/c? — 2usech;/c?

while the ratio of reflected frequency f, to incident frequency f; is simply the energy ratio,

fr _ B
fi  Ei 1—u?/c?

E, 1—2ucosb;/c+u?/c?

[For future use we may record the changes to first order in u/c:

tand, ~ tanf;(1 4+ 2usec;/c) so
~ tan6, —tant; _ 2utan 0;secb;/c _ 2usin 0;
"~ 1+4tan6,tanf; 1+ tan26; c

tan(6, — 6;)

Thus, 0, ~ 6; + 2usinf;/c and f, = f;(1 — 2ucosb;/c).]



Hereafter define 6; = 6. Provided that b/cosf < a the laser light will reflect off the mirror, so
cos® > b/a is needed for photon energy-momentum to be imparted to the mirror. Let us then
define a critical angle « via cosa = b/a.

The change in the normal component Ap) of the momentum of a single photon is

Apb b p(—cosf + 2u/c — u®cosf/c?)
AL=2P12_ 0 —
cosf  cosd peost 1+ u?/c? ’
bp(2cosf —2u/c)  2bp(1 —usech/c)
cos0(1 + u2/c?) 1+ w2/ p(1 —usech/c)

Since ucos® = wb, AL ~ 2bp(1 — wbsec? f/c) per photon. Suppose N photons strike every second
(and |6 is less than the critical angle ). Then in time dt we have Ndt photons. But dt = df/w,
so in this time we have,

dL = Nd—e X 2bp (w_b sec? 9)
w c

Thus the change in AL per revolution is

dL 2bpN [

= " (1 — wbsec?f/c) df

—a

where n refers to the number of revolutions. So

dL  8bpN ( wb ) 8bP ( wb >
—~—|a— —tana )| =—|a—- —tana ,
dn w c we c

since each photon has energy pc and laser power equals P = Npc.
Clearly wp < ¢ always, so dL/dn ~ 8bPa/we; thus

dL _dLdn _ w dL _4bPo
dt  dndt 2rdn  wc

Therefore if I is the moment of inertia of the mirror about its axis of rotation,

Id_w N 4bPo or w(t) ~ 4bPot
dt — 7w ~ wel

[Some students may derive the rate of change of angular velocity using energy conservation, rather
than considering the increase of angular momentum of the mirror: To first order in v/c, E, =
E(1 — 2ucosf/c), therefore the energy imparted to the mirror is

2uE cos  2wbE
c ¢

AE=F —E, ~




In one revolution, the number of photons intersected is

4o 2r 4dan
— Xn—=—
27 w w

Therefore the rate of increase of rotational energy (Eyo = [w?/2) is

dE,o¢ __4daN 2wbE dn _ 8abP w _ 4abPw

dt w c dt ¢ 2« T

Thus [w.dw/dt = 4abP/me, leading to w(t) ~ 4abPt/mcl, again.

To estimate the deflection of the beam, one first needs to work out the moment of inertia of a
rectangle of mass m and side 2a about the central axis. This is just like a rod. From basic

principles,
a

a
7 mdz [mmT ma?>  mb*sec® a
= Tr = =
a

2a 6a | _ 3: 3

—a
With the stated geometry, a = by/2, or a = 45°, so

12aPt cos® o 3Pt

w — .
mmcb mca\/i

At the edge, u = wa = 3Pt/mcy/2, and the angle of deviation is

5— 2usin _ 3Pt

c  me?
[Interestingly, it is determined by the ratio of the energy produced by the laser to the rest-mass
energy of the mirror.]

Using the given numbers, and in SI units, the deviation is

10* x 3 x 100 x 24 x 3600
~ 10% = ~ 2. :
§=10 10-3 x (3 x 10°)2 9 mm

D laser



Solution to Experimental Question 1

Preliminary: Calculation of Terminal Velocity

When the cylinder is moving at its terminal velocity, the resultant of the three forces acting on the
cylinder, gravity, viscous drag and buoyant force, is zero.

Vpg — 6msnr™ur —Vo'g=0

where V = 2773 is the volume of a cylinder (whose height is 2r).

This gives
0 = Cr¥ " (p— )
where
-9
3Kk
Experiment

Determination of the exponent m

Aluminium cylinders of different diameters are dropped into the glycerine. Fall times between specified
marks on the measuring cylinder containing the glycerine are recorded for each cylinder. A preliminary
experiment should establish that the cylinders have reached their terminal velocity before detailed results
are obtained. The measurements are repeated several times for each cylinder and an average fall time
is calculated. Table 1 shows a typical set of data. To find the value of m a graph of log(fall time) as a
function of log(diameter) is plotted as in figure 1. The slope of the resulting straight line graph is 3 —m
from which a value of m can be determined. A reasonable value for m is 1.33 with an uncertainty of order
40.1. The uncertainty is estimated by the deviation from the line of best fit through the data points
obtained by drawing other possible lines.

Determination of the density of glycerine

Cylinders with the same geometry but different densities are dropped into the glycerine and timed as in
the first part of the experiment. Table 2 shows a typical set of results. From equation (2) a linear plot of
1/t as a function of density should yield a straight line with an intercept on the density axis corresponding
to the density of glycerine. Figure 2 shows a typical plot. Alternatively the terminal velocities could be
calculated and plotted against density which would again lead to the same intercept on the density axis.
The uncertainty in the measurement can be estimated by drawing other possible straight lines through
the data points and noting the change in the value of the intercept.

Diameter (mm) Individual readings (s) Mean (s) |
10 144 156 144 137 144 141 1.44
4 6.22 6.06 6.16 6.13 6.13 6.22 6.15
8 1.80 182 1.78 1.84 182 1.81 1.82
5 4.06 434 409 412 425 4.13 4.13

Table 1: Sample data set
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Material Individual readings (s) Mean (s)
Ti 3.00 291 297 291 2.84 275 2.91
Cu 1.25 1.25 1.28 1.25 1.22 1.22 1.25
S.Steel 1.31 132 138 144 131 1.34 1.33
Al 6.03 6.09 6.09 6.16 6.06 6.06 6.08
Table 2: Sample data set
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Figure 2: Sample plot

p = (1.140.2) x 10*> kg.m >

8000

10000




Detailed mark allocation

Section I
Reasonable range of data points with a scatter of ~ 0.1 s
Check that the cylinders have reached their terminal velocity
Visual check, or check referred to
Specific data presented
Labelled log-log graph
Data points for all samples, with a reasonable scatter about a
straight line on the log-log graph
Calculation of (3 —m) from graph
including estimate of error in determining m
Reasonable value of m, ~ 1.33
Subtotal
Section 2
Reasonable range of data points
Check that the cylinders have reached their terminal velocity
Labelled graph of (falltime) ™! vs. density of cylinder
Data points for all samples, with a reasonable scatter about a
straight line on the (falltime)~! vs. density of cylinder graph
Calculation of the density of glycerine (p’) from this graph
Estimate of uncertainty in p’
Reasonable value of p’. “Correct” value is 1.260 kg.m~
Subtotal
TOTAL

3



Solution to Experimental Question 2
Section 1
i. A typical geometric layout is as shown below.

(a) Maximum distance from ruler to screen is advised to increase the spread of the diffraction
pattern.

(b) Note that the grating (ruler) lines are horizontal, so that diffraction is in the vertical direction.

SCREEN

1400 mm
FRINGES

ii. Vis a vis the diffraction phenomenon, g = (

Ti00 )

The angle ( is measured using either a protractor (not recommended) or by measuring the value
of the fringe separation on the screen, y, for a given order N.
If the separation between 20 orders is measured, then N = £10 (N = 0 is central zero order).

The values of y should be tabulated for N = 10. If students choose other orders, this is also
acceptable.
N +10 | £10 | £10 | £10 | £10 | £10 | £10 | £10 | £10 | £10
2ymm | 39.0 | 385 | 39.5 | 41.0 | 37.5 | 38.0 | 39.0 | 38.0 | 37.0 | 37.5
ymm | 19.5 | 19.25 | 19.75 | 20.5 | 18.75 | 19.0 | 19.5 | 19.0 | 18.5 | 18.75

Mean Value = (19.25 £+ 1.25) mm

i.e. Mean “spot” distance = 19.25 mm for order N = 10.
From observation of the ruler itself, the grating period, h = (0.50 & 0.02) mm.

Thus in the relation

NA = =hsing
N = 10
h = 0.5 mm
. Y
S ~ = ———— =10.01
sinf ~ (3 1100 om 0.01375
10N = 0.006875 mm
A = 0.0006875 mm
oA Oh 9
Since 3 is small, — ~ — + %Y~ 10%
A h y

i.e. measured A = (690 + 70) nm

The accepted value is 680 nm so that the departure from accepted value equals 1.5%.



Section 2
This section tests the student’s ability to make semi-quantitative measurements and the use of judgement

in making observations.

i. Using the T' = 50% transmission disc, students should note that the transmission through the tank
is greater than this value. Using a linear approximation, 75% could well be estimated. Using the
hint about the eye’s logarithmic response, the transmission through the tank could be estimated to
be as high as 85%.

Any figure for transmission between 75% and 85% is acceptable.

ii. Calculation of the transmission through the tank, using

2
T=1-R=1- (M)
ni + no
for each of the four surfaces of the tank, and assuming n = 1.59 for the perspex, results in a total

transmission
Ttotal = 80 80%

Section 3
With water in the tank, surfaces 2 and 3 become perspex/water interfaces instead of perspex/air interfacs,
as in (ii).

The resultant value is
Ttotal = 885%

Section 4

TANK SCREEN
~550 mm

LASER s . yT/"
LASER | / |

TRANSMISSION
FILTER
IN/OUT

Possible configuration for section 4 (and sections 2 and 3)

With pure water in the tank only, we see from Section 3 that the transmission T is
Twater ~ 88%

The aim here is to determine the beam divergence (scatter) and transmission as a function of milk
concentration. Looking down on the tank, one sees

35 mm

~30 mm  25mm |

.
[ LASER : e | |7

BEAM DIAMETER
2x = 2.00 mm




i.

ii. & iii.

iii.

iv.

The entrance beam diameter is 2.00 mm. The following is an example of the calculations expected:
With 0.5 mL milk added to the 50 mL water, we find

0.5
Scatterer concentration = 0= 1% =0.01

Scattering angle

2z
22’ = 2.2 ;200 = — =0.073
x mm 30
Transmission estimated with the assistance of the neutral density filters
Ttotal =0.7 .
Hence 07
Tilk = —— = 0.79
7 0.88
Note that T
Tilk = TLW and  Tiater = 0.88 (1)
water

If students miss the relationship (1), deduct one mark.

One thus obtains the following table of results. 26’ can be determined as shown above, OR by
looking down onto the tank and using the protractor to measure the value of 20’. It is important
to note that even in the presence of scattering, there is still a direct beam being transmitted. It is
much stronger than the scattered radiation intensity, and some skill will be required in measuring
the scattering angle 20’ using either method. Making the correct observations requires observational
judgement on the part of the student.

Typical results are as follows:

Milk volume (mL) | 0 05 | 1.0 | 1.5 | 20 | 25 | 3.0 | 3.5 | 4.0
% Concentration 0 1 2 3 4 5 6 7 8

2z 2.00 | 2.2 6.2 9.4 12 Protractor
20" (Degrees) ~0| 4 12 18 23 28 36 41 48
Thnitk 1.0 | 0.79 | 0.45 | 0.22 | 0.15 | 0.12 | 0.08 | 0.06 | 0.05

From the graphed results in Figure 1, one obtains an approximately linear relationship between
milk concentration, C, and scattering angle, 26’ (= ¢) of the form

¢ =6C .

Assuming the given relation

I = Ipe™* = T lo
where z is the distance into the tank containing milk/water.
We have

Tt = €17
Thus
In Tk = —pz ,and p = constant x C'

Hence In Ty = —azC.

Since z is a constant in this experiment, a plot of In Ty, as a function of C' should yield a straight
line. Typical data for such a plot are as follows:

% Concentration | 0 1 2 3 4 5 6 7 8
Tnilk 1.0 079 | 045 | 0.22 | 0.15 | 0.12 | 0.08 | 0.06 | 0.05
In Thoik 0 -0.24 | -0.8 | -1.51 | -1.90 | -2.12 | -2.63 | -2.81 | -3.00

An approximately linear relationship is obtained, as shown in Figure 2, between In Ty, and C, the
concentration viz.
In Tk ~ —04C = —pz
Thus we can write
Tine = ¢ 1¢ = e7*
For the tank used, z = 25 mm and thus

04C =25u or p=0.016C whence o =0.016 mm 1% !
By extrapolation of the graph of In T}, versus concentration C', one finds that for a scatterer

concentration of 10%
p=0.160 mm~*
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Detailed Mark Allocation

Section 1
A clear diagram illustrating geometry used with appropriate allocations
Optimal geometry used - as per model solution (laser close to ruler)
Multiple measurements made to ascertain errors involved
Correctly tabulated results
Sources of error including suggestion of ruler variation
(suggested by non-ideal diffraction pattern)
Calculation of uncertainty
Final result
Allocated as per:
+10% (612, 748 nm)
+20% (544, 816 nm)
+ anything worse
Section 2
For evidence of practical determination of transmission rather than
simply “back calculating”. Practical range 70 — 90%
For correct calculation of transmission
(no more than 3 significant figures stated)
Section 3
Correct calculation with no more than 3 significant figures stated
and an indication that the measurement was performed
Section 4

Nlustrative diagram including viewing geometry used, i.e. horizontal /vertical
For recognizing the difference between scattered light and the straight-through beam

For taking the Tyater into account when calculating Tiik

Correctly calculated and tabulated results of Ty with results within 20% of model solution

Using a graphical technique for determining the relationship between
scatter angle and milk concentration
Using a graphical technique to extrapolate Ty to 10% concentration
Final result for p

Allocated as £40% [2], £60% [1], anything worse [0]
A reasonable attempt to consider uncertainties
TOTAL
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READ THIS FIRST :
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PROBLEM 1

(The five parts of this problem are unrelated)

a) Five 1Q resistances are connected as shown in the figure. The resistance in
the conducting wires (fully drawn lines) is negligible.

10 10 10 10 10
A?_m ey e i rzn—e B

Determine the resulting resistance R between A and B. (1 point)

b
) A

B

I
!
|
1
|
N
»

+ S

A skier starts from rest at point A and slides down the hill, without turning or
braking. The friction coefficient is . When he stops at point B, his horizontal
displacement is s. What is the height difference 4 between points A and B?
(The velocity of the skier is small so that the additional pressure on the snow
due to the curvature can be neglected. Neglect also the friction of air and the
dependence of [ on the velocity of the skier.) (1.5 points)

¢) A thermally insulated piece of metal is heated under atmospheric pressure
by an electric current so that it receives electric energy at a constant power P.
This leads to an increase of the absolute temperature 7" of the metal with time ¢
as follows:

T(t) = T[1 +a(t =1,)] "

Here a, t,and T are constants. Determine the heat capacity C p(T ) of the metal
(temperature dependent in the temperature range of the experiment). (2 points)



d) A black plane surface at a constant high temperature 7, is parallel to an-
other black plane surface at a constant lower temperature 7,. Between the
plates is vacuum.

In order to reduce the heat flow due to radiation, a heat shield consisting of two
thin black plates, thermally isolated from each other, is placed between the
warm and the cold surfaces and parallel to these. After some time stationary
conditions are obtained.

101

By what factor ¢ is the stationary heat flow reduced due to the presence of the
heat shield? Neglect end effects due to the finite size of the surfaces. (1.5
points)

e) Two straight and very long nonmagnetic conductors C, and C_, insulated
from each other, carry a current / in the positive and the negative z direction,
respectively. The cross sections of the conductors (hatched in the figure) are
limited by circles of diameter D in the x-y plane, with a distance D/2 between
the centres. Thereby the resulting cross sections each have an area

L 71+ +/3)D’. The current in each conductor is uniformly distributed over
the cross section.

Determine the magnetic field B(x,y) in the space between the conductors.
(4 points)
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PROBLEM 2

The space between a pair of coaxial cylindrical conductors is evacuated. The
radius of the inner cylinder is @, and the inner radius of the outer cylinder is b,
as shown in the figure below. The outer cylinder, called the anode, may be
given a positive potential V' relative to the inner cylinder. A static homogene-
ous magnetic field B parallel to the cylinder axis, directed out of the plane of
the figure, is also present. Induced charges in the conductors are neglected.

We study the dynamics of electrons with rest mass m and charge — e. The elec-
trons are released at the surface of the inner cylinder.

a) First the potential ¥ is turned on, but B = 0. An electron is set free with

negligible velocity at the surface of the inner cylinder. Determine its speed v
when it hits the anode. Give the answer both when a non-relativistic treatment
is sufficient, and when it is not. (1 point)

For the remaining parts of this problem a non-relativistic treatment suffices.

b) Now V=0, but the homogeneous magnetic field B is present. An electron
starts out with an initial velocity V, in the radial direction. For magnetic fields
larger than a critical value B,, the electron will not reach the anode. Make a
sketch of the trajectory of the electron when B is slightly more than B, . Deter-
mine B.. (2 points)

From now on both the potential V and the homogeneous magnetic field B are
present.



¢) The magnetic field will give the electron a non-zero angular momentum L
with respect to the cylinder axis. Write down an equation for the rate of change
dL/dt of the angular momentum. Show that this equation implies that

L — keBr?

is constant during the motion, where & is a definite pure number. Here 7 is the
distance from the cylinder axis. Determine the value of k. (3 points)

d) Consider an electron, released from the inner cylinder with negligible ve-
locity, that does not reach the anode, but has a maximal distance from the cyl-
inder axis equal to 7, . Determine the speed v at the point where the radial dis-
tance is maximal, in terms of 7, . (I point)

e) We are interested in using the magnetic field to regulate the electron current
to the anode. For B larger than a critical magnetic field B,, an electron, re-
leased with negligible velocity, will not reach the anode. Determine B..

(1 point)

f) If the electrons are set free by heating the inner cylinder an electron will in
general have an initial nonzero velocity at the surface of the inner cylinder. The

component of the initial velocity parallel to B is v ,, the components
orthogonal to B are V, (in the radial direction) and V , (in the azimuthal direc-
tion, i.e. orthogonal to the radial direction).

Determine for this situation the critical magnetic field B, for reaching the an-
ode. (2 points)

103
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PROBLEM 3

In this problem we consider some gross features of the magnitude of mid-ocean
tides on earth. We simplify the problem by making the following assumptions:

(1)

(ii)
(iii)
(iv)

v)

The earth and the moon are considered to be an isolated system,

the distance between the moon and the earth is assumed to be constant,
the earth is assumed to be completely covered by an ocean,

the dynamic effects of the rotation of the earth around its axis are
neglected, and

the gravitational attraction of the earth can be determined as if all mass
were concentrated at the centre of the earth.

The following data are given:

Mass of the earth: M =5.98 - 10** kg

Mass of the moon: M, =7.3 - 10 kg

Radius of the earth: R =6.37 - 10° m

Distance between centre of the earth and centre of the moon:
L=3.84-10m

The gravitational constant: G =6.67 - 10 "' m*kg's™.

a) The moon and the earth rotate with angular velocity w about their common
centre of mass, C. How far is C from the centre of the earth? (Denote this dis-
tance by 1)

Determine the numerical value of w. (2 points)

We now use a frame of reference that is co-rotating with the moon and the
center of the earth around C. In this frame of reference the shape of the liquid
surface of the earth is static.

'(,O mOO“

AN

earth



In the plane P through C and orthogonal to the axis of rotation the position of a
point mass on the liquid surface of the earth can be described by polar coordi-
nates 7, ¢ as shown in the figure. Here 7 is the distance from the centre of the
earth.

We will study the shape
r(@)=R+h(9)

of the liquid surface of the earth in the plane P.

b) Consider a mass point (mass m) on the liquid surface of the earth (in the
plane P). In our frame of reference it is acted upon by a centrifugal force and
by gravitational forces from the moon and the earth. Write down an expression
for the potential energy corresponding to these three forces.

Note: Any force F(r), radially directed with respect to some origin, is the nega-
tive derivative of a spherically symmetric potential energy V(r):
F(r)=-V'(r). (3 points)

¢) Find, in terms of the given quantities M, M, , etc, the approximate form A(¢) of
the tidal bulge. What is the difference in meters between high tide and low tide in this
model?

You may use the approximate expression

1

N ~1+acos®+1a*(3cos’0 —1),
1+a” —2acos6

valid for a much less than unity.

In this analysis make simplifying approximations whenever they are reasonable. (5
points)
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Solution Problem 1

a) The system of resistances can be redrawn as shown in the figure:

10 1Q 1Q 1Q 1Q

Al B

The equivalent drawing of the circuit shows that the resistance between point ¢
and point A is 0.5Q, and the same between point d and point B. The resistance
between points A and B thus consists of two connections in parallel: the direct
1Q connection and a connection consisting of two 0.5Q resistances in series,
in other words two parallel 1Q connections. This yields

R=05Q.



b) For a sufficiently short horizontal displacement As the path can be con-
sidered straight. If the corresponding length of the path element is AL, the
friction force is given by A
s
m —_—
Hmg AL
and the work done by the friction force equals force times displacement:

As
mog—-AL = U mgAs.
u gAL H mg

107

Adding up, we find that along the whole path the total work done by friction
forcesi U mgs.By energy conservation this must equal the decrease mg /4 in
potential energy of the skier. Hence

h= s

¢) Let the temperature increase in a small time interval dt be d7. During this time
interval the metal receives an energy P dft.

The heat capacity is the ratio between the energy supplied and the temperature increase:
Pdt P

PAT ATt
The experimental results correspond to

ar T, 3 a(T\
E:Z()a[l_'_a(t_t‘))] 34 :7-(')4(0) .

Hence
P P
C, = - T
’ dT/dt  aT,

(Comment: At low, but not extremely low, temperatures heat capacities of met-
als follow such a T law.)
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L 1,

Under stationary conditions the net heat flow is the same everywhere:

J=0o(T' =1
J=0o(l'-T;)
J=0(T} - T

Adding these three equations we get
3 =0(T - T)=J,
where J; is the heat flow in the absence of the heat shield. Thus &=J/J, takes the

value
£= 153

e) The magnetic field can be determined as the superposition of the fields of
two cylindrical conductors, since the effects of the currents in the area of inter-
section cancel. Each of the cylindrical conductors must carry a larger current
I', determined so that the fraction 7 of it is carried by the actual cross section
(the moon-shaped area). The ratio between the currents / and I' equals the ratio
between the cross section areas:

I _(E+¥)D* _2m+343

Y3 6
Inside one cylindrical conductor carrying a current I' Ampere’s law yields at a
distance r from the axis an azimuthal field

My 't 20

o D’ T’




The cartesian components of this are

Y 2u, 1y X _ 2H 0%
B =-B ~—=-— ; B =B —= .
) Cr nD* ’ “r D>

For the superposed fields, the currents are + I' and the corresponding cylinder
axes are located atx =7 D/4.

The two x-components add up to zero, while the y-components yield

2p, Hol’ 6 ol
B =PorrcsDray-r(x—psay=tol _ ,
= U )~ M= = ans 33D

i.e., a constant field. The direction is along the positive y-axis.

Solution Problem 2

a) The potential energy gain e} is converted into kinetic energy. Thus
Imp® =eV (non-relativistically)

(relativistically).

Hence

J2eV/m (non - relativistically)

V= 2
c\/ 1- (I;nic)2 (relativistically).
mc” +eV

b) When V=0 the electron moves in a homogeneous static magnetic field. The

magnetic Lorentz force acts orthogonal to the velocity and the electron will move in a

circle. The initial velocity is tangential to the circle.

The radius R of the orbit (the “cyclotron radius”) is determined by equating the

centripetal force and the Lorentz force:

109
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From the figure we see that in the critical case the radius R of the circle satisfies

Na>+R* =b-R

By squaring we obtain

e a’+ R’ =b’-2bR+ R%

R=(b"-da’)/2b

Insertion of this value for the radius into the expression (2) gives the critical field

B _M% _ 2bmuv, .
° eR (b'-a’)e

¢) The change in angular momentum with time is produced by a torque. Here
the azimuthal component F, of the Lorentz force F' = (—e) Bx v provides a
torque F,r. Itis only the radial component v, = dr/dt of the velocity that pro-
vides an azimuthal Lorentz force. Hence

d—L = eBrﬂ,
dt dt
which can be rewritten as
2
LBy o
dt 2



Hence
C=L-LteBr (3)

is constant during the motion. The dimensionless number & in the problem text is
thus k= 1/2.

d) We evaluate the constant C, equation (3), at the surface of the inner cylinder
and at the maximal distance 7, :

—1eBa? = — 1eBy?
0-3eBa” = mur, —5eBr,

which gives
eB(r. —a®)
p=—2"

2mr

m

@ 111

Alternative solution: One may first determine the electric potential V(7) as
function of the radial distance. In cylindrical geometry the field falls off inversely
proportional to , which requires a logarithmic potential, V(s) = c,Inr +c,.
When the two constants are determined to yield V(a) = 0 and V(b) = V' we have

In(r/ a)

=V b )

The gain in potential energy, s¥(r,,), is converted into kinetic energy:

1 /
lmv2 = eVin(r’" )

2 In(b/a)’

, :\/2eV In(r, / a) )

m In(b/a)

(4) and (5) seem to be different answers. This is only apparent since 7, is notan in-
dependent parameter, but determined by B and V so that the two answers are
identical.

e) For the critical magnetic field the maximal distance r,, equals b, the radius of the
outer cylinder, and the speed at the turning point is then

. eB(b* —a’)
2mb '
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Since the Lorentz force does no work, the corresponding kinetic energy 1 m»”

equals eV (question a):
v=4/2eV/m

The last two equations are consistent when

BB &) _ B

2mb
The critical magnetic field for current cut-off is therefore

B - 22b : ZmV.
b-—a e

f) The Lorentz force has no component parallel to the magnetic field, and conse-
quently the velocity component v, is constant under the motion. The corresponding
displacement parallel to the cylinder axis has no relevance for the question of reach-
ing the anode.

Let v denote the final azimuthal speed of an electron that barely reaches the anode.
Conservation of energy implies that

Tm(v; +v; +v)+eV =im(v; +v?),

giving

v:\/vf+v§,+2eV/m. (6)

Evaluating the constant C in (3) at both cylinder surfaces for the critical situation we
have

_1 2 _ 1 2
mv,a—yeB .a” =mvb—5eB.b".

Insertion of the value (6) for the velocity v yields the critical field

B 2m(vb —vya) _ 2mb
T eb*—da’)  e(b*—da?)

[\/Vf+v£+ZeV/m—v¢,a/b].



Solution Problem 3

a) With the centre of the earth as origin, let the centre of mass C be located
at / . The distance / is determined by

Mi=M, (-1,
which gives
1= Mu 1 463.10m, (1)
MM~

m

less than R, and thus inside the earth.

The centrifugal force must balance the gravitational attraction between the moon
and the earth:

Mw’l=G MLA:[ :
which gives
wz\/GAfm _ [SMEML) 67,10, 2)
Ll L -

(This corresponds to a period 217w =27.2 days.) We have used (1) to elimi-
nate /.

b) The potential energy of the mass point m consists of three contributions:

(1) Potential energy because of rotation (in the rotating frame of reference, see
the problem text),

1
_7mw2r12’
2

where 7; is the distance from C. This corresponds to the centrifugal force
mw?r,, directed outwards from C.

(2) Gravitational attraction to the earth,
mM
-G—.
r

(3) Gravitational attraction to the moon,
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mM
b
T
where 7, is the distance from the moon.

Describing the position of m by polar coordinates 7 ¢ in the plane orthogonal to the
axis of rotation (see figure), we have

PP =(F=1)" =r’ = 2rlcosQ +I°.

—-

Tm

moon
\ -
114
earth
Adding the three potential energy contributions, we obtain
Vir)=—~maw’ ( — 2rlcos @+ I° )~ G _ G "M 3)
2 r 7,
Here /is given by (1) and

= @77 =1’ =2LF +1° = L\/I+(r/L)? = 2(r/L )cosp.

rﬂ‘l

¢) Since the ratio 7/L = a is very small, we may use the expansion

1
\/1 +a>—2acosQ

=1+acos@+a’ +(3cos’ p—1).

Insertion into the expression (3) for the potential energy gives
GM GM, i’
2r

V(ir,@)/m=—+wr’ - (3cos® @-1), “)

apart from a constant. We have used that
2 r
mw-rlcos — GmM V2 cos ¢=0,

when the value of @, , equation (2), is inserted.



The form of the liquid surface is such that a mass point has the same energy V every-
where on the surface. (This is equivalent to requiring no net force tangential to the
surface.) Putting

r=R+h,

where the tide / is much smaller than R, we have approximately

1 1 1 7( _7)_7 i
r R+h R1+(h/R) R R’

as well as
r* =R*+2Rh+h*> = R* +2Rh.

Inserting this, and the value (2) of winto (4), we have

G(M+ M )R GM GMr
( 3 n) h+ e h— Y (3cos Q-1), (5)

Vir,@)/m =~
again apart from a constant.
The magnitude of the first term on the right-hand side of (5) is a factor
3
(M+ Mm)(R) ~ 10*5
M L

smaller than the second term, thus negligible. If the remaining two terms in equation
(5) compensate each other, i.e.,

MrR

h="r (3cos’ o),

then the mass point m has the same energy everywhere on the surface. Here 7 can
safely be approximated by R*, giving the tidal bulge

R
2M 3 (3cos’ @ —1).

The largest value &, = M, R* /ML’ occurs for ¢=0 or Tt in the direction of
the moon or in the opposite direction, while the smallest value
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h, =-M,R*/2ML’
corresponds to @= TU2 or 31V2.

The difference between high tide and low tide is therefore

(The values for high and low tide are determined up to an additive constant, but the
difference is of course independent of this.)
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Photo: Arnt Inge Vistnes

Here we see the Exam Officer, Michael Peachey (in the middle), with his helper
Rod Jory (at the left), both from Australia, as well as the Chief examiner, Per
Chr. Hemmer. The picture was taken in a silent moment during the theory
examination. Michael and Rod had a lot of experience from the 1995 IPhO in
Canberra, so their help was very effective and highly appreciated!
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27" INTERNATIONAL
PHYSICS OLYMPIAD

27" INTERNATIONAL PHYSICS OLYMPIAD
OSLO, NORWAY

EXPERIMENTAL COMPETITION
JULY 4 1996

Time available: 5 hours

READ THIS FIRST :

1.
2.
3.

4.

Use only the pen provided.
Use only the marked side of the paper.

No points will be given for error estimates except in 2c. However, it is ex-

pected that the correct number of significant figures are given.

When answering problems, use as little text as possible. You get full credit
for an answer in the form of a numerical value, a drawing, or a graph with
the proper definition of axes, etc.

Write on top of every sheet in your report:

* Your candidate number (IPhO ID number)

* The section number

* The number of the sheet

Write on the front page the total number of sheets in your report, including

graphs, drawings etc.

Ensure to include in your report the last page in this set used for answering

section 2a and 3b, as well as all graphs requested.

SAFETY HAZARD: Be careful with the two vertical blades on the large
stand. The blades are sharp!

This set of problems consists of 10 pages.
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SUMMARY

The set of problems will cover a number of topics in physics. First, some me-
chanical properties of a physical pendulum will be explored, and you should be
able to determine the acceleration of gravity. Then, magnetic forces are added
to the pendulum. In this part the magnetic field from a permanent magnet is
measured using an electronic sensor. The magnetic moment of a small perma-
nent magnet will be determined. In addition, a question in optics in relation to
the experimental setup will be asked.

INSTRUMENTATION
The following equipment is available (see Figure 1):

A Large aluminium stand
B Threaded brass rod with a tiny magnet in one end (painted
white) (iron in the other).

Cylindrical stand made of PVC (grey plastic material)
Threaded rod with a piece of PVC and a magnet on the top
Small PVC cylinder of length 25.0 mm (to be used as a spacer)
Ruler

C 2 Nuts with a reflecting surface on one side

D Oscillation period timer (clock) with digital display
E Magnetic field (Hall) probe, attached to the large stand
F 9V battery

G Multimeter, Fluke model 75

H 2 Leads

| Battery connector

J

K

L

M

If you find that the large stand wiggles, try to move it to a different posistion on
your table, or use a piece of paper to compensate for the non-flat surface.

The pendulum should be mounted as illustrated in Figure 1. The long threaded
rod serves as a physical pendulum, hanging in the large stand by one of the
nuts. The groove in the nut should rest on the two vertical blades on the large
stand, thus forming a horizontal axis of rotation. The reflecting side of the nut
is used in the oscillation period measurement, and should always face toward
the timer.

The timer displays the period of the pendulum in seconds with an uncertainty
of £1 ms. The timer has a small infrared light source on the right-hand side of
the display (when viewed from the front), and an infrared detector mounted



close to the emitter. Infrared light from the emitter is reflected by the mirror
side of the nut. The decimal point lights up when the reflected light hits the de-
tector. For proper detection the timer can be adjusted vertically by a screw (see
N in Figure 1). Depending on the adjustment, the decimal point will blink ei-
ther once or twice each oscillation period. When it blinks twice, the display
shows the period of oscillation, T. When it blinks once, the displayed number is
2T. Another red dot appearing after the last digit indicates low battery. If bat-
tery needs to be replaced, ask for assistance.

The multimeter should be used as follows:

Use the “VQ” and the “COM?” inlets. Turn the switch to the DC voltage setting.
The display then shows the DC voltage in volts. The uncertainty in the instru-
ment for this setting is £(0.4%+1 digit).

Photo: Geir Holm

Figure 1. The instrumentation used.

SAFETY HAZARD: Be careful with the two vertical blades on the large
stand. The blades are sharp!
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THE PHYSICAL PENDULUM

A physical pendulum is an extended physical object of arbitrary shape that can
rotate about a fixed axis. For a physical pendulum of mass M oscillating about
a horizontal axis a distance, |, from the centre of mass, the period, T, for small
angle oscillations is

_ 2|
T—E m+| (1)

Here g is the acceleration of gravity, and I is the moment of inertia of the pen-
dulum about an axis parallel to the rotation axis but through the centre of mass.

Figure 2 shows a schematic drawing of the physical pendulum you will be us-
ing. The pendulum consists of a cylindrical metal rod, actually a long screw,
having length L, average radius R, and at least one nut. The values of various
dimensions and masses are summarised in Table 1. By turning the nut you can
place it at any position along the rod. Figure 2 defines two distances, x and |,
that describe the position of the rotation axis relative to the end of the rod and
the centre of mass, respectively.

Nut with mirror

AXis of rofatioN = = = = = =

Axis through
centre of mass

Centre of mass

Figure 2: Schematic drawing of the pendulum
with definition of important quantities.



Rod

Length L (400.0 £ 0.4) mm
Average radius R (4.4+£0.1) mm

Mass Moo (210.2£0.2) -103 kg
Distance between screw threads (1.5000 £ 0.0008) mm
Nut

Height h (9.50 £ 0.05) mm
Depth of groove d (0.55 £ 0.05) mm
Mass M, (4.89 £ 0.03) -10° kg

Table 1: Dimensions and weights of the pendulum

A reminder from the front page: No points will be given for error estimates ex-
cept in 2c. However, it is expected that the correct number of significant fig-
ures are given.
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Section 1 : Period of oscillation versus rotation axis position
(4 marks)

a) Measure the oscillation period, T, as a function of the position x, and present
the results in a table.

b) Plot T as a function of x in a graph. Let 1 mm in the graph correspond to
1 mminxand1msinT. How many positions give an oscillation period equal
to T=950ms, T=1000 msand T = 1100 ms, respectively?

c) Determine the x and | value that correspond to the minimum value in T.

Section 2 : Determination of g (5 marks)

For a physical pendulum with a fixed moment of inertia, I, a given period, T,
may in some cases be obtained for two different positions of the rotation axis.
Let the corresponding distances between the rotation axis and the centre of
mass be |, and 1,. Then the following equation is valid:

LI, = ™ 2)
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a) Figure 6 on the last page in this set illustrates a physical pendulum with an
axis of rotation displaced a distance |, from the centre of mass. Use the infor-
mation given in the figure caption to indicate all positions where a rotation axis
parallel to the drawn axis can be placed without changing the oscillation period.

b) Obtain the local Oslo value for the acceleration of gravity g as accurately as
possible. Hint: There are more than one way of doing this. New measurements
might be necessary. Indicate clearly by equations, drawings, calculations etc.
the method you used.

c) Estimate the uncertainty in your measurements and give the value of g with
error margins.

Section 3 : Geometry of the optical timer (3 marks)

a) Use direct observation and reasoning to characterise, qualitatively as well as
quantitatively, the shape of the reflecting surface of the nut (the mirror). (You
may use the light from the light bulb in front of you).

Options (several may apply):

1. Plane mirror

2. Spherical mirror
3. Cylindrical mirror
4. Cocave mirror

5. Convex mirror

In case of 2-5: Determine the radius of curvature.

b) Consider the light source to be a point source, and the detector a simple pho-
toelectric device. Make an illustration of how the light from the emitter is re-
flected by the mirror on the nut in the experimantal setup (side view and top
view). Figure 7 on the last page in this set shows a vertical plane through the
timer display (front view). Indicate in this figure the whole region where the
reflected light hits this plane when the pendulum is vertical.

Section 4 : Measurement of magnetic field (4 marks)

You will now use an electronic sensor (Hall-effect sensor) to measure magnetic
field. The device gives a voltage which depends linearly on the vertical field
through the sensor. The field-voltage coefficient is AV /AB =22.6 V/T (Molt/
Tesla). As a consequence of its design the sensor gives a non-zero voltage
(zero-offset voltage) in zero magnetic field. Neglect the earth’s magnetic field.



SENSOR O

block.

blue o| VR
red ® |COM
7
O
© O
o |\ |5
—+— -

Figure 3: Schematics of the magnetic field detector system

a) Connect the sensor to the battery and voltmeter as shown above. Measure
the zero-offset voltage, V,.

A permanent magnet shaped as a circular disk is mounted on a separate stand.
The permanent magnet can be displaced vertically by rotating the mount screw,
which is threaded identically to the pendulum rod. The dimensions of the per-
manent magnet are; thickness t = 2.7 mm, radius r = 12.5 mm.
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b) Use the Hall sensor to measure the vertical magnetic field, B, from the per-
manent magnet along the cylinder axis, see Figure 4. Let the measurements
cover the distance from y = 26 mm (use the spacer) to y = 3.5 mm, where

y =1 mm corresponds to the sensor and permanent magnet being in direct
contact. Make a graph of your data for B versus y.

k

Rk S NI

Active part
of sensor

Figure 4: Definition of the distance y between top of magnet and the active part
of the sensor.
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c) It can be shown that the field along the axis of a cylindrical magnet is given
by the formula

+t
B(Y) =B, —

oy
ety ®)

where t is the cylinder thickness and r is the radius. The parameter B, charac-
terizes the strength of the magnet. Find the value of B, for your permanent
magnet.® Base your determination on two measured B-values obtained at dif-
ferent y.

Section 5 : Determination of magnetic dipole moment (4 marks)

A tiny magnet is attached to the white end of the pendulum rod. Mount the pen-
dulum on the stand with its magnetic end down and with x = 100 mm. Place
the permanent magnet mount under the pendulum so that both the permanent
magnet and the pendulum have common cylinder axis. The alignment should
be done with the permanent magnet in its lowest position in the mount. (Al-
ways avoid close contact between the permanent magnet and the magnetic end
of the pendulum.)

a) Let z denote the air gap spacing between the permanent magnet and the
lower end of the pendulum. Measure the oscillation period, T, as function of the
distance, z. The measurement series should cover the interval from z = 25 mm
to z = 5.5 mm while you use as small oscillation amplitude as possible. Be
aware of the possibility that the period timer might display 2T (see remark re-
garding the timer under Instrumentation above). Plot the observed T versus z.

b) With the additional magnetic interaction the pendulum has a period of oscil-
lation, T, which varies with z according to the relation

1 UB,
Tz O % w f(2) (4)
Here [J stand for “proportional to”, and u is the magnetic dipole moment of
the tiny magnet attached to the pendulum, and is the parameter determined
in section 4c. The function f(z) includes the variation in magnetic field with
distance. In Figure 5 on the next page you find the particular f(z) for our experi-
ment, presented as a graph.

Select an appropirate point on the graph to determine the unknown magnetic
moment L.

$ 2B, is a material property called remanent magnetic induction, B, .
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Figure 5. Graph of the dimension-less function f(z) used in section 5b.
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Candidate: Question:

OSLO 1996

27" INTERNATIONAL
PRHYSICS OLYMPIAD

June 30 - July 7
University of Oslo

Axis of rotation Centre of mass

Figure 6. For use in section 2a. Mark all positions where a rotation axis
(orthogonal to the plane of the paper) can be placed without changing the

152

the size in the original examination paper.)

oscillation period. Assume for this pendulum (drawn on scale, 1:1) that
I/M = 2100 mm?. (Note: In this booklet the size of this figure is about 75% of

emitter \

«

Timer display | |.[0 | 7] 00

detector /

Paper plane
i coincides with
" the plane of
the display

Figure 7. For use in section 3b. Indicate the whole area where the reflected
light hits when the pendulum is vertical.

Include this page in your report!



The men behind the equipment

The equipment for the practical competition was constructed and manufactured
at the Mechanics Workshop at the Department of Physics, University of Oslo

(see picture below, from left to right: Tor Enger (head of the Mechanics Workshop),
Pal Sundbye, Helge Michaelsen, Steinar Skaug Nilsen, and Arvid Andreassen).

Photo: Geir Holm

The electronic timer was designed and manufactured by Efim Brondz,

Department of Physics, University of Oslo (see picture below). About 40.000
soldering points were completed manually, enabling the time-recording during

the exam to be smooth and accurate.

Photo: Geir Holm
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Candidate: IPhO ID | Question: 1 Page 1 of 11

OSLO 1996
27" INTERNATIONAL
PHYSICS OLYMPIAD

June 30 - July 7
University of Osfo

27" INTERNATIONAL PHYSICS OLYMPIAD
OSLO, NORWAY

Model Answer
for the
EXPERIMENTAL COMPETITION
JULY 4 1996

These model answers indicate what is required from the candidates to get the maximum score
of 20 marks. Some times we have used slightly more text than required; paragraphs written in
italic give additional comments. This practical exam will reward students with creativity,
intuition and a thorough understanding of the physics involved.

Alternative solutions regarded as less elegant or more time consuming are printed in
frames like this with white background.

Anticipated INCORRECT answers are printed on grey background and are included to
point out places where the students may make mistakes or approximations without being
aware of them.

Section 1:

1a) Threads are 1.50 mm/turn. Counted turns to measure position x.

Turnno. O 10 20 30 40 50 60 70 80 90 100

X [mm] 10.0 25.0 40.0 550 70.0 850 100.0 115.0 130.0 145.0 160.0
T [ms] 1023 1005 989 976 967 964 969 987 1024 1094 1227

Turnno. 110 120 46 48 52 54

X [mm] 175.0 190.0 79.0 820 88.0 910
T [ms] 1490 2303 964 964 964 965
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University of Osfo
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1b) Graph: T(x), shown above.

T=950ms: NO positions
T=1000 ms: 2 positions
T=1100ms: 1 position

If the answer is given as corresponding x-values, and these reflect the number of
positions asked for, this answer will also be accepted.




| Candidate: IPhO ID | Question: 1 +2 Page 3 of 11 |

OSLO 1996
27" INTERNATIONAL
PHYSICS OLYMPIAD

June 30 - July 7
University of Osfo

1c) Minimum on graph: x = 84 mm, (estimated uncertainty 1 mm)
By balancing the pendulum horizontally: | = 112.3 mm + 0.55 mm = 113 mm

/ ‘
! Centre of mass

W

Blade J Top of aluminum stand
ALTERNATIVE 1c-1:
MropL=My+h M
156 Xow = oM S &UT X =197.3 mm for x = 84 mm

gives | = 197.3 mm - 84 mm = 113 mm
M = Mgp + Myyr, h =8.40 mm = height of nut minus two grooves.

INCORRECT 1c-1: Assuming that the centre of mass for the pendulum coincides with the
midpoint, L/2, of the rod gives | = L/2 - x = 116 mm.

(The exact position of the minimum on the graph is x = 84.4 mm. with | = 112.8 mm)

Section 2:

|—L—2100mm2—35mm
22) 27\, T 60 mm

See also Figure 6 on the next page



Candidate: IPhO ID | Question: 2 Page 4 of 11

OSLO 1996
27" INTERNATIONAL
PHYSICS OLYMPIAD

June 30 - July 7

University of Osfo

Axis of rotation Centre of mass

Figure 6. For use in section 2a. Mark all positions where a rotation axis (orthogonal to the
plane of the paper) can be placed without changing the oscillation period. Assume for this
pendulum (drawn on scale, 1:1) that 1/M = 2100 mm?. (Note: In this booklet the size of this
figure is about 75% of the size in the original examination paper.)

SIDE VIEW TOP VIEW
/
Vv
)/ D> ]/
EMITTER E— ’9/
rTTTTTTTTtrrmrmomememmmmmnes NUT
OUTLINE ;

emitter OF NUT .

; \ / . Paper plane

T . > - coincides with

imer dlsp!cy l. :4— ihe plane of
the display

+ detector LIGHT

Figure 7. For use in section 3b. Indicate the whole area where the reflected light hits when

the pendulum is vertical.

Include this page in your report!

157
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University of Osfo

2b) Simple method with small uncertainty: Inverted pendulum.

Equation (1) +(2) > 1 =T, = (xlll l, =g —72(|1 +13)

NOTE: Independent of I/M !
Used both nuts with one nut at the end to maximise 11 + lo. Alternately adjusted nut
positions until equal periods T, = T,:

( Centre of mass

¢ /’l ,

Ro’rc’rlon axes

> :

158

A
-y

ly + 1,

T,=T,=1024 ms.
Adding the depth of the two grooves to the measured distance between nuts:
I, +1,=(259.6 + 2 - 0.55) mm = 0.2607 m

_ A 4131416 [0.2607m

s (I +1,) = (10245 =9815m/s?

ALTERNATIVE 2b-1: Finding I(x). Correct but time consuming.
It is possible to derive an expression for | as a function of x. By making sensible
approximations, this gives:

1) _ L® MNUT(L*'h_X)z Mrop
M 12 M 2 M
which is accurate to within 0.03 %. Using the correct expression for | as a function of x:

Mgopl ~ Myyrh _ Meop

2M M
equation (1) can be used on any point (x, T) to find g. Choosing the point
(85 mm, 964 ms) gives:

I(X) =Xcm =X = X =195.3 mm - 0.9773x,

4n2[ 1(x) +|(X)}:4[$14162[0).2311m

. =9818 m/s’
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Using the minimum point on the graph in the way shown below is wrong, since the

1(x)
curve in 1b) , f M 0() *+1(X) with 1(x)/M and I(x) given above, describes a

continuum of dlfferent pendulums with changing I(x) and moving centre of mass.
Equation (1): \/7 MI describes one pendulum with fixed I, and does not apply

to the curve in 1b).

INCORRECT 2b-1: At the minimum point we have from Equation (2) and 1c):

L=, =1= VM =(113 £1) mm Equation (1) becomes
IZ

_ 8771 _ 8[31416° (D113m
Vet (0.964s)?

f and

=960 m/s>

Another source of error which may accidentally give a reasonable value is using the
wrong value | = (116 £ 1)mm from «INCORRECT 1c-1»:

87771 8031416 [(0116m

= - =986 m/s?
INCORRECT 2b-2: 9= 3 (0.964s)?

Totally neglecting the mass of the nut but remembering the expression for the moment of
inertia for a thin rod about a perpendicular axis through the centre of mass, | = ML?%/12,
gives from equation (2) for the minimum point: I> = I/M = L¥12 = 0.01333 m?. This
value is accidentally only 0.15% smaller than the correct value for I1(x)/M at the mini-
mum point on the curve in 1b):

_ 2
1(x=8443mm) _ L+MNUT(L+"-X] Meoo - 01335 m?|
M 2 M \ 2 M

(continued on next page)

159



Candidate: IPhO ID | Question: 2 Page 7 of 11

University of Osfo
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27" INTERNATIONAL S
PHYSICS OLYMPIAD | =
(cont.) 5
. M NUT L+h -
Neglecting the term M 2 —-84.43mm| =0.00033 m? is nearly compensated by

MROD _

omitting the factor M =0.977. However, each of these approximations are of the

order of 2.5 %, well above the accuracy that can be achieved.

2
INCORRECT 2b-3: At the minimum point equation (2) gives 1% = 1 = |1;2 Then

T «/7 2L _2m|L

min \/* \/* \/7 and

47°L  _ 4031416° [0.4000 m _ 081
160 8T’ 17321rfogeas)’

m/s®

2¢) Estimating uncertainty in the logarithmic expression for g:

477°S

Let S=l,+l, = g=
1 2 T2

AS =03 mm AT =1ms

2 2 2 2
Ag _ (ﬁj +(_2£j _ ( 03mm ] +[2 1ms ]
g S T 260.7 mm 1024 ms

=/(0.0012)2 +(0.0020)% =00023 =023%

Ag = 000239815 m/s* =0.022 m/s?

g =(982+002) m/s?

The incorrect methods INCORRECT 2b-1, 2b-2 and 2b-3 have a similar expressions for g
as above. With Al = 1 mm in INCORRECT 2b-1 and 2b-2 we get Ag = 0.09 m/s2.

INCORRECT 2b-3 should have Al = 0.3 mm and Ag = 0.02 m/s2.
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ALTERNATIVE 3 has a very complicated x dependence in g. Instead of differentiating
g(x) it is easier to insert the two values x+Ax and x-Ax in the expression in brackets [ ],
thus finding an estimate for A[ ] and then using the same formula as above.

(The official local value for g, measured in the basement of the adjacent building to where the
practical exam was held is g = 9.8190178 m/s2 with uncertainty in the last digit.)

Section 3.

3a) 3. Cylindrical mirror
4, Concave mirror

Radius of curvature of cylinder, r = 145 mm. (Uncertainty approx. +5 mm, not asked for.)

(In this set-up the emitter and detector are placed at the cylinder axis. The radius of curvature
is then the distance between the emitter/detector and the mirror. )

3b) Three drawings, see Figure 7 on page 4 in this Model Answers.

(The key to understanding this set-up is that for a concave cylindrical mirror with a point
source at the cylinder axis, the reflected light will be focused back onto the cylinder axis as a
line segment of length twice the width of the mirror.)

Section 4.
4a) Vo =2.464V (This value may be different for each set-up.)

4b) Threads are 1.50 mm /turn. Measured V(y) for each turn. Calculated

B(y) =[V(y) _Vo]§ =[V(y) =Vq] /%. (Table not requested)

See graph on next page.
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4c)

-1

y+t  _y
Jy+n2 ez [y er?

By = B(y)

The point (11 mm, 48.5 mT) gives B, = 0.621 T and (20 mm, 16,8 mT) gives B, = 0.601 T.
Mean value: B, = 0.61 T (This value may vary for different magnets.)

Section 5:

5a) Used the spacer and measured T(z) from z = 25 mm to 5.5 mm. (Table is not requested.)

See plot on next page.
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Graph: T(2):
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5b) I(x =100 mm) =97.6 mm (by balancing the pendulum or by calculation as in 1c).

M =Mgop + Myur

- 1 _ UBy ., ] . o .
Proportionality means: T2 al +w f(z) |whereais a proportionality constant. Setting

B, = 0 corresponds to having an infinitely weak magnet or no magnet at all. Removing the
1

1
large magnet gives: T, = 968 ms and T02 = Toz .

Selecting the point where f(z), see Fig. 5, changes the least with z, i.e., at the maximum, one
has f_,, =56.3. This point must correspond to the minimum oscillation period, which is
measured to be T ;, = 576 ms.

jab)

j % _
_1+0BI\/ITJI f(Z)} or &=

We will often need the factor

Mgl _ 0215 kg [9.82 m/s® [0.0976 m
B, 061T

=0.338 Am?2.
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The magnetic moment then becomes

Mgl 1 (Tojz_l 0338 Am?
H="g, ¥ T 563 |\576

max

2
(@) —1} =110107% Am?

ALTERNATIVE 5b-1: Not what is asked for: Using two points to eliminate the

1 B

proportionality constant a: Equation (4) or -7 = 3{1+M9(: f(Z)} gives:
aT, {1+f\’/I s f(zl)}—aTz [1+'uf(22)}
T12+T12'u 1 (z,) =T, + 2” o 1(z2)

uB
Mgt @) -T2 (2)] =T° -2

Mgl T,°-TY

U=
Bo lef(zl) _Tzzf(zz)

Choosing two points (z; = 7 mm, T, = 580.5 ms) and (z, = 22 mm, T, = 841ms). Reading
from the graph f(z;) = 56.0 and f(z,) = 12.0 we get

2 _ 2
¢ =0338 Am® B—; 81 5802 =120107% Am?
580° (560 -841° 120 ——————




Candidate; Total score: + + + + =

Country: Marker’s name:

Language: Comment:

Marking Form

for the Experimental Competition at the
27th International Physics Olympiad
Oslo, Norway

July 4, 1996

To the marker: Carefully read through the candidate’s exam papers and compare with
the model answer. You may use the transparencies (handed out) when checking the
graph in 1b) and the drawing in 2a). When encountering words or sentences that
require translation, postpone marking of this part until you have consulted the inter-
preter.

Use the table below and mark a circle around the point values to be subtracted. Add
vertically the points for each subsection and calculate the score.

NB: Give score 0 if the value comes out negative for any subsection.

Add the scores for each subsection and write the sum in the “‘Total score’- box at the
upper right. Keep decimals all the way.

If you have questions, consult the marking leader. Good luck, and remember that you
will have to defend your marking in front of the team leaders.

(Note: The terms “INCORRECT 2b-1” found in the table for subsection 2c) and similar terms
elsewhere, refer to the Model Answer, in which anticipated incorrect answers were included
and numbered for easy reference.)
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Subsection 1a) Deficiency  Subtract
No answer 1.0
x lacks unit 0.1
Other than 0 or 1 decimal inx 0.1
x does not cover the interval 10 mm - 160 mm 0.1
Tlacksunit 0.1
T given with other than 1 or 0.5 millisecond accuracy 0.1
Fewer than 11 measuring points (15 mm sep.). Subtr. upto 0.2
Systematic error in x (e.g. if measured from the top of the nut so that the
firstx=0mm) 0.2
If not aware of doubling of the timer period 0.2
Other (specify):
Score for subsection 1a: 1.0 - =
Subsection 1b) Deficiency  Subtract
No answer 1.0
166 Lacks “x [(m)m]’” on horizontal axis 0.1
1 mm on paper does not correspondto 1 mminx 0.1
Fewer than 3 numbers on horizontal axis 0.1
Lacks “T [(m)s]’” on vertical axis 0.1
1 mm on paper does not correspondto 1 msinT 0.1
Fewer than 3 numbers on vertical axis 0.1
Measuring points not clearly shown (as circles or crosses) 0.2
More than 5 ms deviation in more than 2 measuring points on the graph 0.2
Wrong answer to the questions (x-values give full score if correct number
of values: 0,2,1) 0.2
Other (specify):
Score for subsection 1b): 1.0 - =
Subsection 1c) Deficiency  Subtract
No answer 2.0
x outside the interval 81 - 87 mm. Subtractupto 0.4
X lacks unit 0.1
X given more (or less) accurately than in whole millimeters 0.3
I lacks unit 0.1
I given more (or less) accurately than the nearest mm 0.3
Wrong formula (e.g. I = 200.0 mm - x ) or something other than | = Xy, -x 0.6
If it is not possible to see which method was used to find the center of mass 0.2

Other (specify):

Score for subsection 1c): 2.0 -




Subsection 2a) Deficiency  Subtract
No answer 1.5
If drawn straight (vertical) lines 0.4
If points are drawn 0.5
Other than 4 regions are drawn 0.5
Inaccurate drawing (>+ 2mm) 0.3
Lacks the values 11 = 60 mm, Io = 35 mm on figure or text 0.3
Other (specify):
Score for subsection 2a): 1.5 - =
Subsection 2b) Deficiency  Subtract
No answer 2.5
Lacks (derivation of) formulaforg 0.3
For INVERTED PENDULUM: Lacks figure 0.2
Values from possible new measurements not given 0.3
Incomplete calculations 0.3
If hard to see which method was used 0.4
Used the formula for INVERTED PENDULUM but read |1 and I» from
graph in 1b) by a horizontal line for a certain T 1.5
Used one of the other incorrect methods 2.0
Other than 3 (or 4) significant figures in the answer 0.3
g lacks unitm/s2 0.1
Other (specify):
Score for subsection 2b): 2.5 - =
Subsection 2c) Deficiency  Subtract
No answer 2.5
Wrong expression for Ag/g or Ag. Subtractupto 0.5
For INVERTED PENDULUM: If 0.3 mm >A(l3+15) >0.5mm 0.2
For ALTERNATIVE 2c-1: If A[] >0.1mm 0.2
For INCORRECT 2c-1and 2¢c-2: If 1mm > Al >2mm 0.2
For INCORRECT 2¢-3: If 0.3 mm > AL >0.4mm 0.2
For all methods: If AT # 1 (or0.5)ms 0.2
Error in the calculation of Ag 0.2
Lacks answer including g + Ag with 2 decimals 0.2
g+ Ag lacksunit 0.1

Other (specify):

Score for subsection 2c): 2.5 -
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Subsection 3a) Deficiency  Subtract
No answer 1.0
Lacks point 3. cylindrical mirror 0.3
Lacks point 4. concave mirror 0.3
Includes other points (1, 2 or 5), subtract per wrong point: 0.3
Lacks value for radius of curvature 0.4
If r <130 mm or r > 160 mm, subtractupto 0.2
If r is given more accurately than hole millimeters 0.2
Other (specify):
Score for subsection 3a): 1.0 - =
Subsection 3b) Deficiency  Subtract
No answer 2.0
Lacks side view figure 0.6
Errors or deficiencies in the side view figure. Subtractupto 0.4
Lacks top view figure 0.6
168 Errors or deficiencies in the top view figure. Subtractupto 0.4
Drawing shows light focused to a point 0.3
Drawing shows light spread out over an ill defined or wrongly shaped
surface 0.3
Line/surface is not horizontal 0.2
Line/point/surface not centered symmetrically on detector 0.2
Line/point/surface has length different from twice the width of the nut
(i.e. outside the interval 10 - 30 mm) 0.1

Other (specify):

Score for subsection 3b): 2.0 -




Subsection 4a) Deficiency  Subtract
No answer 1.0
V, lacksunitV 0.1
Less than 3 decimalsinV, 0.1
Incorrect couplings (would give V,<23VorV ,>29V) 0.8

Other (specify):
Score for subsection 4a): 1.0 - =

Subsection 4b) Deficiency  Subtract
No answer 1.5
Forgotten V or other errors in formulaforB 0.2
Lacks “y [(m)m]” on horizontal axis 0.1
Fewer than 3 numbers on horizontal axis 0.1
Lacks “B [(m)T]” on vertical axis 0.1
Fewer than 3 numbers on vertical axis 0.1
Fewer than 9 measuring points. Subtractupto 0.2

Measuring points do not cover the interval 3.5 mm - 26 mm 0.2 169
Measuring points not clearly shown (as circles or crosses) 0.1
Error in data or unreasonably large spread in measuring points. Subtract
upto 0.5
Other (specify):
Score for subsection 4b): 1.5 - =

Subsection 4c) Deficiency  Subtract
No answer 1.5
Incorrect formula for B, 0.3
If used only one measuring point 0.4
If used untypical points on the graph 0.3
Errors in calculation of mean value for B, 0.2
B, lacksunitT 0.1
Other than two significant figures in (the mean value of) B, 0.2
B,<0.4TorB,>0.7T. Subtractupto 0.2

Other (specify):

Score for subsection 4c¢): 1.5 -




Subsection 5a) Deficiency  Subtract
No answer 1.0
Lacks “z [(m)m]** on horizontal axis 0.1
Fewer than 3 numbers on horizontal axis 0.1
Lacks “T [(m)s]” on vertical axis 0.1
Fewer than 3 numbers on vertical axis 0.1
Fewer than 8 measuring points. Subtractupto 0.2
Measuring points not clearly shown (as circles or crosses) 0.1
Measuring points do not cover the interval 5.5 mm -25mm 0.2
Error in data (e.g. plotted 2T instead of T) or unreasonably large spread
in measuring points. Subtr.upto 0.5
Other (specify):
Score for subsection 5a): 1.0 - =
Subsection 5b) Deficiency  Subtract
No answer 3.0
170 Forgotten center of mass displacement in | (used I =100 mm) 0.3
Used ALTERNATIVE 5b-1 1.0
Lacks method for finding the proportionality factora 2.5
Not found correct proportionality factora 0.3
Used another point than the maximum of f(z) 0.1
Incorrect reading of f(z) 0.1
Used Mg or another incorrect value forM 0.2
Incorrect calculation of u 0.3
u lacks unit (Am2or J/T) 0.2
More than 2 significant figuresinp 0.3
Other (specify):
Score for subsection 5b): 3.0 - =
Total points:

Total for section 1 (max. 4 points):
Total for section 2 (max. 5 points):
Total for section 3 (max. 3 points):
Total for section 4 (max. 4 points):
Total for section 5 (max. 4 points):




The last preparations

The problem for the experimental competition was discussed by the leaders and
the organizers the evening before the exam. At this meeting the equipment was
demonstrated for the first time (picture).
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Photo: Bgrge Holme

After the meeting had agreed on the final text (in English), the problems had to
be translated into the remaining 36 languages. One PC was available for each
nation for the translation process (see picture below). The last nation finished
their translation at about 4:30 a.m. in the morning, and the competition started
at 0830. Busy time for the organizers! Examples of the different translations
are given on the following pages.

Photo: Bgrge Holme



28" International Physics Olympiad
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THEORETICAL COMPETITION
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Time Available: 5 hours

Read This First:
1. Use only the pen provided.
2. Use only the front side of the answer sheets and paper.

3. In your answers please use as little text as possible; express yourself primarily in
equations, numbers and figures. Summarize your results on the answer sheet.

4. Please indicate on the first page the total number of pages you used.

5. At the end of the exam please put your answer sheets, pages and graphs in order.

This set of problems consists of 11 pages.

Examination prepared at: University of British Columbia
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Committee Chair: Chris Waltham
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Theory Question No.1

Scaling

(a) A small mass hangs on the end of a massless ideal spring and oscillates up and down
at its natural frequency f. If the spring is cut in half and the mass reattached at the end,
what is the new frequency f' ? (1.5 marks)

(b) The radius of a hydrogen atom in its ground state is ap= 0.0529 nm (the “Bohr
radius”). What is the radius a’ of a “muonic-hydrogen” atom in which the electron is
replaced by an identically charged muon, with mass 207 times that of the electron?
Assume the proton mass is much larger than that of the muon and electron. (2 marks)

(c) The mean temperature of the earth is 7= 287 K. What would the new mean
temperature 7"’ be if the mean distance between the earth and the sun was reduced by
1%?

(2 marks)

(d) On a given day, the air is dry and has a density p= 1.2500 kg/m’. The next day the
humidity has increased and the air is 2% by mass water vapour. The pressure and
temperature are the same as the day before. What is the air density p' now? (2

marks)

Mean molecular weight of dry air: 28.8 (g/mol)
Molecular weight of water: 18 (g/mol)

Assume ideal-gas behaviour.
(e) A type of helicopter can hover if the mechanical power output of its engine is P. If

another helicopter is made which is an exact '2-scale replica (in all linear dimensions) of
the first, what mechanical power P’ is required for it to hover? (2.5 marks)



Theory Question 1: Answer Sheet

STUDENT CODE:

(a) Frequency f':

(b) Radius a':

(c) Temperature 7':

(d) Density p':

(e) Power P':




Theory Question No.2

Nuclear Masses and Stability

All energies in this question are expressed in MeV - millions of electron volts.
One MeV = 1.6 x 10" J, but it is not necessary to know this to solve the problem.

The mass M of an atomic nucleus with Z protons and N neutrons (i.e. the mass number

A = N + Z) is the sum of masses of the free constituent nucleons (protons and neutrons)
minus the binding energy B/c’.

Mc* = Zmpc2 +Nm,c’ - B

The graph shown below plots the maximum value of B/4 for a given value of 4, vs. A4.
The greater the value of B/A, in general, the more stable is the nucleus.

Binding Energy per Nucleon

10

{0

RNE

B/A (MeV)

/

0 50 100 150 200 250



(a) Above a certain mass number 4, , nuclei have binding energies which are always
small enough to allow the emission of alpha-particles (4=4). Use a linear approximation
to this curve above 4 = 100 to estimate A,. (3 marks)

For this model, assume the following:

e Both initial and final nuclei are represented on this curve.
e The total binding energy of the alpha-particle is given by B4 = 25.0 MeV (this cannot
be read off the graph!).

(b) The binding energy of an atomic nucleus with Z protons and N neutrons (4=N+Z) is
given by a semi-empirical formula:

(N-2)"

B=avA—aSA%—acZzA_%—a y

o

The value of d'is given by:
+ a,4”" for 0dd-N/odd-Z nuclei
0 for even-N/odd-Z or odd-N/even-Z nuclei
- ayA™"* for even-N/even-Z nuclei
The values of the coefficients are:
a,=15.8 MeV; a,=16.8 MeV; a.=0.72 MeV; a, = 23.5 MeV; a, = 33.5 MeV.
(1) Derive an expression for the proton number Z,,,, of the nucleus with the largest
binding energy for a given mass number 4 . Ignore the &-term for this part only. (2

marks)

(i1) What is the value of Z for the 4 = 200 nucleus with the largest B/4? Include the effect
of the o-term. (2 marks)



(ii1) Consider the three nuclei with A = 128 listed in the table on the answer sheet.
Determine which ones are energetically stable and which ones have sufficient energy to
decay by the processes listed below. Determine Z,,,, as defined in part (i) and fill out the
table on your answer sheet.

In filling out the table, please:

e Mark processes which are energetically allowed thus: V
e Mark processes which are NOT energetically allowed thus: 0
e Consider only transitions between these three nuclei.

Decay processes:

(1) - decay; emission from the nucleus of an electron

(2) B~ decay; emission from the nucleus of a positron

(3) p° - decay; emission from the nucleus of two electrons simultaneously
(4) Electron capture; capture of an atomic electron by the nucleus.

The rest mass energy of an electron (and positron) is nm.c>= 0.51 MeV; that of a proton is
mp02 = 0938.27 MeV; that of a neutron is m,c*=939.57 MeV.

(3 marks)



Question 2: Answer Sheet STUDENT CODE:

(a) Numerical value for 4, :

(b) (1) Expression for Z,,,, :

(b) (i1) Numerical value of Z :

(b) (ii1)
Nucleus/Process S~ - decay S+ - decay Electron-capture | B~ ~ - decay
128 I
53
= Xe
% Cs
Notation: /X

X = Chemical Symbol




Theory Question No.3

Solar-Powered Aircraft

We wish to design an aircraft which will stay aloft using solar power alone. The most
efficient type of layout is one with a wing whose top surface is completely covered in
solar cells. The cells supply electrical power with which the motor drives the propeller.

Consider a wing of rectangular plan-form with span /, chord (width) c; the wing area is

S = cl, and the wing aspect ratio 4 = [/ c. We can get an approximate idea of the wing’s
performance by considering a slice of air of height x and length / being deflected
downward at a small angle & with only a very small change in speed. Control surfaces
can be used to select an optimal value of ¢ for flight. This simple model corresponds
closely to reality if x = 7/ /4, and we can assume this to be the case. The total mass of the
aircraft is M and it flies horizontally with velocity v relative to the surrounding air. In
the following calculations consider only the air flow around the wing.

Top view of aircraft (in its own frame of reference):

incident air




Side view of wing (in a frame of reference moving with the aircraft):

incident air wing section air leaving wing vertical(up)
Ignore the modification of the airflow due to the propeller.

(a) Consider the change in momentum of the air moving past the wing, with no change in

speed while it does so. Derive expressions for the vertical lift force L and the horizontal

drag force D; on the wing in terms of wing dimensions, v, &, and the air density p.

Assume the direction of air flow is always parallel to the plane of the side-view diagram.
(3 marks)

(b) There is an additional horizontal drag force D, caused by the friction of air flowing
over the surface of the wing. The air slows slightly, with a change of speed
Av (<< 1% of v) given by:
A _
=

A
A
The value of f'is independent of &.

Find an expression (in terms of M, f, 4, S, p and g- the acceleration due to gravity) for
the flight speed vy corresponding to a minimum power being needed to maintain this
aircraft in flight at constant altitude and velocity. Neglect terms of order (¢ f) or higher.

(3 marks)

You may find the following small angle approximation useful:

sin’ ¢
2

l-cose ~

(c) On the answer sheet, sketch a graph of power P versus flight speed v . Show the
separate contributions to the power needed from the two sources of drag. Find an
expression (in terms of M, f, A, S, p and g) for the minimum power, P, . (2 marks)



(d) If the solar cells can supply sufficient energy so that the electric motors and propellers
generate mechanical power of /= 10 watts per square metre of wing area, calculate the
maximum wing loading Mg/S (N/m?) for this power and flight speed vy (m/s). Assume
p=1.25kg/m’, f=10.004, 4 = 10. (2 marks)

10



Question 3: Answer Sheet

STUDENT CODE:

(a) Expression for L :

(a) Expression for D; :

(b) Expression for D; :

(b) Expression for vy :

11




(©)

Vo

(c) Expression for P, :

(d) Maximum value of Mg/S :

(d) Numerical value of vy :

12
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3. Use as little text as possible in your answers; express yourself primarily with equa-
tions, numbers and figures. Summarize your results on the answer sheets.
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1 Rolling of a hexagonal prism!

1.1 Problem text

Consider a long, solid, rigid, regular hexagonal prism like a common type of pencil (Figure
1.1). The mass of the prism is M and it is uniformly distributed. The length of each
side of the cross-sectional hexagon is a. The moment of inertia I of the hexagonal prism
about its central axis is

5
I= EMa2 (1.1)

a

\

Figure 1.1: A solid prism with the cross section of a reqular hexagon.

The moment of inertia I’ about an edge of the prism is

17
I' = —Ma? (1.2)
12

a) (3.5 points) The prism is initially at rest with its axis horizontal on an inclined plane
which makes a small angle § with the horizontal (Figure 1.2). Assume that the surfaces
of the prism are slightly concave so that the prism only touches the plane at its edges.
The effect of this concavity on the moment of inertia can be ignored. The prism is now
displaced from rest and starts an uneven rolling down the plane. Assume that friction
prevents any sliding and that the prism does not lose contact with the plane. The angular
velocity just before a given edge hits the plane is w; while wy is the angular velocity
immediately after the impact.
Show that we may write

Wi = Sw; (1.3)

and write the value of the coefficient s on the answer sheet.

! Authors: Le6 Kristjansson and Thorsteinn Vilhjdlmsson



Figure 1.2: A hexagonal prism lying on an inclined plane.

b) (1 point) The kinetic energy of the prism just before and after impact is similarly K;
and Kf.
Show that we may write
K;=rk; (1.4)

and write the value of the coefficient  on the answer sheet.

c¢) (1.5 points) For the next impact to occur K; must exceed a minimum value K
which may be written in the form

where g = 9.81 m/s? is the acceleration of gravity.
Find the coefficient ¢ in terms of the slope angle # and the coefficient r. Write your
answer on the answer sheet. (Use the algebraic symbol r, not its value).

d) (2 points) If the condition of part (c) is satisfied, the kinetic energy K; will approach
a fixed value K, as the prism rolls down the incline.
Given that the limit exists, show that K;, may be written as:

Ky =rMga (1.6)
and write the coefficient x in terms of @ and r on the answer sheet.

e) (2 points) Calculate, to within 0.1°, the minimum slope angle 6, for which the uneven
rolling, once started, will continue indefinitely. Write your numerical answer on the answer
sheet.

1.2 Solution

a)
Solution Method 1

At the impact the prism starts rotating about a new axis, i.e. the edge which just hit
the plane. The force from the plane has no torque about this axis, so that the angular
momentum about the edge is conserved during the brief interval of impact. The linear

3



momentum of the prism as a whole has the same direction as the velocity of the center of
mass (15 = M e where the subscript C refers to the center of mass), and this direction
is easy to follow when we know the axis of rotation at a given time. Just before impact J2
is directed 30° downwards relative to the plane, but will after impact point 30° upwards
from the plane, see Figure 1.3.

Figure 1.3: The linear momentum of the prism as a whole, before and after impact.

To find the angular momentum about the edge of impact just before the impact we
use the equation relating angular momentum L about an arbitrary axis to the angular
momentum Lg about an axis through the center of mass parallel to the first one:

E:E0+MFOXUC (17)

where the subscript C refers to the center of mass. Here, this is applied to an axis at the
point of impact so that 7 is the vector from that point to the center of mass (Figure
1.3). The vectors on the right hand side of equation (1.7) both have the same direction.
Hence we get for the quantities just before impact?

|7 X Uil = re veisin30® = a® w; / 2 (1.8)
1 5 1 11
Li:Iwi—l—iMaQwi = <E+§)Ma2wi:EMa2wi (1.9)

On the other hand, angular momentum about the edge just after impact is, from
equation (1.2):3

2This may also be done by using Steiner’s theorem twice, going from the previous axis of impact to
the center of mass and from there to the new axis of impact.
3 Alternatively:



Ly =Tws= 1—7Ma wy (1.10)
12
where the subscript f always refers to the situation just after impact. We may notice that
the difference comes about because of the different directions of ¥¢; and ¥¢y. Now, when
we state the conservation of angular momentum, L; = Ly, we obtain a relation between
the angular velocities as follows:

11/12 11
W= X, 1.11
ARETID) 17 (1.11)
We thus get:
s=11/17 (1.12)

We may note that s is independent of a, w;, and 6.

Solution Method 2

On impact the prism receives an impulse P [N - s] from the plane at the edge where the
impact occurs. There is no reaction at the edge which is leaving the plane. The impulse
has a component P} parallel to the inclined plane (positive upwards along the incline in
Figure 1.3 and a component P, perpendicular to the plane (positive upwards from the
plane in the same figure).

We can set up three equations with the three unknowns P, P, and the ratio s = wf_.
The quantity P is the change in the parallel component of the linear momentum of the
prism and P, is the corresponding change in perpendicular linear momentum. Thus:

1
P = M(Wi+Wf)a'§. (1.14)
We finally have:
1 3
Pla=- — Ha£ = I (w; — wy) (1.15)

2 2

since the right hand side is the change in angular momentum about the center of mass.
Equations (1.13), (1.14) and (1.15) can now be solved for the ratio s = =L giving, of
course, the same result as before.

Lf = wa+M|Fc><170f|:wa+Ma2wfsin90°

1
= <152 +1> Ma? wp = 1—; Ma? wy



b)

The linear speed of the center of mass just before impact is aw; and just after impact
it is awy. We know that we can always write the kinetic energy of a rotating rigid body
as a sum of jinternal® and ,external“ kinetic energy:

1 1
Ky =5 I w? + 5 M Ve, (1.16)

From this we see that in our case the kinetic energy K, is proportional to w? both
before and after impact so that we get

11)? 121
Ki=rK,=|[=) K= K, 1.17
r=r <17> 289 (117)
SO
r = 121/289 ~ 0.419 (1.18)

c)

The kinetic energy Ky after the impact must be sufficient to lift the center of mass
to its highest position, straight above the point of contact. The angle through which 7¢
moves for this is

(0%
=——90 1.1
0=t (119)

where a = 60° is the top angle of the triangles meeting at the center of the polygon.* The
energy for this lifting of the center of mass is

Ey = Mga(l —cosz) = Mga (1 — cos(30° — 6)) (1.20)

and we get the condition

Ky =rK; > Ey= Mga(1—cos(30° —6)) (1.21)
thus

0= % (1 — cos(30° — 0)) (1.22)

(Note that cos(30° — 0) = ? cosf + 3 sinf).

d)
Let K;, and Ky, be the kinetic energies just before and just after the nth impact.
We have shown that we have the relation

“In the general case a = 27 /N.



Kin=r Kipn (1.23)

where r = % for a hexagonal prism. Between subsequent impacts the height of the center

of mass of the prism decreases by asinf and its kinetic energy increases for this reason
by

A = Mgasin 6 (1.24)

We therefore have

Ki,n+1 = TKi,n + A. (125)

One does not have to write out the complete expression K, as a function of K;; and
n to find the limit. This would actually be a proof that the limit exists (see below) but
this is given in the problem text. Hence one can make K, ~ K, arbitrarily accurate
for sufficiently large n. The limit K, must thus satisfy the iterative formula, i.e.

Ku() = rKi,O + A (126)
yielding the solution
A
Ky = 1.27
. (1.27
i.e.
sin @
K = (1.28)
1—7r

We can also solve the problem explicitly by writing out the full expressions:

KZ',Q = r Ki,l + A (129)
Ki,g = r Ki,Z + A= ’I"QKZ',l + (1 + 'f')A (130)
Kin = MK +(04+r+... .+ A (1.31)
1—pnt
= " 1K+ —— A (1.32)
- T

In the limit of n — oo we get

A
Kin — Kip = T—r (1.33)

which is, of course, the same result as before.
If we calculate the change in kinetic energy through a whole cycle, i.e. from just before impact
number n until just before impact n + 1 we get

AKipn=Kini1 —Kipy = (r—10)r" 1K1 +r" 1A (1.34)
A= (1—-7)K; 1) (1.35)



This is positive if the initial value K;; < K;g so that K;, will then increase up to the limit
value Kj;p. If, on the other hand, K;; > Kj, the kinetic energy K;, just before impact will
decrease down to the limit Kj .

All of this may remind you of motion with friction which increases with speed. Mathemati-
cally speaking, the main difference is that we here are dealing with difference equations instead
of differential equations.

)
For indefinite continuation the limit value of K; in part (d) must be larger than the
minimum value for continuation found in part (c):

: A= . ! Mgasinf > Mga (1 — cos(30° — 0)) /r (1.36)
—r —r

_ _ 121,
We put A =~ = &

Asinf > 1 — cos 30° cos § — sin 30° sin ¢ (1.37)
(A+1/2)sin6 + v3/2cos 6 > 1 (1.38)

To solve this we define®

B . A+1/2 N .
U = arcco <\/(A T 3/4) ~ 35.36 (1.39)

and obtain

cosusin@ +sinucos® > 1/\/(A+1/2)2+3/4 (1.40)
sin(u+6) > 1/y/(A+1/2)2 +3/4 (1.41)
0> arcsin{1/y/(A+1/2)2+3/4} —u ~ 41.94° —35.36° = 6.58°  (1.42)
That is
0o ~ 6.58° (1.43)

If & > 6y and the kinetic energy before the first impact is sufficient according to part
(c), we will, under the assumptions made, get an indefinite “rolling”.

5You can of course solve any of the inequalities in a purely numerical way, e.g. by progressive guessing
or by using the approximations sin ¢ ~ ¢ and cos ¢ ~ 1 — ¢?/2.



1.3 Grading scheme

Part 2(a)

Answer: s = wy/w; = 11/17, equation (1.12) | 3.5
Part 2(b)

Answer: r = K;/K; = s> = 121/289, equation (1.18) | 1.0
Part 2(c)

Answer: K; i, by ¢, equation (1.22) ‘ 1.5
Part 2(d)

Answer: Limit K; by k =sinf/(1 — r), equation (1.28) | 2.0
Part 2(e)

Answer: Minimum angle ) = 6.58°, equation (1.43) | 2.0




2 Water under an ice cap®

2.1 Problem text

An ice cap is a thick sheet of ice (up to a few km in thickness) resting on the ground below
and extending horizontally over tens or hundreds of km. In this problem we consider the
melting of ice and the behavior of water under a temperate ice cap, i.e. an ice cap at
the melting point. We may assume that under such conditions the ice causes pressure
variations as a viscous fluid, but deforms in a brittle fashion, principally by vertical
movement. For the purposes of this problem the following information is given.

Density of water: pw = 1.000 -10% kg/m?
Density of ice: p; = 0.917 - 10% kg/m?
Specific heat of ice: c; =2.1-10% J/(kg °C)
Specific latent heat of ice: L;=34-10° J/kg
Density of rock and magma: pr =2.9-10% kg/m?
Specific heat of rock and magma: ¢, =700 J/(kg °C)

Specific latent heat of rock and magma: L,=42-10° J/kg
Average outward heat flow through the Jg = 0.06 W/m?
surface of the earth:

Melting point of ice: Ty = 0°C, constant

a) (0.5 points) Consider a thick ice cap at a location of average heat flow from the interior
of the earth. Using the data from the table, calculate the thickness d of the ice layer
melted every year and write your answer in the designated box on the answer sheet.

b) (3.5 points) Consider now the upper surface of an ice cap. The ground below the ice
cap has a slope angle a. The upper surface of the cap slopes by an angle 3 as shown in
Figure 2.1. The vertical thickness of the ice at x = 0 is hy. Hence the lower and upper
surfaces of the ice cap can be described by the equations

Y1 = rtana, Yz = hg + xtan (2.1)

Derive an expression for the pressure p at the bottom of the ice cap as a function of
the horizontal coordinate x and write it on the answer sheet.

Formulate mathematically a condition between ( and «, so that water in a layer
between the ice cap and the ground will flow in neither direction. Show that the condition
is of the form tan # = stana. Find the coefficient s and write the result in a symbolic
form on the answer sheet.

The line y; = 0.8 z in Figure 2.2 shows the surface of the earth below an ice cap. The
vertical thickness hg at = 0 is 2 km. Assume that water at the bottom is in equilibrium.

On a graph answer sheet draw the line y; and add a line y, showing the upper surface
of the ice. Indicate on the figure which line is which.

6 Authors: Gudni Axelsson and Thorsteinn Vilhjalmsson
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y = ho-t e

Figure 2.1: Cross section of an ice cap with a plane surface resting on an inclined plane
ground. S: surface, G: ground, I: ice cap.

¢) (1 point) Within a large ice sheet on horizontal ground and originally of constant
thickness D = 2.0 km, a conical body of water of height H = 1.0 km and radius » = 1.0
km is formed rather suddenly by melting of the ice (Figure 2.3). We assume that the
remaining ice adapts to this by vertical motion only.

Show analytically on a blank answer sheet and pictorially on a graph answer sheet,
the shape of the surface of the ice cap after the water cone has formed and hydrostatic
equilibrium has been reached.

d) (5 points) In its annual expedition an international group of scientists explores a
temperate ice cap in Antarctica. The area is normally a wide plateau but this time they
find a deep crater-like depression, formed like a top-down cone with a depth A of 100 m
and a radius r of 500 m (Figure 2.4). The thickness of the ice in the area is 2000 m.

After a discussion the scientists conclude that most probably there was a minor vol-
canic eruption below the ice cap. A small amount of magma (molten rock) intruded at
the bottom of the ice cap, solidified and cooled, melting a certain volume of ice. The
scientists try as follows to estimate the volume of the intrusion and get an idea of what
became of the melt water.

Assume that the ice only moved vertically. Also assume that the magma was com-
pletely molten and at 1200°C at the start. For simplicity, assume further that the intrusion
had the form of a cone with a circular base vertically below the conical depression in the
surface. The time for the rising of the magma was short relative to the time for the
exchange of heat in the process. The heat flow is assumed to have been primarily vertical
such that the volume melted from the ice at any time is bounded by a conical surface
centered above the center of the magma intrusion.

Given these assumptions the melting of the ice takes place in two steps. At first the
water is not in pressure equilibrium at the surface of the magma and hence flows away.
The water flowing away can be assumed to have a temperature of 0°C. Subsequently,

11



1 = 0.8x

y = ho—
y=0 7
z=0

Figure 2.2: Cross section of a temperate ice cap resting on an inclined ground with water
at the bottom in equilibrium. G: ground, I: ice cap.

hydrostatic equilibrium is reached and the water accumulates above the intrusion instead
of flowing away:.

When thermal equilibrium has been reached, you are asked to determine the following
quantities. Write the answers on the answer sheet.

1. The height H of the top of the water cone formed under the ice cap, relative to the
original bottom of the ice cap.

2. The height h; of the intrusion.

3. The total mass my, of the water produced and the mass m' of water that flows
away.

Plot on a graph answer sheet, to scale, the shapes of the rock intrusion and of the
body of water remaining. Use the coordinate system suggested in Figure 2.4.
2.2 Solution
a)

Based on the conservation of energy we have
Jg -1 year = L;p;d (2.2)

12



Figure 2.3: A vertical section through the mid-plane of a water cone inside an ice cap. S:
surface, W: water, G: ground, I: ice cap.

_ Jo-lyear 0.06Js ' m 236525 -24 -60 -60s

d -

=6.1-10"%m (2.3)

b)
Let p, be the atmospheric pressure, taken to be constant. At a depth z inside the ice
cap the pressure is given by:

P =pigZ + Pa (2.4)

Therefore, at the bottom of the ice cap, where z = yy — y;:

p = pig(y2—v1) +pa (2.5)
= pigx(tan B — tan ) + p;gho + Pa

For water not to move at the base of the ice cap the pressure must be hydrostatic
(trivial, but can be seen from Bernoulli’s equation), i.e.

13



Figure 2.4: A wvertical and central cross section of a conical depression in a temperate ice
cap. S: surface, G: ground, I: ice cap, M: rock/magma intrusion, W: water. Note that
the figure is NOT drawn to scale.

p = constant — py, gy

= constant — py,gx tan a

Therefore
pigz(tan f — tana) = —p, gz tan « (2.9)
leading to

_ . A
tan 3 = PP ana = — 2P tana~ —0.091 tana (2.10)

Pi Pi
s =—Ap/p; = —0.091 (2.11
2.12)

where the minus-sign is significant.
This can also be seen in various ways by looking at a mass element of water at the
bottom of the ice and demanding equilibrium. — We now proceed with the solution.

14



With tan a = 0.8, we get tan § = —0.073 and

y2 = 2 km — 0.073 = (2.13)

The students are supposed to draw this line on a graph.

c)
Since the ice adapts by vertical motion only we see that the conical depression at the
surface will have the same radius of 1.0 km as the intrusion. According to (b) it will have

a depth of

A
h = |rtanf| = 2P tan o (2.14)
A
- 2Py (2.15)
Pi
= 0.091 -1km =91 m. (2.16)

The students are supposed to show this result as a graph.

d)

The volume of a circular cone is V' = %ﬂ?ﬂZh. We assume that the height of the intrusion
is h1. We may say that it firstly melts an ice cone of its own volume V; = %m“?hl. Pressure
equilibrium has not yet been reached. Hence the water will flow away and the ice will keep
contact with the face of the intrusion making the upper surface of the ice horizontal again.
The intrusion then melts a volume equivalent to a cone of height hy, = %hl whereupon
pressure equilibrium has been reached (following part (c¢)). During this second phase the
melted water will also flow away. Assuming that the intrusion still has not cooled down
to 0°C the intrusion will further melt a volume equivalent to a cone of height hs, its water
accumulating in place, forming a cone of height h; = ;’—; hs relative to the top of the
intrusion. The total height of the ice cone melted is

hiot = h1 + ha + h3 (2.17)
The depth of the depression at the surface will be given by

A
h="=(h +ny) (2.18)

pi

which is most easily seen by considering pressure equilibrium in the final situation (again
following part (c)). Thus, the requested height of the top of the water cone is

H:h1+hg:£ip h=1.1x 10°m (2.19)

The heat balance gives

1
3 mr? {prhi(Ly +cr AT) — pi Li hyor} = 0 (2.20)

15



where AT = 1200°C is the change in temperature of the rock intrusion. Following equa-
tion (2.17) and using the facts that hy = %hl and hy = £B2hy we obtain

A w w
hior = hy + —Phl + p—ﬁé,, = pf (hy + hy) (2.21)

i Pi Pi

Therefore (using equation (2.19))

Pw ' Pw Pw 3
higt = — (hy +hy)=— H=-— h=120-10"m 2.22
ot Pi(l 3) Pi Ap ( )

This implies that the cone does not reach the surface of the ice cap. Inserting the
result into the equation (2.20) we can solve for hy:

Pi Pw Lz h
- hy (L, y AT) = ———— 2.23
pr by (Ly + ¢ AT) A (2.23)
Pi Pw Lz h
h 2.24
! Ap pr (Ly + ¢ AT) ( )
= 103 m (2.25)

The total mass of water formed is of course equal to the mass of the ice melted and is
Myor = pi (1/3) 7 1% hyoy = 2.9 - 10 kg (2.26)

The mass of the water which flows away is

m/ h’l + h'2 m . Pw hl
= tot =
Dot ’ Pi hiot

The students are finally expected to plot the shapes of the rock intrusion and the
water body.

My = 2.7 - 10'° kg (2.27)

2.3 Grading scheme

2(a)
Answer: equation (2.3),d =6.1-10"° m 0.5
2(b)
Answer i): equation (2.6): p = p;gx(tan 8 — tan ) + p;gho + pa 1.0
Answer ii): equation (2.10): s = -2 = —% 2.0
Answer iii): Graph based on equation (2.13) 0.5
2(c)
Answer: Depth, radius and graph, » = 1000 m, h =91 m 1.0
2(d)
Answer i): Height of water cone as in (2.19): H =1.1-10° m 2.0
Answer ii): Height of intrusion as in (2.25): h; =103 m 1.0
Answer iii): Total mass of melt water as in (2.26): my = 2.9 - 10! kg 0.5
Answer iv): Mass of water flowing away as in (2.27): m’ =2.7-10'° kg | 1.0
Answer v): Graph 0.5

16



3 Faster than light?’

3.1 Problem text

In this problem we analyze and interpret measurements made in 1994 on radio wave
emission from a compound source within our galaxy.

The receiver was tuned to a broad band of radio waves of wavelengths of several
centimeters. Figure 3.1 shows a series of images recorded at different times. The contours
indicate constant radiation strength in much the same way as altitude contours on a
geographical map. In the figure the two maxima are interpreted as showing two objects
moving away from a common center shown by crosses in the images. (The center, which
is assumed to be fixed in space, is also a strong radiation emitter but mainly at other
wavelengths). The measurements conducted on the various dates were made at the same
time of day.

The scale of the figure is given by a line segment showing one arc second (as). (1 as =
1/3600 of a degree). The distance to the celestial body at the center of the figure, indicated
by crosses, is estimated to be R = 12.5 kpc. A kiloparsec (kpc) equals 3.09 -10' m. The
speed of light is ¢ = 3.00 -10* m/s. Error calculations are not required in the solution.

a) (2 points) We denote the angular positions of the two ejected radio emitters, relative
to the common center, by 6;(t) and 60(t), where the subscripts 1 and 2 refer to the left
and right hand ones, respectively, and ¢ is the time of observation. The angular speeds, as
seen from the Earth, are w; and wy. The corresponding apparent transverse linear speeds
of the two sources are denoted by v} | and vj .

Using Figure 3.1, make a graph to find the numerical values of w; and ws in milli-arc-
seconds per day (mas/d). Also determine the numerical values of v} | and vy |, and write
all answers on the answer sheet. (You may be puzzled by some of the results).

b) (3 points) In order to resolve the puzzle arising in part (a), consider a light-source
moving with velocity ¥ at an angle ¢ (0 < ¢ < ) to the direction towards a distant
observer O (Figure 3.2). The speed may be written as v = (3¢, where ¢ is the speed of
light. The distance to the source, as measured by the observer, is R. The angular speed
of the source, as seen from the observer, is w, and the apparent linear speed perpendicular
to the line of sight is v/,

Find w and v, in terms of 3, R and ¢ and write your answer on the answer sheet.

¢) (1 point) We assume that the two ejected objects, described in the introduction and in
part (a), are moving in opposite directions with equal speeds v = e. Then the results of
part (b) make it possible to calculate § and ¢ from the angular speeds w; and w, and the
distance R. Here ¢ is the angle defined in part (b), for the left hand object, corresponding
to subscript 1 in part (a).

Derive formulas for § and ¢ in terms of known quantities and determine their numerical
values from the data in part (a). Write your answers in the designated fields on the answer
sheet.

d) (2 points) In the one-body situation of part (b), find the condition for the apparent
perpendicular speed v/, to be larger than the speed of light c.

"Authors: Einar Gudmundsson, Knitur Arnason and Thorsteinn Vilhjalmsson
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Figure 3.1: Radio emission from a source in our galazxy.
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=

Figure 3.2: The observer is at O and the original position of the light source is at A. The
velocity vector is U.

Write the condition in the form 3 > f(¢) and provide an analytic expression for the
function f on the answer sheet.

Draw on the graph answer sheet the physically relevant region of the (3, ¢)-plane.
Show by shading in which part of this region the condition v/, > ¢ holds.

e) (1 point) Still in the one-body situation of part (b), find an expression for the maximum
value (v' )maz Of the apparent perpendicular speed v/, for a given 3 and write it in the
designated field on the answer sheet. Note that this speed increases without limit when
6 —1.

f) (1 point) The estimate for R given in the introduction is not very reliable. Scientists
have therefore started speculating on a better and more direct method for determining R.
One idea for this goes as follows. Assume that we can identify and measure the Doppler
shifted wavelengths \; and A, of radiation from the two ejected objects, corresponding to
the same known original wavelength )y in the rest frames of the objects.
Starting from the equations for the relativistic Doppler shift,

A= Ao(1 = Bcosg)(1—3?)""/2 and assuming, as before, that both objects have the same
speed, v, show that the unknown 3 = v/c can be expressed in terms of Ay, A;, and s as

5:\/1—%. (3.1)

Write the numerical value of the coefficient o in the designated field on the answer sheet.
You may note that this means that the suggested wavelength measurements will in
practice provide a new estimate of the distance.

3.2 Solution

a) On Figure 3.1 we mark the centers of the sources as neatly as we can. Let 6;(t) be
the angular distance of the left center from the cross as a function of time and 6y(¢) the
angular distance of the right center. We measure these quantities on the figure at the
given times by a ruler and convert to arcseconds according to the given scale. This results
in the following numerical data:
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time 0, 0y

[days] | [as] [as]
0 0.139 | 0.076
7 0.253 | 0.139
13 0.354 | 0.190
20 0.468 | 0.253
27 0.601 | 0.316
34 0.709 | 0.367

The uncertainty in the readings by the ruler is estimated to be £0.5 mm, resulting in

the uncertainty of + 0.013 as in the € values. We plot the data in Figure 3.3.

separation (as)

15

time (days)

20

25

30

Figure 3.3: The angular distances 61 and 6y (in as) as functions of the time in days.

Fitting straight lines through the data results in:

wy = df,/dt = (17.0 £ 1.0) mas/day = 9.54 - 10 *rad/s
wy = df,/dt = (8.7 & 1.0) mas/day = 4.88 - 10 rad/s
v, = w R=954-10""-125-3.09-10"
= 3.68-10°m/s ~ (1.23 £ 0.07) c
vy, = 1.89.10°m/s ~ (0.63 £ 0.07) c

b) We consider the motion of the source during the time interval At from the point A to

the point A’, see Figure 3.4.
We then have

FAA/:FA/—FAZJ'At.

(3.7)

Now let At" denote the difference in arrival times at O of the signals from A and A’.

Due to the different distances to A and A’ and the finite speed of light, ¢, we have
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Figure 3.4: The observer is at O and the original position of the source is at A. The
velocity vector is .

At,:At—F(’I“AI—?”A)/C. (38)

For small At, such that v At << r, = R, we have

ra—1a R —v At cos ¢ (3.9)

and hence
At' ~ At (1 —fcoso); B=v/c. (3.10)
This implies that an observer at O will find the apparent transverse speed of the source

to be

, _Ax_ Ax B c3sin ¢
LT A T A (1—Bcosp) 1 — Bcosad (3:11)

where we have used that the real transverse speed in the reference frame of the observer
is v; = Azx/At = ¢fsin ¢.
The angular speed observed at O is

v c3sin ¢

“TR "~ R (1 — B cos ¢) (3.12)

c¢) Figure 3.5 shows the situation in this case. Note the relations given in the caption.
Taking ¢ = ¢; we have sin ¢o = sin ¢ and cos ¢ = — cos ¢. Equation (3.12) then gives:

0 ¢ sin ¢
W1 R (1 _6008(]5) (313)
wp = —bCsing (3.14)

R (14 Bcos¢)
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Figure 3.5: If the two objects have equal speeds but opposite velocities we have vy = vy =

v, by =f2= 0 and ¢ =T — ¢1.

The quantities wy, wy and R are given, but 3 and ¢ are to be determined as stated in
the problem text. Simple algebra gives:

(1—0 cosd) wiwy = [ csing wy/R (3.15)
(145 coso) wowy = f[csing w/R. (3.16)

Subtracting (3.15) from (3.16) gives:

23 cospwyw; =pfcsing (w —wy)/R (3.17)

2R
¢ (w1 —ws)

2R(.d2(.01 )

¢ (01 — wa) (3.19)

¢ = arctan (

Dividing (3.15) by (3.16) gives § in terms of cos ¢ and the known quantities w; and
Wa:

wy (1 =0 cosg) =wy (L+ 5 cos ) (3.20)

W1 — W2

h= cos ¢ (wy + wz) (3:21)

Inserting the values of w; and wy from part (a) and the given values of R and ¢ we get:

¢ = arctan(2.57) = 1.20 rad = 68.8° 4 2° (3.22)
B = 0.892+0.08 (3.23)
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d) Equation (3.11) shows that the observer will find the apparent transverse speed to be
larger than or equal to the speed of light if and only if:

% > 1. (3.24)
If 3 < 1 condition (3.24) is equivalent to:
Bsing > 1— feosd (3.25)
B(sing +cosg) > 1 (3.26)
52 <sin¢cos% + cos ¢ sin %) > 1 (3.27)
sin (¢> + %) > % (3.28)
and hence (3.24) is satisfied if:

5> f(8) = (Vasin(é +7/4)) . (3.29)

The physically relevant region in the (3, ¢)-plane is:
(B, ®) € [0,1[x[0, ] . (3.30)

It is obvious that (3.24) can only be satisfied for ¢ € [0, 7/2] and (3.28) can only have
a solution for ¢ if 8 > 1/1/2.
We therefore take a closer look at the region

(B,¢) € [27V21] x [0,7/2] (3.31)

The mapping
(8, ¢) — Bsin (¢ + %) (3.32)

is continuous in this region. It is therefor sufficient to look at the boundary of the region,
defined by the equality sign in (3.28):

Bsin (¢> + %) - % (3.33)

This defines [ as a function of ¢ which is shown in Figure 3.6 as the curve bounding
the shaded area where v/, > c.

e) To find the extrema of v/, as a function of ¢ we differentiate (3.11) and get

d (vl) _ Bleos¢ — ) (3.34)

6\ ) " T Beoso)
This is zero for ¢ = ¢,, where:
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Figure 3.6: The region between the Figure 3.7: The curved surface is v’ /c

horizontal line and the curve in the as a function of B and ¢. The plane
upper left hand corner shows where represents the constant function 8 = 1.
v Je> 1.
CoS o, = B ; ¢m = arccos 3 €]0, /2] (3.35)

To see that this is indeed a maximum, we differentiate (3.34) again and get:

(v sin ¢ [ sin ¢(cos ¢ — [3)
i (2) = (T Femar 2T e ) (3:36)

At the extremum

d2 / : m
iw (V)] - 3

showing that ¢, corresponds to a maximum. From (3.11) and (3.35) the maximum
apparent transverse speed is given:

(vj_)maa: = L (338)

J1-p°
From this and (3.35) we see that

/ .
(UL)max ,6'——>1> 0, d)m ,6'——>1> 0. (339)

Figure 3.7 shows v/, /c as a function of § and ¢ in the region (3, ¢) € [27Y/2 1] x [0,7/2].

f) We have the equations for relativistic Doppler-shift:
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A2 1 Bcos¢

= 3.40
T (3.40)
We add them, define an auxiliary ratio p and solve for /3.
)\1 + )\2 1
= = 3.41
p By =5 (3.41)
pPl-p)=1 (3.42)

g:m:\/bfi (3.43)

AL+ Ag)?
giving
a=4 (3.44)

Adding equation (3.43) to the set of equations (3.18) and (3.21) we have three equations
which can be solved for the three unknowns 3, ¢ and R. For instance, we may calculate (3
from (3.43), insert that into (3.21), and solve for ¢. The distance R can then be obtained
from (3.18). Thus the measurement of the Doppler-shifted wavelengths turns out to give
an estimate of the distance to the source provided that w; and wy are known.

3.3 Grading scheme

Part 1(a)
Answer i): equation (3.2), w; in the range (16.5-17.5) mas/day 0.8
Answer ii): equation (3.3), wy in the range (8.2-9.2) mas/day 0.8
Answer iii): equation (3.4), for v] | in the range (1.13-1.30)c 0.2
Answer iv): equation (3.6), for v | in the range (0.56-0.70)c 0.2
Part 1(b)

Answer i): v/ (5, ¢), equation (3.11) 2.5
Answer ii): w(f3, ¢), equation (3.12) 0.5
Part 1(c)

Answer i): ¢(wy,ws), equation (3.19) 0.3
Answer ii): f(wy,ws), equation (3.21) 0.3
Answer iii): ¢ numerical in the range 67° - 71° 0.2
Answer iv): 3 numerical in the range 0.81-0.97 0.2
Part 1(d)

Answer i): Condition 3 > f(¢), equation (3.29) 1.0
Answer ii): Condition on (£, ¢), graph 1.0
Part 1(e)

Answer: (V') )maz, equation (3.38) | 1.0
Part 1(f)

Answer: [ in terms of A-s, by «, equation (3.44) | 1.0
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Instrumentation provided:

A Platform with 6 banana jacks

B Pickup coil embedded into the
platform

C Ferrite U-core with two coils

marked A" and “'B"
D Ferrite U-core without coils

E Aluminium foils of thicknesses:
50 um, 100 um and 200 um

F Function generator with output
leads

G Two multimeters

H Six leads with banana plugs

| Two rubber bands and two
plastic spacers

Multimeters

The multimeters are two-terminal devicesthat in this experiment are used for measuring AC voltages, AC
currents, frequency and resistance. In all cases one of the terminals is the one marked COM. For the
voltage, frequency and resistance measurements the other terminal is the red one marked V-Q. For current
measurements the other terminal is the yellow one marked mA. With the central dial you select the meter
function (V~ for AC voltage, A~ for AC current, Hz for frequency and Q for resistance) and the
measurement range. For the AC modes the measurement uncertainty is + (4% of reading + 10 units of the
last digit). To get accurate current measurements a change of range is recommended if the reading is
less than 10% of full scale.

Function generator

To turn on the generator you pressin the red button marked PWR. Select the 10 kHz range by pressing the
button marked 10k, and select the sine waveform by pressing the second button from the right marked with
awave symbol. No other buttons should be selected. Y ou can safely turn the amplitude knob fully
clockwise. The frequency is selected with the large dial on the left. The dial reading multiplied by the range
selection gives the output frequency. The frequency can be verified at any time with one of the multimeters.
Use the output marked MAIN, which has 50 Q internal resistance.

Ferrite cores

Handle the ferrite cores gently, they are brittle!! Ferrite is a ceramic magnetic material, with low electrical
conductivity. Eddy current lossesin the cores are therefore low.

Banana jacks

To connect acoil lead to a bananajack, you loosen the colored plastic nut, place the tinned end between the
metal nut and plastic nut, and tighten it again.



Figure 1: Experimental arrangement for part I.

Part I. Magnetic shielding with eddy currents

Time-dependent magnetic fieldsinduce eddy currents in conductors. The eddy currents in turn produce a
counteracting magnetic field. In superconductors the induced eddy currents will expel the magnetic field
completely from the interior of the conductor. Due to the finite conductivity of normal metalsthey are not
as effective in shielding magnetic fields.

To describe the shielding effect of aluminium foils we will apply a phenomenological model

B=Be ™ (1)

where By is the magnetic field in the absence of foils. B isthe magnetic field beneath the foils, « an
attenuation constant, and d the foil thickness.

Experiment

Put the ferrite core with the coils, with legs down, on the raised block such that coil A isdirectly above the
pickup coil embedded in the platform, as shown in Figure 1. Secure the core on the block by stretching the
rubber bands over the core and under the block recess.

1. Connect the leads for coils A and B to the jacks. Measure the resistance of all coilsto make sure
you have good connections. Y ou should expect values of lessthan 10 Q. Write your valuesin field
1 on the answer sheet.

2. Collect datato validate the model above and evaluate the attenuation constant «  for the
aluminum foils (50 - 300 um), for frequenciesin the range of 5 - 20 kHz. Place the foils inside the
square, above the pickup coil, and apply a sinusoidal voltage to coil A. Write your resultsin field
2 on the answer sheet.

3. Plot aversusfrequency, and writein field 3 on the answer sheet, an expression describing the
function « (f) .

Part Il. Magnetic flux linkage
The response of two coils on a closed ferrite core to an external alternating voltage (V) from a sinusoidal
signal generator is studied.



Theory

In the following basic theoretical discussion, and in the treatment of the data, it is assumed that the ohmic
resistance in the two coils and hysteresis losses in the core have insignificant influence on the measured
currents and voltages. Because of these simplifications in the treatment below, some deviations will occur
between measured and calculated values.

Single coil

Let usfirst look at a core with asingle coil, carrying a current I. The magnetic flux @, that the current
creates in the ferrite core inside the coil, is proportional to the current | and to the number of windings N.
The flux depends furthermore on a geometrical factor g, which is determined by the size and shape of the
core, and the magnetic permeability u =410 , which describes the magnetic properties of the core material.
Therelative permeability isdenoted 14  and 1 isthe permeability of free space.

The magnetic flux @isthusgiven by

@ = ugNI =cNI 2
where ¢c= 9. The induced voltage is given by Faraday's law of induction,

do) _ i)

—cN (3

at) =-N—g dt

The conventional way to describe the relationship between current and voltage for a coil is through the self
inductance of the coil L, defined by,

dae

et)=-L at

(4)

A sinusoidal signal generator connected to the coil will drive a current through it given by
I(t) = 1,sSinot 5)

where wisthe angular frequency and |, is the amplitude of the current. As follows from equation (3) this
alternating current will induce a voltage across the coil given by

&£(t) = —wcN?1 , cosat (6)
The current will be such that the induced voltage is equal to the signal generator voltage V. Thereisa 90
degree phase difference between the current and the voltage. If we only look at the magnitudes of the
alternating voltage and current, allowing for this phase difference, we have

&= wcN?| (7

Two coils

Let us now assume that we have two coils on one core. Ferrite cores can be used to link magnetic flux
between coils. In anideal core the flux will be the same for all cross sections of the core. Due to flux
leakage in real cores a second coil on the core will in general experience areduced flux compared to the



flux-generating coil. The flux @; in the secondary coil B istherefore related to the flux @, inthe primary
coil A through

®, = ko, ®)

Similarly aflux component @z created by a current in coil B will create aflux @, =k@z incoil A. The
factor k, which is called the coupling factor, has a value less than one.

The ferrite core under study has two coils A and B in atransformer arrangement. Let us assume that coil A
isthe primary coil (connected to the signal generator). If no current flowsin coil B (Ig=0), the induced
voltage s, dueto |, is equal and oppositeto V. Theflux created by |,  inside the secondary coil is
determined by equation (8) and the induced voltage in coil B is

gy = wKeN Nl , 9)

If acurrent Iz flowsin coil B, it will induce avoltage in coil A which is described by a similar expression.
The total voltage across the coil A will then be given by

V, = &, = @ON2I , — okeN N1 (10)

The current in the secondary coil thusinduces an opposing voltage in the primary coil, leading to an
increasein |, A similar equation can be written for ;. As can be verified by measurements, Kis
independent of which cail istaken as the primary coil.

Experiment

Place the two U-cores together as shown in Figure 2, and fasten them with the rubber bands. Set the
function generator to produce a 10 kHz, sine wave. Remember to set the multimeters to the most sensitive
range suitable for each measurement. The numbers of the windings of the two coils, A and B, are:  Np =
150 turnsand Ng = 100 turns (+1 turn on each coil).

Figure 2: A transformer with a closed magnetic circuit.

1. Deriveagebraic expressionsfor the self inductancesL, and Lg , and the coupling factor k, in
terms of measured and given quantities and write your resultsin field 1.a on the answer sheet.
Draw circuit diagramsin field 1.b on the answer sheet, showing how these quantities are
determined. Calculate the numerical valuesof Ly ,Lg and k and writetheir valuesin field 1.c
on the answer sheet.

2. When the secondary coil is short-circuited, the current I, in the primary coil will increase. Use
the equations above to derive an expression giving I explicitly and write your result infield 2.a
on the answer sheet. Measure | and write your value in field 2.b on the answer sheet.

3. Cails A and B can be connected in seriesin two different ways such that the two flux
contributions are either added to or subtracted from each other.

3.1. Find the self inductance of the serially connected coils, La.g , from measured quantitiesin
the case where the flux contributions produced by the current | in the two coils add to (strengthen)
each other and write your answer in field 3.1 on the answer sheet.



3.2. Measure the voltages Vo  and Vg when the flux contributions of the two coils oppose each
other. Write your valuesin field 3.2.a on the answer sheet and the ratio of the voltagesin field
3.2.b. Derive an expression for the ratio of the voltages across the two coils and writeitin field
3.2.c on the answer sheet.

Use the results obtained to verify that the self inductance of acoil is proportional to the square of
the number of its windings and write your result in field 4 on the answer sheet.

Verify that it was justified to neglect the resistances of the coils and write your arguments as
mathematical expressionsin field 5 on the answer sheet.

Thin plastic spacers inserted between the two half cores (as shown in Figure 3) reduce the coil
inductances drastically. Use this reduction to determine the relative permeability z4 of the ferrite
material, given Ampere's law and continuity of the magnetic field B across the ferrite - plastic
interface.

Assume 1= 11y =47x10" NSY/C? for the plastic spacers and a spacer thickness of 1.6 mm. The geometrical
factor can be determined from Ampere's law

1
ﬁ; Bd =1, (11)

where |y iSthetotal current flowing through a surface bounded by the integration path. Write your
algebraic expression for 1 infield 6.a on the answer sheet and your numerical valuein field 6.b.

Figure 3: The ferrite cores with the two spacersin place.
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Thetime availableis 5 hoursfor 3 problems.

Use only the pen provided.

Use only the front side of the provided sheets.

In addition to the problem texts, that contain the specific data for each problem, a sheet is
provided containing a number of genera physical constants that may be useful for the problem
solutions.

Each problem should be answered on separate sheets.

. In addition to "blank” sheets where you may write freely, for each problem there is an Answer

sheet where you must summarize the results you have obtained. Numerical results must be
written with as many digits as appropriate to the given data; don’t forget the units.

Please write on the "blank™ sheets whatever you deem important for the solution of the problem,
that you wish to be evaluated during the marking process. However, you should use mainly
equations, numbers, symbols, figures, and use aslittle text as possible.

It's absolutely imperative that you write on top of each sheet that you'll use: your name
(“NAME”), your country (“TEAM"), your student code (as shown on the identification tag,
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progressive number of each sheet (from 1 to N, “Page n.”) and the total number (N) of "blank"
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write the section you are answering at the beginning of each such section. If you use some sheets
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the whol e sheet, and don’t number it.

When you've finished, turn in al sheets in proper order (for each problem: answer sheet first,
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the envelope where you found them; then leave everything on your desk. Y ou are not alowed to
take any sheets out of the room.

This set of problems consists of 13 pages (including this one, the answer sheets and the page

with the physical constants)

These problems have been prepared by the Scientific Committee of the 30th IPhO, including professors at the Universities of
Bologna, Naples, Turin and Trieste.
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Problem 1 Page 1

Problem 1

Absorption of radiation by a gas

A cylindrical vessdl, with its axis vertical, contains a molecular gas at thermodynamic equilibrium.
The upper base of the cylinder can be displaced freely and is made out of a glass plate; let's assume
that there is no gas leakage and that the friction between glass plate and cylinder walls is just
sufficient to damp oscillations but doesn't involve any significant loss of energy with respect to the
other energies involved. Initidly the gas temperature is equal to that of the surrounding
environment. The gas can be considered as perfect within a good approximation. Let's assume that
the cylinder walls (including the bases) have a very low therma conductivity and capacity, and
therefore the heat transfer between gas and environment is very slow, and can be neglected in the
solution of this problem.

Through the glass plate we send into the cylinder the light emitted by a constant power laser;
this radiation is easily transmitted by air and glass but is completely absorbed by the gas insde the
vessel. By absorbing this radiation the molecules reach excited states, where they quickly emit
infrared radiation returning in steps to the molecular ground state; this infrared radiation, however,
is further absorbed by other molecules and is reflected by the vessal walls, including the glass plate.
The energy absorbed from the laser is therefore transferred in a very short time into thermal
movement (molecular chaos) and thereafter stays in the gas for a sufficiently long time.

We observe that the glass plate moves upwards; after a certain irradiation time we switch
the laser off and we measure this displacement.

1 Using the data below and - if necessary - those on the sheet with physica constants,
compute the temperature and the pressure of the gas after theirradiation.  [2 points]

2. Compute the mechanical work carried out by the gas as a consequence of the radiation
absorption.  [1 point]

3. Compute the radiant energy absorbed during theirradiation.  [2 points]

4. Compute the power emitted by the laser that is absorbed by the gas, and the corresponding
number of photons (and thus of elementary absorption processes) per unit time. [1.5
points|

5. Compute the efficiency of the conversion process of optica energy into a change of

mechanical potential energy of theglassplate.  [1 point]

Thereafter the cylinder axisis slowly rotated by 90°, bringing it into a horizontal direction. The heat
exchanges between gas and vessal can still be neglected.

6. State whether the pressure and/or the temperature of the gas change as a consequence of
such arotation, and - if that is the case —what isitgtheir new value.  [2.5 points]

Final



Problem 1 Page 2

Data

Room pressure: pp = 101.3 kPa

Room temperature: Tp= 20.0°C

Inner diameter of the cylinder: 2r = 100 mm

Mass of the glass plate: m=3800g

Quantity of gaswithin the vessal: n = 0.100 mol

Molar specific heat at constant volume of the gas: ¢y = 20.8 J/(mol-K)
Emission wavelength of the laser: A =514 nm

Irradiation time: At =10.0s

Displacement of the movable plate after irradiation: As=30.0 mm

Final
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Pagen. A

Pagetotal

Answer sheet

In this problem you are requested to give your results both as analytical expressions and with numerical
data and units: write expressions first and then data (e.g. A=bc=1.23 m?).

Final

Gastemperature after theirradiation .......... ...t e

Gas pressure after theirradiation ............ooiiie i e e e

Mechanical WOrK Cartied OUL ... ... ..ot e e e e e e e e e e e e e

Overall optical energy absorbed by thegas ..........c.coo i

Optical laser power absorbed by the gas .......c.vveiieie i e

Absorption rate of photons (number of absorbed photons per unittime) ........................

Efficiency in the conversion of optical energy into change of mechanica potential energy

Of the glassS Plale ... .. e

Owing to the cylinder rotation, is there a pressure change? YESTI NO O
If yes, What iSItSNeW VAIUE? ..o e
Owing to the cylinder rotation, is there atemperature change? YESO NOO

If yes, What iSItSNeW VAIUE? ..o e e



Physical constants and general data

In addition to the numerical data given within the text of the individual problems, the knowledge of
some general data and physical constants may be useful, and you may find them among the
following ones. These are nearly the most accurate data currently available, and they have thus a
large number of digits, you are expected, however, to write your results with a number of digits
that must be appropriate for each problem.

Speed of light in vacuum: ¢ = 299792458 m-s™*

Magnetic permeability of vacuum: po = 47-107 H-m™

Dielectric constant of vacuum: &, = 8.8541878 pF-m*

Gravitational constant: G = 6.67259-10"* m%(kg-)

Gas constant: R = 8.314510 J/(mol-K)

Boltzmann's constant: k = 1.380658-10% JK™

Stefan's constant: ¢ = 56.703 nW/(m2K?)

Proton charge: e = 1.60217733.10%° C

Electron mass; me = 9.1093897-10% kg

Planck’s constant: h = 6.6260755-10> Js

Base of centigrade scale: Tx = 273.15K

Sun mass: Ms = 1.991:10%° kg

Earth mass: Mg = 5.979-10* kg

Mean radius of Earth: re =6.373 Mm

Major semiaxis of Earth orbit; Re = 1.4957-10" m

Sidereal day: ds = 86.16406 ks

Year: y=31.558150 Ms

Standard value of the gravitational field at the Earth surface: g = 9.80665 m-s*
Standard value of the atmospheric pressure at sealevel: pp = 101325 Pa
Refractive index of air for visibile light, at standard pressure and 15 °C: n4, = 1.000277
Solar constant: S = 1355 W-m’

Jupiter mass; M = 1.901-10* kg

Equatorial Jupiter radius: Rs = 69.8 Mm

Average radius of Jupiter’sorbit: R = 7.783-10" m

Jovian day: d; = 35.6 ks

Jovian year: y; = 374.32 Ms

n. 3.14159265

Final
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Problem 2

M agnetic field with a V-shaped wire

Among the first successes of the interpretation by Ampére of magnetic phenomena, we have the
computation of the magnetic field B generated by wires carrying an electric current, as compared
to early assumptions originally made by Biot and Savart.

A particularly interesting case is that of a very long thin wire, carrying a constant current i, made
out of two rectilinear sections and bent in the form of a"V", with angular half-span® o (see figure).
According to Ampere's computations, the magnitude B of the magnetic field in a given point P
lying on the axis of the "V", outside of it and at a distance d from its vertex, is proportional to

tan(%). Ampere's work was later embodied in Maxwell's electromagnetic theory, and is
universally accepted.

i

/

™~

Using our contemporary knowledge of electromagnetism,

1 Find the direction of thefield BinP.  [1 point]
2. Knowing that the field is proportional to tan[%j, find the proportionality factor k in

B(P)| = ktan(%j . [L5pointg]

3. Compute the field B in apoint P~ symmetric to P with respect to the vertex, i.e. dong the
axisand at the same distance d, but insidethe"V" (seefigure).  [2 points]

! Throughout this problem o is expressed in radians
Final
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might have been (we use here the modern notation) B(P) =

In order to measure the magnetic field, we place in P a small magnetic needle with moment
of inertia | and magnetic dipole moment p; it oscillates around a fixed point in a plane
containing the direction of B. Compute the period of small oscillations of this needle as a
functionof B.  [2.5 points]

In the same conditions Biot and Savart had instead assumed that the magnetic field in P

7N
7

where Lo is the magnetic

permeability of vacuum. In fact they attempted to decide with an experiment between the two
interpretations (Ampére's and Biot and Savart's) by measuring the oscillation period of the magnetic
needle as a function of the "V" span. For some a values, however, the differences are too small to
be easily measurable.

5.

Hint

If, in order to distinguish experimentally between the two predictions for the magnetic
needle oscillation period T in P, we need a difference by at least 10%, namely T; > 1.10 T
(T, being the Ampere prediction and T, the Biot-Savart prediction) state in  which range,
approximately, we must choose the "V" half-span o for being able to decide between the
two interpretations.  [3 points)

Depending on which path you follow in your solution, the following trigonometric equation might

be useful: tan[%j =

Fina
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Pagen. A

Pagetotal

Answer sheet

In this problem write the requested results as analytic expressions, not as numerical values and
units, unless explicitly indicated.

1.  Using the following sketch draw the direction of the B field (the length of the vector is not
important). The sketch is a spatia perspective view.

2. Proportionality factor k .............c..cooeeennn.

3. Absolute vaue of the magnetic field intensity at the point P, as described in the
Draw the direction of the B field in the above sketch

4.  Period of the small angle oscillations of themagnet ...............ccoooeiiiiinn .

5. Write for which range of o values (indicating here the numerical values of the range limits)

the ratio between the oscillation periods, as predicted by Ampére and by Biot and Savart, is
larger than 1.10:

Fina
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Problem 3

A space probeto Jupiter

We consider in this problem a method frequently used to accelerate space probes in the desired
direction. The space probe flies by a planet, and can significantly increase its speed and modify
considerably its flight direction, by taking away a very small amount of energy from the planet's
orbital motion. We analyze here this effect for a space probe passing near Jupiter.

The planet Jupiter orbits around the Sun aong an elliptical tragjectory, that can be approximated
by a circumference of average radius R; in order to proceed with the analysis of the physical
situation we must first:

1 Find the speed V of the planet along its orbit around the Sun. [ 1.5 points]

2. When the probe is between the Sun and Jupiter (on the segment Sun-Jupiter), find the
distance from Jupiter where the Sun's gravitational attraction balances that by Jupiter.
[1 point]

A space probe of mass m = 825 kg flies by Jupiter. For simplicity assume that the trgectory of
the space probe is entirely in the plane of Jupiter's orbit; in this way we neglect the important
case in which the space probe is expelled from Jupiter’ s orbital plane.

We only consider what happens in the region where Jupiter's attraction overwhelms all
other gravitational forces.

In the reference frame of the Sun's center of mass the initial speed of the space probe is vy
=1.00-104 m/s (along the positive y direction) while Jupiter's speed is along the negative x
direction (see figure 1); by "initial speed" we mean the space probe speed when it's in the
interplanetary space, still far from Jupiter but already in the region where the Sun's attraction is
negligible with respect to Jupiter's. We assume that the encounter occurs in a sufficiently short
time to allow neglecting the change of direction of Jupiter along its orbit around the Sun. We
also assume that the probe passes behind Jupiter, i.e. the x coordinate is greater for the probe than
for Jupiter when the y coordinate is the same.

Fina
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Tupiter

LY ]

Figure 1: View in the Sun center of mass system. O denotes Jupiter’ s orbit, sis the space probe.

3. Find the space probe's direction of motion (as the angle ¢ between its direction and the x
axis) and its speed V' in Jupiter's reference frame, when it's still far away from Jupiter.
[2 points]

4. Find the value of the space probe's total mechanical energy E in Jupiter's reference frame,

putting — as usual — equal to zero the value of its potential energy at a very large distance,
in this case when it is far enough to move with almost constant velocity owing to the
smallness of all gravitational interactions.  [1 point]

The space probe's trgjectory in the reference frame of Jupiter is a hyperbola and its equation in
polar coordinates in this reference frameis

1 GM 2Ev? b2
Z=— |1+ A+=——cos# 1
roov? bz( G*M?m ] @

where b is the distance between one of the asymptotes and Jupiter (the so called impact
parameter), E is the probe’'s total mechanical energy in Jupiter’s reference frame, G is the
gravitational constant, M is the mass of Jupiter, r and 6 are the polar coordinates (the radial
distance and the polar angle).

Figure 2 shows the two branches of a hyperbola as described by equation (1); the
asymptotes and the polar co-ordinates are also shown. Note that equation (1) has its origin in the
"attractive focus' of the hyperbola. The space probe's trajectory is the attractive trgectory (the

Fina



Problem 3 Page 3
emphasized branch).

Jupiter

Space Probe
Figure 2

5. Using equation (1) describing the space probe's trgectory, find the total angular deviation
A6 in Jupiter’s reference frame (as shown in figure 2) and express it as a function of
initial speed v’ and impact parameter b. [2 points]

6. Assume that the probe cannot pass Jupiter at a distance less than three Jupiter radii from
the center of the planet; find the minimum possible impact parameter and the maximum
possible angular deviation. [1 point]

7. Find an equation for the final speed v’ of the probe in the Sun's reference frame as a
function only of Jupiter’s speed V, the probe’sinitial speed vy and the deviation angle Aé.

[1 point]
8. Usethe previous result to find the numerical value of the final speed v’ in the Sun's reference
frame when the angular deviation has its maximum possible value. [0.5 points]

Fina
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Hint

Depending on which path you follow in your solution, the following trigonometric formulas

might be useful:
sin(a + f) =sina cos S +cosasin §

cos(a + ) =cosa cosf—sinasin

Fina
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Pagen.

Page total

Answer sheet

Unless explixitly requested to do otherwise, in this problem you are supposed to write your
results both as analytic equations (first) and then as numerical results and units (e.g. A=bc=1.23
m?).

Speed V of Jupiter alongitsorbit ...l

Distance from Jupiter where the two gravitational attractions balance each

Initial speed V' of the space probe in Jupiter’s reference frame ..........cocovivvii i ii i,
and the angle ¢ its direction forms with the x axis, as defined in figure

Total energy E of the space probe in Jupiter’ sreferenceframe .............coviviiiiiiiiiccn e e,

Write a formula linking the probe’s deviation A6 in Jupiter’s reference frame to the impact
parameter b, the initta speed Vv  and other known or computed

If the distance from Jupiter’s center can't be less than three Jovian radii, write the minimum
impact parameter and the maximum angular deviation: b= ...
A S

Equation for the final probe speed v’ in the Sun’s reference frame as a function of V, vp and
N

Numerical value of the final speed in the Sun’s reference frame when the angular deviation has

its maximum value as COMPULEd INSEEP 6 ....o.ineie it et
Final
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Thetime available is 5 hours for one experiment only.

Use only the pen provided.

Use only the front side of the provided sheets.

In addition to "blank" sheets where you may write freely, there is a set of Answer sheets
where you must summarize the results you have obtained. Numerical results must be
written with as many digits as appropriate; don’t forget the units. Try — whenever possible —
to estimate the experimental uncertainties.

Please write on the "blank" sheets the results of all your measurements and whatever else

you deem important for the solution of the problem, that you wish to be evaluated during

the marking process. However, you should use mainly equations, numbers, symbols,
graphs, figures, and use as little text as possible.

It's absolutely imperative that you write on top of each sheet that you'll use: your name
(“NAME"), your country (“TEAM™), your student code (as shown on your identification tag,
“CODE"), and additionally on the "blank™ sheets:. the progressive number of each sheet (from
1to N, “Page n.”) and the totd number (N) of "blank" sheets that you use and wish to be
evaluated (“Page total”); leave the “Problem” field blank. It is aso useful to write the
number of the section you are answering at the beginning of each such section. If you use
some sheets for notes that you don’'t wish to be evauated by the marking team, just put alarge
cross through the whole sheet, and don’t number it.

When you've finished, turn in all sheets in proper order (answer sheets first, then used
sheets in order, unused sheets and problem text at the bottom) and put them all inside the
envelope where you found them; then leave everything on your desk. Y ou are not alowed
to take anything out of the room.

This problem consists of 11 pages (including thisone and the answer sheets).

This problem has been prepared by the Scientific Committee of the 30th IPhO, including professors at the Universities
of Bologna, Naples, Turin and Trieste.
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Torsion pendulum

In this experiment we want to study a relatively complex mechanical system — a torsion
pendulum — and investigate its main parameters. When its rotation axis is horizontal it
displays a simple exampl e of bifurcation.

Available equipment

1. A torsion pendulum, consisting of an outer body (not longitudinally uniform) and an inner threaded
rod, with a stand as shown in figure 1

2. A steel wire with handle

3. A long hexagonal nut that can be screwed onto the pendulum threaded rod (needed only for the
last exercise)

4. A ruler and a right triangle template

5. Atimer

6. Hexagonal wrenches

7. A3 Millimeter paper sheets.

8. An adjustable clamp

9. Adhesive tape

10. A piece of T-shaped rod

The experimental apparatus is shown in figure 1; it is a torsion pendulum that can oscillate
either around a horizontal rotation axis or around a vertical rotation axis. The rotation axis is
defined by a short steel wire kept in tension. The pendulum has an inner part that is a threaded
rod that may be screwed in and out, and can be fixed in place by means of a small hexagonal
lock nut. Thisthreaded rod can not be extracted from the pendulum body.

When assembling the apparatus in step 5 the steel wire must pass through the brass
blocks and through the hole in the pendulum, then must be locked in place by keeping it
stretched: lock it first at one end, then use the handle to put it in tension and lock it at the
other end.

Warning: Thewire must be put in tension only to guarantee the pendulum stability. It's

not necessary to strain it with a force larger than about 30 N. While straining it,
don't bend thewire against the stand, because it might break.

28/09/09
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{Ogy

Y,

ré[lﬁﬂ

sted wire

Figure 1: Sketch of the experimental apparatus when its rotation axisis horizontal.

The variables characterizing the pendulum oscillations are:
e the pendulum position defined by the angle & of deviation from the direction
perpendicul ar to the plane of the stand frame, which is shown horizontal in figure 1.
e the distance x between the free end of the inner threaded rod and the pendulum rotation
axis
e theperiod T of the pendulum oscillations.

The parameters characterizing the system are:
e thetorsional elastic constant k (torque = k - angle) of the stedl wire;
e the masses M; and M, of the two parts of the pendulum (1: outer cylinder! and 2:
threaded rod);

1 Including the small hex locking nut.

28/09/09



Experimental problem Page 3

e thedistances R; and R, of the center of mass of each pendulum part (1: outer cylinder and
2: threaded rod) from the rotation axis. In this case the inner mobile part (the threaded rod)

is sufficiently uniform for computing R, on the basis of its mass, its length 7/ and the

distance x. R, istherefore a simple function of the other parameters,

e the moments of inertia I; and I, of the two pendulum parts (1. outer cylinder and 2:
threaded rod). In this case also we assume that the mobile part (the threaded rod) is
sufficiently uniform for computing I, on the basis of its mass, its length / and the

distance x. I, istherefore also asimple function of the other parameters;

e the angular position ¢y (measured between the pendulum and the perpendicular to the
plane of the stand frame) where the elastic recall torque is zero. The pendulum is locked
to the rotation axis by means of a hex screw, opposite to the threaded rod; therefore 6
varies with each installation of the apparatus.

Summing up, the system is described by 7 parameters: k, My, My, Ry, 11,7, 6, but 6
changes each time the apparatus is assembled, so that only 6 of them are really constants and
the purpose of the experiment is that of determining them, namely k, My, My, Ry, 11,7,

experimentally. Please note that the inner threaded rod can’'t be drawn out of the pendulum
body, and initially only the total mass M1 + My is given (it is printed on each pendulum).

In this experiment several quantities are linear functions of one variable, and you
must estimate the parameters of these linear functions. Y ou can use alinear fit, but alternative
approaches are aso acceptable. The experimental uncertainties of the parameters can be
estimated from the procedure of the linear fit or from the spread of experimental data about
thefit.

The analysis also requires a simple formula for the moment of inertia of the inner
part (we assume that its transverse dimensions are negligible with respect to its length, see
figure 2):

=" szds:%(x3—(x—£)3):%(3£x2 3%+ %) (1)

where 4 = M, /¢ isthelinear mass density, and therefore

M
Iz(x):szz—M2£x+Tzﬁ2 2
rotation
ams\l/
R R | |- ---
t t —>S
0 X- X

Figure 2: In the analysis of the experiment we can use an equation (eq. 2) for the moment of inertia of
a bar whose transverse dimensions are much less than its length. The moment of inertia must be
computed about the rotation axis that in this figure crossesthe s axis at s=0.

Now follow these steps to find the 6 parameters M4, Mo, k, Ry, 7, 11:

28/09/09
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1. Thevalue of the total mass M1+M, is given (it is printed on the pendulum), and you can
find M1 and M by measuring the distance R(x) between the rotation axis and the center
of mass of the pendulum. To accomplish this write first an equation for the position R(x)
of the center of mass as a function of x and of the parameters M1, My, Ry, 7. [0.5

points|

2. Now measure R(x) for several values of x (at least 3) 2. Clearly such measurement must
be carried out when the pendulum is not attached to the steel wire. Use these
measurements and the previous result to find M, and M. [3 points]

Figure 3: The variables ¢ and x and the parameters &, and /are shown here.

3. Find an equation for the pendulum total moment of inertial as afunction of x and of the
parameters M, 1, and 7. [0.5 pointg|

4.  Write the pendulum equation of motion in the case of a horizontal rotation axis, as a
function of the angle 8 (see figure 3) and of X, k, &y, M1, M», the total moment of
inertial and the position R(x) of the center of mass. [1 point]

2 The small hex nut must be locked in place every time you move the threaded rod. Its massis included in M;.
Thislocking must be repeated also in the following, each time you move the threaded rod.

28/09/09



Experimental problem Page 5

N o

In order to determine k, assemble now the pendulum and set it with its rotation axis
horizontal. The threaded rod must initially be as far as possible inside the pendulum.
Lock the pendulum to the steel wire, with the hex screw, at about half way between the
wire clamps and in such a way that its equilibrium angle (under the combined action of
weight and elastic recall) deviates sizeably from the vertical (see figure 4). Measure the
equilibrium angle 6, for several values of x (at least 5). [4 points]

| -

Figure 4: In this measurement set the pendulum so that its equilibrium position deviates from the
vertical.

Using the last measurements, find «. [4.5 points]
Now place the pendulum with its rotation axis vertical 3, and measure its oscillation

period for several values of x (at least 5). With these measurements, find 1, and 7.  [4
points|

At this stage, after having found the system parameters, set the experimental

apparatus as follows:

pendulum rotation axis horizontal

threaded rod as far as possible inside the pendulum

pendulum as vertical as possible near equilibrium

finally add the long hexagona nut at the end of the threaded rod by screwing it a few
turns (it can’t go further than that)

In this way the pendulum may have two equilibrium positions, and the situation

varies according to the position of the threaded rod, as you can also see from the generic
graph shown in figure 5, of the potential energy as afunction of the angle 6.

The doubling of the potential energy minimum in figure 5 illustrates a phenomenon

known in mathematics as bifurcation; it is also related to the various kinds of symmetry
breaking that are studied in particle physics and statistical mechanics.

3 In order to stahilizeit in this position, you may reposition the stand brackets.
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Figure 5. Graph of the function y () :E(g_go)z +cose (which is proportiona to the
2

potential energy of this problem) as a function of &, with &y = 0. The various curves

correspond to different a values as labeled in the figure; smaller values of a (a < 1)
correspond to the appearence of the bifurcation. In our case the parameter a is associated

with the position x of the threaded rod.

We can now study this bifurcation by measuring the period of the small oscillations

about the equilibrium position:

8. Plot the period4 T as a function of x. What kind of function is it? Is it increasing,
decreasing or isit amore complex function? [2.5 pointg]

4Y ou may be able to observe two equilibrium positions, but one of them is more stable than the other (see

figure 5). Report and plot the period for the more stable one.

28/09/09
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Solution

At equilibrium the pressure p inside the vessel must be equa to the room pressure po plus the
pressure induced by the weight of the movable base: p = p, + ﬂ; . This is true before and after
wr

irradiation. Initially the gas temperature is room temperature. Owing to the state equation of perfect
NRT,

gases, theinitial gasvolume VyisV; = (where Ris the gas constant) and therefore the height

hy, of the cylinder which is occupied by the gasis h = Vil nRT, . After irradiation, this

7% pyrr?+mg
height becomes h, = h;+As, and therefore the new temperatureis

2
T, =T0(1+%J _ 7, 4 AS(Po7 7+ MG)

nR
Numerical values: p = 102.32 kPa; T,=322 K =49°C

The mechanical work made by the gas against the plate weight is mgAs and against the room
pressureis pyar°As, therefore the total work is L = (mg + pyzr?)As = 24.1J

Theinternal energy, owing to the temperature variation, varies by an amount AU = ncy, (T, —Ty) .
The heat introduced into the system during the irradiation time At is

Q:AU+L:nc\,TﬁS+(mg+poﬁrz)As:As(poﬁerrmg)(%+lj . This heat comes

exclusvely from the absorption of optica radiation and coincides therefore with the absorbed
optical energy, Q=84J.

The same result can also be obtained by considering an isobaric transformation and remembering
the relationship between molecular heats:

2
Q=ncy (T —To) =n(cy + R){AS(poﬁn; . mg)}

= AS(po7z 2 + mg)(%+1j

Since the laser emits a constant power, the absorbed optical power s

W _Q :(C—V+1]§(po7r r? +mg) = 8.4 W. The energy of each photon is hc/A, and thus the

At R

number of photons absorbed per unit timeis % =2.210"s?
c

The potential energy change is equal to the mechanical work made against the plate weight,
therefore the efficiency n of the energy transformation is
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mgASs _ 1 281073 ~ 0.3%

Q [1+ Por 1* J(1+ CV)
mg R

When the cylinder is rotated and its axis becomes horizontal, we have an adiabatic transformation
where the pressure changes from p to po, and the temperature changes therefore to a new value Ts.
The equation of the adiabatic transformation pV” = constant may now be written in the form

r-1
4

T, = T{%) , Where y =

C
P _YFR_ 4 R 1399 Findly Ty = 321K = 48°C

Cv Cv Cv
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Grading guidelines

1.

0.5
0.7
0.2+0.2
0.2+0.2

0.6
0.2+0.2

1

0.5
0.3
0.2

0.2+0.2
0.5
0.3+0.3

0.6
0.2+0.2

0.8
04
04
0.5
0.2+0.2

Understanding the relationship between inner and outer pressure
Proper useof the plate displacement

Correct results for final pressure

Correct resultsfor final temperature

Understanding that the work is made both against plate weight and against
atmospheric pressure
Correct results for work

Correct approach

Correct equation for heat

Understanding that the absorbed optical energy equals heat
Correct numerical result for optical energy

Correct results for optical power
Einstein’s equation
Correct results for number of photons

Computation of the change in potential energy
Correct results for efficiency

Understanding that the pressure returns to room value
Understanding that there is an adiabatic transformation
Equation of adiabatic transformation

Derivation of y from the relationship between specific heats
Correct results for temperature

For “correct results’ two possible marks are given: thefirst oneisfor the analytical equation and
the second one for the numerical value.

For the numerical values afull score cannot be given if the number of digitsisincorrect (more than
one digit more or less than those given in the solution) or if the units are incorrect or missing.

No bonus can be given for taking into account the gas weight
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Solution

The contribution to B given by each leg of the"V" has the same direction as that of a corresponding
infinite wire and therefore - if the current proceeds as indicated by the arrow - the magnetic field is
orthogond to the wire plane taken as the x-y plane. If we use a right-handed reference frame as
indicated in the figure, B(P) isaong the positive z axis.

For symmetry reasons, the tota field is twice that generated by each leg and has till the same
direction.

When a=n/2 the "V" becomes a straight infinite wire. In this case the magnitude of the field B(P) is

knownto be B = ! o= Mo , and since tan(n/4)=1, the factor kis Iﬁ.
2rg,cd 2xd 27d

The following solution is equally acceptable:
If the student is aware of the equation B = Z—OIMhCOSGZ for afinite stretch of wire lying on a
7T

straight line at a distance h from point P and whose ends are seen from P under the angles 6, and 6,

he can find that the two legs of the “V” both produce fields Hol 1= C_osa

47 d sna

and therefore the total

fildis B = .
2rd Sna 27 d

the angular dependence, but it isnot required.

iy, 1-cos [ . o
Ho @ - o tan(%).Thmsamore complete solution since it also proves

In order to compute B(P') we may consider the "V" as equivalent to two crossed infinite wires (a
and b in the following figure) plus another "V", symmetrical to the first one, shown in the figure as
V', carrying the same current i, in opposite direction.
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Then B(P') =B, (P )+ B,(P") +By.(P") . Theindividual contributions are:

x ok Iﬂo - - .
B,(P)=B(P)=——"—,dongthenegativezaxis,
.(P)=B,(P) >mdsna g the neg

\ I 44, a . ,
B, (P ) = ——tan| — |, dong the positive z axis.

27d 2
Therefore we have B(P') = ~£o_ _i—tan(ﬂj _ k(“_‘m“j: kcot(gj, and the field is
2zd| sina 2 Siha 2

along the negative z axis.

The following solutions are equally acceptable:
The point P" inside a"V" with half-span o can be treated as if it would be on the outside of a V"
with half-span n-a. carrying the same current but in an opposite way, therefore the field is

B(P) = ktan(”;aj = ktan(%—%j = kcot(%j; the direction is still that of the z axis but it is

along the negative axis because the current flows in the opposite way as previously discussed.

If the student follows the procedure outlined under 2B., he/she may also find the field value in P*
by the same method.

The mechanical moment M acting on the magnetic needle placed in point Pisgivenby M =p A B
(where the symbol A is used for vector product). If the needle is displaced from its equilibrium
position by an angle £ small enough to approximate sing with g, the angular momentum theorem

_ d. _ d’p
ives M =-uBf=—=1 ,
g uBp p 2

where there is a minus sign because the mechanical momentum is
aways opposite to the displacement from equilibrium. The period T of the small oscillations is

thereforegivenby T = 2z =27 /I— :
@ uB

Writing the differential equation, however, is not required: the student should recognise the same
Situation as with a harmonic oscillator.

If we label with subscript A the computations based on Ampére's interpretation, and with subscript
BS those based on the other hypothesis by Biot and Savart, we have
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7]
Ba = 27;:' tan( ) BBSZﬂzda
2
T, =27 ?ﬂid a Tgs =27 Z;id
Ho tan(z) ©
T, 2a
Tes ;ztan(oz‘)

: : 2 :
For o = n/2 (maximum possible valug) Ta= Tgs, and foraa >0 T, — TTBS ~1.128 T,5. Since
T

—tan(olz;2) is a monotonically growing function of a, Tn is a monotonicaly
(94 BS

decreasing function of a; in an experiment it is therefore not possible to distinguish between the
two interpretations if the value of o is larger than the value for which Tp = 1.10 Tgs (10%

difference), namely when tan(%j = _4 o =1 05E By looking into the trigonometry tables or

within this range

121z 2
using a calculator we see that this condition is well approximated when o/2 = 0.38 rad; a. must

therefore be smaller than 0.77 rad ~ 44°.
A graphical solution of the equation for « is acceptable but somewhat lengthy. A series
development, on the contrary, is not acceptable.
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Grading guidelines

1. 1 for recognising that each leg gives the same contribution
0.5 for acorrect sketch

2. 05 forrecognising that a=n/2 for astraight wire, or for knowledge of the equation givenin
2B.
0.25 for correct field equation (infinite or finite)
0.25 for vaueof k

3. 0.7 forrecognising that the V is equivalent to two infinite wires plus another V
0.3 for correct field equation for an infinite wire
0.5 for correct result for the intensity of the required field
0.5 for correct field direction
alternatively
0.8 for describing the point as outside aV with n-a. half-amplitude and opposite current
0.7 for correct analytic result
0.5 for correct field direction
alternatively
0.5 for correctly using equation under 2B
1 for correct analytic result
0.5 for correct field direction

4. 0.5 for correct equation for mechanical moment M
0.5 for doing small angle approximationsin S~
1 for correct equation of motion, including sign, or for recognizing analogy with
harmonic oscillator
0.5 for correct analytic result for T

5. 0.3 for correct formulas of the two periods
0.3 for recognising the limiting valuesfor o
0.4 for correct ratio between the periods
1 for finding the relationship between o and tangent
0.5 for suitable approximate value of o
0.5 for fina explicit limiting value of o

For the numerical values afull score cannot be given if the number of digitsisincorrect (more than
one digit more or less than those given in the solution) or if the units are incorrect or missing
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Solution

Assuming — as outlined in the text — that the orbit is circular, and relating the radial acceleration

2
VF to the gravitationa field GF':"ZS

speed V :1/6'\;5 ~1.306-10% ms.

The following alternative solution is also acceptable:

(where Ms is the solar mass) we obtain Jupiter's orbital

Since we treat Jupiter's motion as circular and uniform, V = oR = 2R
Y;

, Where y; is the

revolution period of Jupiter, which isgiven in the list of the general physical constants.

The two gravitational forces on the space probe are equal when

GMm _ GMgm
p?  (R-p)?
(where p isthe distance from Jupiter and M is Jupiter’ s mass), whence

M (R-p) = pM; (3)

2

and

Y
p=————~—R=002997R=2333-10"m  (4)
Mg + M

and therefore the two gravitational attractions are equal at a distance of about 23.3 million
kilometers from Jupiter (about 334 Jupiter radii).

With a simple Galilean transformation we find that the velocity components of the probe in
Jupiter's reference frame are

and therefore - in Jupiter's reference frame — the probe travels with an angle 6, = arctan\\//—0 with

respect to the x axis and its speed is v'= /v, +V?* (we aso note that cosd, Vv v

JV2+VE OV
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Vo Vo
T v
v, +V v

Using the given values we obtain 6, = 0.653 rad ~ 37.4° and v=1.65-10*m/s.

and sing, =

Since the probe trgjectory can be described only approximately as the result of a two-body
gravitational interaction (we should aso take into account the interaction with the Sun and other
planets) we assume a large but not infinite distance from Jupiter and we approximate the total
energy in Jupiter's reference frame as the probe's kinetic energy at that distance:

E~—-—mv (5)

The corresponding numerical valueiskE =112 GJ.
Equation (1) shows that the radial distance becomes infinite, and its reciprocal equals zero, when

12 |2
1+ 1+ 22D hso =0 @)

G*M?m

namely when

cosf = — ! (8)

2Ev?b?
1+72 5
G°M“m

We should also note that the radia distance can't be negative, and therefore its acceptable values
are those satisfying the equation

12 |12
1+ 1+%cos¢920 9
G°M“m

cosf > — ! (10)

2EV?b?
1+72 5
G°M“m

or

The solutions for the limiting case of eg. (10) (i.e. when the equal sign applies) are:

12 |h2 172
¢, = tarccog — 1+ﬂ =+| 7 —arccos ! (11)
) G’M’m 1 2EV?b?

+7
G*M?m
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and therefore the angle A& (shown in figure 2) between the two hyperbola asymptotes is given by:

AO=(0,-0)-rx

= 1 — 2arccos ! (12)
1 2Ev?b?

+7
G>M?m

= 7 — 2arccos
V' 4b?

G’M?

In the last line, we used the value of the total energy as computed in the previous section.
The angular deviation is a monotonically decreasing function of the impact parameter, whence
the deviation has a maximum when the impact parameter has a minimum. From the discussion in

the previous section we easily see that the point of nearest approach is when 6 = 0, and in this
case the minimum distance between probe and planet center is easily obtained from eq. (1):

N Vb2 -
rmin :W 1+ 1+W (13)

By inverting equation (13) we obtain the impact parameter

b = \/rnzﬂn + ZCE—M rmin (14)

V|2

We may note that this result can alternatively be obtained by considering that, due to the
conservation of angular momentum, we have

L=mvb=mV', I,

where we introduced the speed corresponding to the nearest approach. In addition, the
conservation of energy gives
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and by combining these two equations we obtain equation (14) again.

The impact parameter is an increasing function of the distance of nearest approach;
therefore, if the probe cannot approach Jupiter's surface by less than two radii (and thus rpn =
3Rz, where Rg is Jupiter’s body radius), the minimum acceptable value of the impact parameter
is

bmin = \/gRé + @ RB (15)
\

From this equation we finally obtain the maximum possible deviation:

A, =7 — Zaccos; = 7 — 2arccos ! (16)

\Val a 6GM
1+ Ve \/1+ Y (QRS + 2 R,

and by using the numerical values we computed before we obtain:
Pmin =4.90-108m ~7.0Rs and A0y = 1.526 rad ~ 87.4°
The final direction of motion with respect to the x axis in Jupiter’s reference frame is given by

theinitial angle plus the deviation angle, thus €+ if the probe passes behind the planet. The
final velocity components in Jupiter's reference frame are therefore:

V', =Vv'cos(d, + Ab)
Vi, =Vv'sin(@, + A0 )
whereas in the Sun reference frame they are
v, =V' cos(@, + A6 ) -V

vy =Vv'sin(@, + Af)

Therefore the final probe speed in the Sun reference frameis
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V'= | (Vcos(B, + AG) —V)? + (V'sin(d, + A))?

= JVE+2V2 -2V cog(@, + AD)

— V& +2V% - 2v'V(cosh, cosAH —sinf, SN A) (17)

= V¢ + 2V - 2V(V cosAf - v, SinAG)

= Vo(Vy + 2V SiNAG)+ 2V 2(1-cosAG)

8.  Using the value of the maximum possible angular deviation, the numerical resultisv’ = 2.62-104
m/s.
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Grading guidelines

1. 04 Law of gravitation, or law of circular uniform motion
04 Correct approach
0.4+0.3 Correct results for velocity of Jupiter

2. 0.3 Correct approach
0.4+0.3 Correct results for distance from Jupiter

3. 1 Correct transformation between reference frames
0.3+0.2 Correct results for probe speed in Jupiter reference frame
0.3+0.2 Correct results for probe angle

4. 0.8 Understanding how to handle the potential energy at infinity
0.2 Numerical result for kinetic energy

5. 0.6 Correct approach
0.6 Equation for the orientation of the asymptotes
0.8 Equation for the probe deflection angle

6. 0.3+0.2 Correct results for minimum impact parameter

0.3+0.2 Correct results for maximum deflection angle

7. 0.5 Equation for velocity components in the Sun reference frame
0.5 Equation for speed as afunction of angular deflection
8. 0.5 Numerical result for final speed

For “correct results’ two possible marks are given: thefirst oneisfor the analytical equation and
the second one for the numerical value.

For the numerical values afull score cannot be given if the number of digitsisincorrect (more than
one digit more or less than those given in the solution) or if the units are incorrect or missing.
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Solution

The numerical values given in the text are those obtained in a preliminary test performed by a
student of the University of Bolognal, and are reported here only as a guide to the evaluation
of the student solutions.

1. and 2. The distance from the center of mass to the rotation axis is:

MR +M,(x-1/2)
M, +M,

R(X) = @

and therefore, if we measure the position of the center of mass?2 as a function of x we obtain a

relationship between the system parameters, and by a linear fit of eq. (1) we obtain an angular
coefficient equal to M,/(M, + M,), and from these equations, making use of the given total

mass M; + M, = 41.0 g = 0.1 g, we obtain M; and M,. The following table shows some
results obtained in the test run.

n X [mm] R(X) [mm]
1 204+1 76+1
2 2201 83+1
3 2361 89+1
4 254+1 95+1
5 269+1 101+1
6 287+1 107+1
7 30241 113+1
8 3211 119+1

Figure 6 shows the data concerning the position of the pendulum's center of mass together
with a best fit straight line: the estimated error on the length measurements is now 1 mm and
we treat it as a Gaussian error. Notice that both the dependent variable R(x) and the
independent variable x are affected by the experimental uncertainty, however we decide to
neglect the uncertainty on X, since it is smaller than 1%. The coefficients a and b in R(x) =
ax+b are

a=0.366 £ 0.009
b=2mm+2mm

1 Mr. Maurizio Recchi.
2 This can easily be done by balancing the pendulum, e.g. on the T-shaped rod provided.
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(therefore b is compatible with 0)

R(X) [mm] vs. xfmm]

120
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80

200 220 240 260 280 300 320 340
x[mm]
Figure 6: Graph of the position of the pendulum's center of mass (with respect to the rotation axis) as
a function of the variable x. The numbering of the data points corresponds to that mentioned in the
main text. The estimated error is compatible with the fluctuations of the measured data.

For computing the masses only the a value is needed; using the total pendulum mass we find:

My =26.1+0.4g
M;=15.0g+04g

Even though many non-programmable pocket calculators can carry out a linear regression, it
is likely that many students will be unable to do such an analysis, and in particular they may
be unable to estimate the uncertainty of the fit parameters even if their pocket calculators
provide a linear regression mode. It is also acceptable to find a and b using several pairs of
measurements and finally computing a weighted average of the results. For each pair of
measurements a and b are given by

a= Yo=Y
X=X 2
b:yz_axz

and the parameter uncertainties (assuming them gaussian) by
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. a\/Axf A A+ AY;
(X1 - Xz)z (yl - Y )2

(3)

AX, A&
Ab = |AY? + @®X| =2 + ——
[ )

In order to calculate (2) and (3) the data can be paired with a scheme like
{1,5},{2,6},{3,7},{4,8}, where "far" points are coupled in order to minimize the error on
each pair.

There may be other alternative and equally acceptable approaches: they should all be
considered valid if the order of magnitude of the estimated uncertainty is correct.

3. The pendulum'’s total moment of inertia is the sum of the moments of its two parts, and
from figure 3 we see that

|(x)=|1+|2(x)=szz—lvlzzx+(|1+%ﬁ} 4)

4. The pendulum'’s equation of motion is
d?e
I(X)F: —K(@—@O) (5)

if the rotation axis is vertical, while it's

d

I (x) d;g =—-k(0—-06,)+(M;+M,)gR(x)sing (6)

if the rotation axis is horizontal.

5. and 6. When the system is at rest in an equilibrium position, the angular acceleration is
zero and therefore the equilibrium positions & can be found by solving the equation

— k(@ —09)+ (M1 +M5)gR(Xx)sinb, =0 (7)

If the value x; corresponds to the equilibrium angle 6&;, and if we define the quantity (that can
be computed from the experimental data) y; = (M, + M,)gR(x)sind,;, then eq. (7) may be

written as

Vi =Kk0q; — Kb (8)
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and therefore the quantities k and xé& can be found with a linear fit. The following table

shows several data collected in a trial run according to the geometry shown in figure 7.

<

n X [mm] h [mm] sind .= hix o y [N-um]
1 204+1 40+1 10.196+0.005 0.197+0.005 6.1+0.3

2 220+1 62+1 |0.282+0.005 0.286+0.005 9.4+0.4

3 238+1 75+1 10.315+0.004 0.321+0.005 11.3+0.5
4 255+1 89+1 0.349+0.004 0.357+0.004 13.4+0.5
5 270+1 109+1 0.404+0.004 0.416+0.004 16.4+0.6
6 286+1 131+1 0.458+0.004 0.476x0.004 19.7+0.7
7 307+1 162+1 0.528+0.004 0.556+0.004 24.3+0.8
8 321+1 188+1 | 0.586+0.004 0.626+0.004 28.2+0.9

X

A

.

Figure 7: Geometry of the measurements taken for finding the angle.

We see that not only the dependent but also the independent variable is affected by a
measurement uncertainty, but the relative uncertainty on & is much smaller than the relative
uncertainty on y and we neglect it. We obtain from such data (neglecting the first data point,

see figure 8):

k = 0.055 N-m-rad-1 + 0.001 N-m-rad-1
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K6 = -0.0063 N-m + 0.0008 N-m

Clearly in this case only the determination of the torsion coefficient « is interesting. The fit of
the experimental data is shown in figure 8.

y=x60 -6y [N-mm]vs. 0
20 ' ' ' '

a0
20
15

10

1] n.1 0.2 0.2 0.4 0.5 0n.& n.7
6 [rad]
Figure 8: Fit of eq. (8) as a function of 4. In this case the estimated error is again compatible with the
experimental data fluctuations. However the data points show a visible deviation from straightness
which may be due to an error in the first measurement (the one at lowest 6).

7. The moment of inertia can be found experimentally using the pendulum with its rotation
axis vertical and recalling eqg. (5); from this equation we see that the pendulum oscillates with

angular frequency w(x) = % and therefore
\ 1(x

KT 2(X)

') = Ar?

)

where T is the measured oscillation period. Using eq. (9) we see that eq. (4) can be rewritten
as

M
4;2T2(x)—M2x2:—M2£x+(I1+T2£2] (10)
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The left-hand side in eq. (10) is known experimentally, and therefore with a simple linear fit

we can find the coefficients M,/ and (Il + %ﬁj, as we did before. The experimental data

are in this case:

The low uncertainty on T has been obtained measuring the total time required for 50 full

periods.

n X [mm] T[s]

1 204+1 0.502+0.002
2 215+1 0.528+0.002
3 23141 0.562+0.002
4 258+1 0.628+0.002
5 290+1 0.708+0.002
6 321+1 0.790+0.002

Using the previous data and another linear fit, we find

/Z =230mm =20 mm
l, =1.7-104 kg-m2 £ 0.7-10-4 kg-m2

and the fit of the experimental data is shown in figure 9.
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0. 0008

0. 0007

y=L2T2(x) — M X2 [kgm?] vs. x [m]
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0.2 0.22 0.24 0.Zs 0.Z8
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Figure 9: Fit of eq. (10) as a function of x. In this case the estimated error is again compatible with the
experimental data fluctuations.

8. Although in this case the period T is a complicated function of x, its graph is simple, and it
is shown in figure 10, along with the test experimental data.

The required answer is that there is a single local maximum.

T [s] vs. Xx[m]

n.2 0.22 0.24 n.2e  0.28 n.2 n.32

X [m]

Figure 10: The period T of the pendulum with horizontal axis as a function of x. In addition to the

experimental points the figure shows the result of a theoretical calculation of the period in which the
following values have been assumed: g = 9.81 m/sz; k = 0.056 N-m/rad; M1 = 0.0261 kg; M2 =

0.0150 kg; M3 = 0.00664 kg; 11 = 1.0-10-4 kg-m2; ¢ = 0.21 m; ¢3 = 0.025 m; a = 0.365; b = 0.0022
m (so that the position of the center of mass - excluding the final nut of length /3 - is R(X) = ax+b);
these are the central measured values, with the exception of «, 11 and ¢ which are taken one standard
deviation off their central value. Also, the value &y =0.030 rad =~ 1.7° has been assumed. Even though
the theoretical curve is the result of just a few trial calculations using the measured values (+ one
standard deviation) and is not a true fit, it is quite close to the measured data.
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Theoretical Problem 1

Part A

& bungee jumper 15 attached to one end of a long elastic rope. The other end of the elastic rope 15 fiwed to a lugh brndge. The jumper steps off the bridge and falls,
from rest, towards the river below. He does not hut the water. The mass of the jumper 15 #2, the unstretched length of the rope 15 L, the rope has a force constant
{force to produce 1 m extension) of & and the gravitational feld strength is g

Tou may assume that

¢ the jumper can be regarded as a point mass # attached to the end of the rope,
¢ the mass of the rope iz neghgible compared to 2,

¢ the rope obeys Hooke's law,

* air resistance can be ignored throughout the fall of the jumper.

Chbtain expressions for the following and insert on the answer sheet;
¢ the distance ¥ dropped by the jumper before coming mstantaneously to rest for the first time,

e the maxitmum speed L attained by the jumper during this drop,
¢ the tine { taken dunng the drop before cormung to rest for the first time.

Part B

A heat engine operates between two 1dentical bodies at different temperatures Ty and Tg (T a4 = Tg), with each body having mass #2 and constant specific heat

capacity & The bodies remain at constant pressure and undergo no change of phase.

1. Showing full worling, obtain an expression for the final temperature Tp attained by the twe bodies & and B if the heat engine extracts from the system the

maztmum amount of mechanical work that 15 theoretically possible.

Write your expression for the final temperature T on the answer sheet.
2. Hence, obtan and write on the answer sheet an ezpression for this mazmum amount of work avalable.

The heat engine operates between two tanks of water each of wolume 2.50 m®. Cne tark is at 350 K and the other is at 300 K.
3. Caleulate the masarmum amount of mechanical energy obtanable. Insert the value on the answer sheet.

Specific heat capacity of water =4.19 x 10%7 kg‘l !

Density of water = 1.00 = 10° kgm'3

Part C

. ) pET 235 . 238 235
Tt is assumed that when the earth was formed the isotopes ~ W and = Y were present but not their decay products. The decays of © Yand = Y are used to
establish the age of the earth, T

a. The isotope =y decays with a half-life of 4.50 x 10° vears. The decay products in the resulting radioactive series have half-lives short compared to this; to a

S o . . . . ) 206
first approximation their existence can be ighered. The decay series terminates in the stable lead isotope b

, , , 206 o o :
Ohbtain and msert on the answer sheet an expression for the number of Fb atorns, denoted o . produced by radicactive decay with time t, in terms of the

3% 238 L 138 . L
present mimber of © 9 atoms, denoted T M | and the half- ife time of © Y . (You may find it helpfil to worl in units of 10° years.)

b Siilarly, =y decays with a half-life of 0.710 x 107 vears through a senies of shorter half-life products to give the stable isotope Py .

—— . . . PRI FELRRS PRV SR T



wrte down on the answer sheet an equation relating I to ™ and the halt-hte ot .

. . . . . . . ) 04 206 207
c. & uramum ore, mized with a lead ore, 15 analysed with a mass spectrometer. The relative concentrations of the three lead 1sotopes Fb “"Pb gpq ©'Fh

are measured and the number of atoms are found to be i the ratios 1.00: 29 6 : 22 6 respectively. The 1sotope “Ph 15 used for reference as it 1s not of
radioactive origin. Analysing a pure lead ore gives ratios of 1.00: 17.9: 155,

. . 3EEgg 3ES.o . ) o .
Given that the ratic ~ 1V : M iz 137 1, derive and insert on the answer sheet an equaticn involving T

d. Assume that Tis much greater than the half lives of both uranium isotopes and hence obtain an approzimate value for T

e. Thiz approximate walue 1z cleatly not significantly greater than the longer half ife, but can be used to obtamn a much more accurate value for T
Hence, or otherwise, estimate a value for the age of the earth correct to within 2%

Part D

Charge & 15 uniformly distributed i vacus throughout a sphenical volume of radius £

a. Derve expressions for the electne field strength at distance » from the centre of the sphere forr 2 Randr = R

b Obtan an expression for the total electnic energy associated with thiz distnbution of charge.

Insert your answers to (a) and (b) on the answer sheet.

Part E

A circular ning of thin copper wire 18 set rotating about a vertical diameter at a point within the Earth’s magnetic field. The magnetic flux density of the Earth'=
magnetic field at this point is 44,5 WT directed at an angle of 64 below the horizontal. Given that the density of copper is 8.50 107 kg m and its resistvity 15 1.70

% 10% (3 m, calculate how long 1t will take for the angular velocity of the ring to halve. Show the steps of yvour working and msert the value of the time on the answer
sheet. This time 13 much longer than the time for one rewolubion.

Toumay assume that the fictional effects of the supports and air are negligible, and for the purposes of thiz question you should ignore self-inductance effects,
although these would not be negligible.
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Theoretical Problem 2

a. A cathode ray tube (CRT), consisting of an electron gun and a screen, 15 placed within a uniform constant magnetic field of magmtude B such that the magnetic
field 15 parallel to the beam ams of the gun, as shown in figure 2.1

~y

Figwre 2.1

The electron beatn emerges from the anode of the electron gun on the amis, but with a divergence of up to 5° from the ams, as ustrated m figure 2.2, In
general a diffuse spotis produced on the screen, but for certain values of the magnetic field a sharply focused spotis obtained,

Figure 2.2

By considenng the motion of an electron mitially moving at an angle & (where 0 = 8= 5°) to the asms as it leaves the electron gun, and considering the
components of its motion parallel and perpendicular to the ams, derive an expression for the charge to mass ratio eftn for the electron i terms of the following
quantities:

e the smallest magnetic field for which a focused spot 15 obtamed,
¢ the accelerating potential difference across the electron gun I {note that F7< 2 KV,

e 1) the distance between the anode and the screen.
TWrite your expression in the box provided m section 2a of the answer sheet.

b. Consider another method of evaluating the charge to mass ratio of the electron. The arrangement 15 shown from a side wiew and m plan wew {from abowve) n
figure 2.3, with the direction of the magnetic feld marked B, Within thiz uniform magnetic field B are placed two brass citcular plates of radius p which are
separated by a very small distance £ & potential difference ¥ is mamtamed between them. The plates are mutually parallel and co-asal, however their ass is
perpendicular to the magnetic Beld, A phetographic filin, covers the imnside of the curved surface of a cylinder of radiuz p + &, which 12 held co-amal with the
plates. In other words, the film is at a radial distance & from the edges of the plates. The entire arrangement 15 placed iz vacua. Note that £ is very much
smaller than both 5 and 2

A point source of B particles, which emits the B particles uniformly mn all directions wath a range of velocthes, 13 placed between the centres of the plates,
and the same piece of film 15 exposed under three different conditions:

o firstly with 5= 10, and F'=10,
¢ secondly with 8= 5 g, and "= 1", and
¢ thirdly with 5=-5 p, and "'=-F" ;

where I and B j are positive constants. Please note that the upper plate 15 positively charged when F=0 (negative when F<0 ), and that the magnetic
Held 1z in the direction defined by figure 2.5 when B=0 (in the opposite direction when 80 ). For this part you may assume the gap 13 negligibly small

Two regions of the filn are labelled & and B on figure 2.3, After exposure and development, a sketch of one of these regions 15 given in figure 2.4,



From which region was this piece talien {on your answer sheet write & or B)7? Justify your answer by showing the directions of the forces acting on the
electron.

. After exposure and develeptnent, a sketch of the filtn iz given in figure 2.4, Measurements are made of the separation of the two outermost traces with a
microscope, and this distance (p )15 also mdicated for one particular angle on figure 2.4, The results are given i the table below, the angle ¢ being defined m
Hgure 2.3 as the angle between the magnetic field and a line joing the centre of the plates to the point on the fim,

linele to field /degrees S 50 | 60 [ 50 [ 40 | 30 23
Separation fram 174 (127 |87 |64 |35 | End oftrace

Mumerical values of the system parameters are given below:

Bp=681mT VFp=580V :=080mms=41.0 mm

In addition, wou may take the speed of light it vacuum to be 3,00 = 10% m 51, and the rest mass of the electron to be 5,11 = 10731 kg
Determine the masmmum B particle kinetic energy observed.
TWrite the masimum kinetic energy as a numencal result in eV in the box on the answer sheet, section 2o

. Tsing the information griven in part (c), obtain a value for the charge to rest mass ratio of the electron. This should be done by plotting an appropriate graph on
the paper prowded.

Indicate algebraically the quantifies being plotted on the honzontal and vertical axes both on the graph steelf @nd on the answer sheet in the boxes
prowided in section 2d.

“Write your value for the charge to mass ratio of the electron m the box provided on the answer sheet, section 2d.

Please note that the answer you obtain may not agree with the accepted value because of a systematic error i the observations.

Additional Figures

Figure 2.3
Side View:
Film Film
-\L Flates J
¢ T i
—E——
p 5
—
B
View from above:

Region A

Region B

Figure 2.4
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Film
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Theoretical Problem 3

Part A

This part 15 concerned with the difficulties of detecting grawtational waves generated by astronomical events. It should be realised that the explosion of a distant

supernova may produce fluctnations in the grawvitational field strength at the surface of the Earth of about 1019 17 kg'l.A model for a gravtational wave detector (see
figure 3.1 consists of two metal rods each 1m long, held at right angles to each other. One end of each rod is polished optically flat and the other end i1z held ngidly.
The posttion of one rod 13 adjusted so there 15 a minmum signal recerved from the photocell {see figure 3,13

Half silvered mirrors

TFhotocell

Screw to adjust rod

Figure 3.1

Figure 3.1

The rods are given a short sharp longitudinal impulse by a piezoelectric device. As a result the free ends of the rods oscillate with a lengitudinal displacement Dy,

whete
fx, = ae™® coslat + @),
and @, m, w and /' are constants.
{a) If'the amplitude of the motion 13 reduced by 20% during a 50s mterval determine a value for .

(b Given that lengitudinal wave velocity,wr = O(Efp), determine also the lowest value for w, given that the rods are made of alumirium with a density ( ) of 2700
kg™ and a Young modutus (£ Jof 7.1x 100 Pa.

{c) Ttis impossible to make the rods exactly the same length so the photocell signal has a beat frequency of 0.005 He. What 13 the difference i length of the rods?

{d) For the rod of length J, derive an algebraic expression for the change in length, DY, due to a change, Dg, m the gravitational feld strength, g, in terms of § and
other constants of the rod material The response of the detector to this change takes place in the direction of one of the rods.

{e) The light produced by the laser 1z monochromatic with a wavelength of 656nm. If the rmmmum fringe shift that can be detected 1s 1074 of the wavelength of the

laser, what 1z the miniraum value of § necessary if such a system were to be capable of detecting variations in g of 1019 17 kg‘l?

Part B



Lhis patt 18 concerned wWith the eMect of a gravitaiional neld on the propagation of lght i space.

{(a) A photon emutted from the surface of the Sun (mass M, radius &) is red-shifted. By assuming a rest-mass equivalent for the photon energy, apply MNewtonian
gravitational theory to show that the effective (or measured) frequency of the photon at infinity 15 reduced (red-shifted) by the factor (1 - GMRCE).

{b) & reduction of the photon’s frecquency 15 equivalent to an merease in s tune peniod, or, using the photon as a standard clock, a dilaton of time. In addition, 1t
may be show that a time dilation iz always accompanied by a contraction i the unit of length by the same factor,

We will now try to study the effect that this has on the propagation of light near the Sun. Let us first define an effective refractive mdex », at a pomt » from the centre
of the Sun. Let

where ¢ 15 the speed of light as measured by a co-erdinate system far away from the Sun’s gravitational imnfluence (7 ® ¥), and ¢ 15 the speed of ight as measured
by a co-ordinate system at a distance » from the centre of the Sun,

Show that 22, may be apprommated to:

M
re?

n, =1+

for small (FMFre®, where @ is a constant that you determme.

() Using this expression for »,, caleulate in radians the deflection of a light ray from its straight path as it passes the edge of the Sun.
Drata:

Cravitational constant, =667 * 1071 I} m? kg2

Mass of Sun, M= 199 " 1030 kg

Radius of Sun, R=6.95 " 108 m

Velocity of light, ¢ = 3.00 “ 10¥ m s°L.

Tou may also need the following integral

L d
:i(xa +a2)3.f:r

2
aa-



DRAFT COPY

31! International Physics Olympiad

Leicester, U.K.

Experimental Competition

Wednesday, July 12 2000

Please rvead this fivst:

Lh e L b2

=2

. The time available iz 2% hours for each of the 2 experimental questions. Answers for your first question will be collected after 2 % hours,

. Use only the pen issued in your back pack.

. Use only the front side of the sheets of paper provided. Do not use the side marked with a cross.

. Each guestion should be answetred on separate sheets of paper.

. For each question, in addition to the blank writing sheets where you may wiite, there is an apewer sheed where wou mst summarise the results you have obtained. Mumerical

tegults should be written with as many digits as are appropriate to the given data. Do not forget to state the units

. Wirite on the blank sheets of paper the results of all your measurements and whatever elze you consider is required fior the solution of the question and that you wish to be

matked. Howewer you should use mainly equations, numbers, symbols, graphs and diagrams. Please use as liffle fexf as possibie.

. Itis absolufely essenfial that you enter in the boxes at the top of each sheet of paper used your Comndry and ywour student namber (Stadent No ). In addition, on the blank sheets

of paper used for each question, wou should enter the mamber of the question (Qeestior MNo.), the progressive number of each sheet (Page No.) and the total mumber of blank
sheets that you have used and wish to be marked for each question (Tetel No. of pages). It is also helpfial to weite the question fumber and the section label of the part you are
angwering at the beginning of each sheet of writing paper. If you use some blank sheets of paper for notes that you do not wish to be marked, put alarge cross through the whole
sheet and do not include it in your numbering,

. When you have finished, arrange all sheets 1 proper order (for each question put answer sheets first, then used sheets in order, followed by the sheets wou do not wish to be

marked. Put vtased sheets and the prnted question at the botton). Place the papers for each question inside the envelope labelled with the appropriate question mamber, and
leave everything on your desk. You are not allowed to take awy sheets of paper out of the room.

CDROM SPECTROMETER

In this experiment, vou are NOT expected to indicate uncertainties in vour measurements.

The aim is to produce a graph showing how the conductance® of a ight-dependent resistor (LDER) varies with wawvelength across the wisible spectrum.

*onductance & = Vresistance (units: stemens, 1 3 =102 '1)

There are five parts to this expeniment:

Using a concave reflection grating (made from a strip of CDROM) io produce a focused first order spectrum aof the Sght from bulb A (12 V50
tungsien fillament).

Measuring and plotfing the conductance af the LDR against wavelength as if is scanned through this first order specirum.
Showing that the filament in bulbh A behaves approximately as an ideal black body.

Finding the temperature of the filament in bult 4 when il is connected ia the 12V suppiv.



o Correciing the graph of conductance against wavelangth to iake account of the energy distribution within the spectrum af light emitted by bulb A.
FPrecautions

¢ Beware of kot surfaces.

e Bulh B should not be connecied to any potential difference greater than 2.0 V.

¢ Do nof use the muliimeter an ifs resisiance setiings in any five circuit.
Procedwe

{a) The apparatus shown m Figure 1 has been setup so that light from bulb A falls normally on the curved grating and the LDE has been positoned in the focused
fivst order spectrum. Move the LDE through this first-ovder spectnum and observe how its resistance (reasured by multimeter X) changes with position.

{b) () Measure and record the resistance R of the LDR at diferent positions within this first-order spectrum. Record your data in the blank table
provided.

{1) Plot a graph of the conductance & of the LDE. against wawelength A using the graph paper prowided.

Note The angle & between the direction of light of wavelength A i the first-order specttum and that of the white lght reflected from the
grating (see Figure 1) is given by

sih 9 = A/ where o 15 the separation of ines in the grating,
The grating has 620 lines per mm.

The graph plotted mn (B)(1) does not represent the sensthivity of the LDE to different wavelengths correctly as the emission characteristics of bulb A& have not been
taken mto account. These characteristics are mvestigated in parts (c) and (d) leading to a corrected curve plotted m part (g).

* Nate for part {c) that three multimeiers are connected as ammeters. These should NOT be adiusied ar moved. Use the fourth multimeter
{labelled X for all valiage measurements.

{c) IFthe filament of a 50 W bulb acts as a black-body radiator it can be shown that the potential difference I across it should be related to the current J
through it by the expression:

73 =07 % where O is a constant.
Measure cotresponding values of I and [ for bulb A (in the can). The ammeter is already connscied and should not be adjusied.
1) Record vour data and any calculated values in the table prowided on the answer sheet.
{1) Plot a suttable graph to show that the filament acts as a black-body radiator on the graph paper provided.

{d) To correct the graph in (b)(1) we need to know the worling temperature of the tungsten filament in bulb & This can be found from the vanation of
filatment resistance with temperature.

¢ You are provided with a graph of tungsten resistivity (L £2 cin) against temperature (K).

If'the resistance of the filament in bulb A can be found at a known temperature then its tetnperature when run frotn the 12 'V supply can be found from its resistance
at that operating potential difference. Unfortunately its resistance at room temperature 15 too small to be measured accurately with this apparatus. However, you are
prowvided with a second smaller bulb, C, which has a larger, measurable resistance at room temperature. Bulb C can be used as an mtermediary by following the
procedure described below. You are also provided with a second 12V 50%W bulb (B) identical to bulb A Bulbz B and C are mounted on the board provided and

connected as shown in Figure 2.

{1) Ieasure the resistance of bulb © when it 15 unlit at room temperatire (use madiimeter X, and take room temperature to be 300 K.
Eecord this resistance Rry on the answer sheet.

1 Usge the circutt shown in Figure 2 to compare the filaments of bulbs B and C. Tze the vaniable resistor to vary the current through bulb C until vou can
see that overlapping filaments are at the same temperature. If the small filament 15 cooler than the larger one it appears as a thin black loop. Measure the
resistances of bulbs B and C when this condiion has been reached and record therr walues, S-5 and Rp, on the answer sheet. Remember, the

ammetars are already connecied.

{11) Tse the graph of resistivity against temperature (supplied) to work out the temperature of the filaments of B and C when they are
matched. Record this temperatire, 7oy on the answer sheet.

{1v) Measure the resistance of the flament m bulb A (in the can) when it is connected to the 12V a.c. supply. Once again the ammeisris
already connected and should not be adjusied. Record tlus value, B 5y on the answer sheet.



{v) Use the values for the resistance of bulb & at 2V and 12 V and its temperature at 2 V to worle out its temperature when run from the
12V supply. Becord this temperature, 75y in the table on the answer sheet.

* You are provided with graphs that give the relative mtensity of radiation from a black-body radiator (Planck cwves) at 2000 K, 2250 E, 2500 E,
2750 K, 3000 K and 3250 K.

{e) Use these graphs and the result from (d)(v) to plot a corrected graph of LDE. conductance (arbitrary untts) versus wavelength using the graph paper
provided. Assume that the conductance of the LDE. at any wavelength 15 directly propottional to the mtensity of radiation at that wavelength (This
assumption 15 reasonable at the low intensities falling on the LDE. i this experiment). Assume also that the grating diffracts light equally to all parts of the
first order spectrum.

Figure 1 - Experimnental airangement for (a)
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\ bulk &
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LDR. inside a sroall
black plastic tube
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Graph 1: tungsten resistivity
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Graph 2{a): Planck Curves for 2000 K, 2250 K, 2500 K
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The Magnetic Puck

July 2000

2.5 howrs
In this experiment vou ARF expected to indicate uncertainties in vour measwurernents, results and graphs

Ajmn
To investigate the forces on a puck when it slides down the slope.
Warning

Do not touck the circular flaf faces of the puck or the paper surface of the slope with pouwr haneds. Use the glove provided. The faces have different coloured paper sfickers for
converience but the ficfional characteristics of the paper faces may be assumed to be the same.

Tuning

The sensors underneath the track trigger electromic gates in the box and the green LED will light when the puck is between the sensors.  The multimeter measures the potential difference
across a caparcitor, which is connected to a constant- current source (whose current is proportional to the voltage of the batters) whalst the green light iz on. The reading of the multimeter
is therefiore a measure of the time during which the puck is between the sensors. This reading can give a value for the speed of the puck in arbitrary vnits.

Operating the timer

1) Press and hold down the black push button on the side of the hox. This switches the electronies on.

i) Ifthe green light goes on slhide the puck (ight face up) past the lower sensor. The green light should go off:

1) The potential difference across the capacitor can be reduced to zero before the puck is released by pressing the red button for at least 10s.

) The battery potential difference can be measured by connectng the multimeter across the tenmmals marked wath the cell symbol

Definitions

) & moving body sliding down an inclined plane experiences a tangential retarding force Fand a normal reaction M. Define
P
a

(1) “When the retarding force 15 due to friction alone, » equals mg and is called the dynarde cosfficient of friction for the surface. Itisindependent of speed.

(iid) TWhen the blue (dark) side iz in contact with the plane define

Fll’

&=

¥ N

where the tangential force Fy iz partly due to the suface friction and partly due to magnetic effects.
{1w) The wanable x4s which gives the magnetic effects only 1s defined by
= =
Important hints and advice
Y] Vou will find it helpfal indtially to investigate the behaviour of the puck gualitatively.
(1) Think about the physics before wou do a quantitative investigation. Eemember to use graphical presentation where possible.
{11} Do not attempt to take too many expenmental readings unless you have plenty of time.

i Tou ate measuring the potential difference actoss an electrolytic capacitor. This does not behave quite like a simple ait capacitor. Slow leakage of charge is normal and the
gthe p P q 3 P g g
potential difference will not remain completely steady.

() Tow are given one puck and one 2.0 V battery. Conserve the battery! The constant cusrent filling the capaeitor is propottional to the battery potential difference. [t iz therefore
adwizable to monitor the battery potential difference. In addition, the sensors may not be reliable if the potentisl difference of the battery falls below 24 V. If this happens, ask for
another battety.

(1) Tiour answer pack contains 4 sides of graph paper only. Vouwill not be given firther sheets. Tou may keep the puck at the end of your experiment.

it TF e hawre tremble srerating the rnlbimeters acle an inmalator
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Data

*  Weight of puck = 5.84°102 17

&  The voltmeter reading indicates the time of travel of the puck. When the potential difference of the battery 18 9.0 V then 1V corresponds to 0.213 5
e Distance between sensors = 0.2834 m

Experiment

Using only the apparatus provided investigate how xgs depends on the speed vy of the puck for track inclinations g to the horizontal.

State on the answer sheet the algebraic equations/relations used in analysing your results and i plothing your graphs.

Buggest a quantitative model to explain your results. Use the data which wou collect to justifyy your model.



Question 1

A Bungee Jumper
(a) The jumper comes to rest when

lost gravitational potential energy = stored strain energy
mgy = +k O-L)?

k2 - 2p(kL + mg)+ kL =0

This is solved as a quadratic.

 2(KL+mg) £ J4(kL + mg)? —4k* L
#= %

KL +mg +\[2mgkL + m* g*

k

Need positive root; lower position of rest (other root after initial rise).

(b) The maximum speed is attained when the acceleration is zero and forces balance;
i.e. when mg = kx

Also kinetic energy = lost potential energy — strain energy within
elastic rope

Lmo® =mg(L+x)- ke’

4 mg.  mg’
v =20(L+—-)-—2_
&( X ) p

mg’
v=,2gL +—=—
VE TR

(c) Time to come to rest = time in free fall + time in SHM of rope to stop stretching

Length of free fall = L = %gl[:
2L

Therefore 1, =



The jumper enters the SHM with free fall velocity = gtr=/2gL =0,

m
Period of SHM = 27 ;— =T

We represent a full SHM cycle by

down g ™
Uz— / \

up \ /
/.

The jumper enters the SHM at time 7 given by

1. 0, 1. y2gl

= =8 —~= ~—§i
[ v [0} 1%

Jumper comes to rest at one half cycle of the SHM at total time given by

-+ (T2
J2el
n\[’%-ism“’ &
1%

2gL
\/" \[7 —sin”! R
,/ZgL +mg’lk
-\[:+ [—-. {1- sin”’ ~_\/__-%[ ......... }
g Vi JZgL +mg’/k

\/—— m { T+ cos™

(2gL)

Nimg'ik)

This is the same as

V2gL+ mg-{Tk—

2L \/E 2kL
s tan }



B Heat Engine Question

T In calculating work
(starts at 7'4) obtainable,
we assume no loss
(friction etc.) in engine
working. )

AQ, AQ, = energy from body A
=-msAT, (AT, -ve)

AQ> = msAT, (AT, +ve)

AQ;

7
(starts at Tg)

(a) For maximum amount of mechanical energy assume Carnot engine

A9 _ A0,

——= throughout operation (second law)

n I,

But AQy = -msAT, and AQ; = msAT,

T, /
Wl
—ms J.f-—'— = ms I-—i
Iy T Ty T,
In T’“ = |n TTE—
0 8
Toj = TA TB

Ty = T, Ty



7
Q)= -ms IdTl =ms(Ta - To)
]‘.4

:
.

Or=ms Id T, = ms(Ty— Tp)
7

W=0,- 0

W=ms(Ts-To =Ty + Tg) = ms(Ta+Ty ~2Ty) = ms (Ty+ Ty - 2 7T4T,, )

or ms(ﬁ?—\/ﬁ)z

Numerical example:

Mass = volume x density

W =2.50x1.00 x 10" x 4.19 x 10° x (350 + 300 - 2+/350x 300 ) J

=20x10°J
= 20MJ



C Radioactivity and age of the Earth

(1) N =N ANj = original number
= N(l -e™)
Therefore n= Ne*'(1 - e™) = A" - 1)

Son=N(2'*~ 1) where ris half-life

In2 _ 0.6931 s
- -1

o p=TEN (2 1y or =N (e~ 1) where time £ is in 10°

years
(b B BN (21O [y or W =N (279 — 1)
() In mixed uranium (i.e. containing Pb of both natural and radivactive origin}
2045206 : 207 have proportions 1.00:29.6:22.6
In pure lead (no radioactivity) 100179155

Therefore for radioactively produced lead by subtraction

204 : 206 : 207 have proportions 1.00:29.6:22.6
In pure lead (no radioactivity) 1.00:17.9: 155

Therefore for radioactivity produced lead by subtraction

206 207 11.7:71

Dividing equations from (a) and (b) gives

06, Hller'am_l} e 28 s eﬂim'_;}
e et O T — I e et
W7, T Wy Lgrree | T A T

1 G e L T eI
—:]—-21.}7{—“———21.:0”& _]} or 71 = |37{;m‘-—” —]I

0.0120 (270710 1) = (2700

of 0.0120 e 1= {159 1)



(d) Assume 7 >>4.50 x 10° and ignore 1 in both brackets:

00120 tzl‘ﬂ?’lU} = {27'/4 SU} or 00120 {e097621}: ‘(e015407}

1id 50 170.710 y . 57(0.222- -1.18627
0.0120 = {27 10710 4 DIO.222:14084) . 5-1.18677

__ log0.0120

log2x1.1862
T = 5.38 x 10° years

_In0.0120 _ -4.4228 5

-0.8222  -08222
T =5.38 x 10” years

or 0.0120 = 82T T

(e) Tisnot>>4.50 x 10° years but is> 0.71 x 10° years
¥y

We can insert the approximate value for T (call it 7* = 5.38 x 10 years) in the
2743 term and obtain a better value by iteration in the rapidly changing 27°7"
term). We now leave in the —1’s, although the -1 on the right-hand side has
little effect and may be omitted).

Either 0.0120( (2770710 1) = 2™

11956 _ o -
1=2 I=...29(J4 !:10745
0.0120 0.0120

log108.5 - 4.80(0)
log2

~T10M0 _

7=0.710

Put T* = 4.80(0) x 10° years
riomg _ 2% =1 _ 209481 513

0.0120 0.0120
lo

91.2
r=0n10282 2 - 4.62(3)
log?2
Further iteration gives 4.52

So more accurate answer for T to be in
range 4.6 x 10° years to 4.5 x 10° years
(either acceptable).



D Spherical charge

(a) Charge density= p = 3—9-— within sphere

Rk’
3
r¥< R Field at distance x:
% ot
3P ox

-l:rs.,x: 4;‘(&,,3"

r>R  Field at distance x from the centre: £ = Y -
dre x°
(b) Method 1
1 2
Energy density is & E*.
xR
Energy in a thin shell of thickness ax at radius x is given by

. 1 ox” B
S&ET 4mid= 547, & T

1
Energy within the spherical volume = —
s " 40 7e, K

@ T, 101
7{4,:.90]1{ I &

=)

x> R
| 1 2

Energy within spherical shell = —L‘HE: 4= -—4.’&.0 —— T i
2 (4ze, ) x'

FEnergy within the spherical volume for x = R

L): FEs - ] o l Q1
51

— X
i ¥ 8 7g, R

b | —
=
B

Total energy associated with the charge distribution = Jﬁ Q—lR
78,

1oL
8 mg, R

I
E
|-



Method 2

A shell with charge 47zx*8xp moves from o to the surface of a sphere radius x

where the electric potential is

4
R )
dre,x 3y

2
X
and will therefore gain electrical potential energy (3—;—) )(4m}p)8x
£

0

x=R 2.4 2ps
4zpx 4 R
Total energy of complete sphere = j 27p ~dx = N
x=0 3¢, 15 ¢
4 30
Putting Q = charge on sphere = ~—71'R p.p= :{}_

90° R 3¢
So that total energy is = — 7(——=— = ==
157 167°R° " & 20 e, R

(c) Binding energy Ehmding = LCelectric = Enuclear

Binding energy is a negative energy

Therefore  -8.768 = Eqecmic - 10.980 MeV per nucleon

Eeteerric = 2.212 MeV per nucleon

Radius of cobalt nucleus is given by R = 2 0
20 7[ (’Elﬂlﬂr

electric

3x27% x(1.60x10")?
m
20x 7 x8.85x1072 x2212x10° x57x1.60x10™

=50x10"m

7 4pdin2 4x1.70x10°% x8.90x10° x 0.6931 .
B? (44.5%107° x 0.4384)>
= 1.10(2) x 10°s (=306 hr = 12 days I8 hr)



E E.M. Induction

Method 1 Equating energy
Horizontal component of magnetic field 8 inducing emf in ring:
B =44.5x 10" cos 64°
Magnetic flux through ring at angle 8= Brta’sin 6
where a = radius of nng

,d sin @t
T e

de i
Instamaneous emf = d_ = where @ = angular velogity
i

= Bra’w cos we= Bra’w cos 6

R.m.s. emf over 1 revolution = £Z.¢
V2
- . B¥a'w’
Average resistive heating of ring = _ZR_m

o 1
Moment of inertia = ;ma

1 5,
Rotational energy = Z ma " where m = mass of nng

Power producing change inw = ad~ { %ma’w‘} =
I

1% dew
—ma” 2w —
- dr
o , dw B9la'w’
Equating —ma’w — =
2 dt 2R
dw B’n’d’ .
W mR
IF T is time for angular velocity o halve,
3
wi2 Tp2 = 2
dw B a”
| ==
o @ o mi
_ B3’
In2=
mR
2D ap ) )
ButR= where A is cross-sectional area of copper ring

m=2nad A (d = density)
B a’T BT
'II ?. L S p———e I

ﬂ%mam 4pd

=4pdln_'-‘ - 4x1,?0><10'nx3,9(}x10’x0.69315
B? (44.5x107" x0.4384)°
= 1.10{2) x 10°5 (=306 hr = 12 days 18 hr)

T




Method 2 Back Torque
Horizontal component of magnetic field = 8 = 44.5 x 10 cos 64°
Cross-section of area of ring is 4
Radius of ring = a
Density of ring = d
Resistivity = p
@ = angular velocity (o positive when clockwise)
2ma

Resistance R = p——
A

Mass of ring m = 2zadd

Moment of inertia = M = Emaz

Magnetic flux through ring at angle 6= Bra’sin 6

Instantaneous emf = %if- =B (fgs—(l;-(ﬁ = Brd’weos wl = Brna wcos 6
Induced current = | = Bra’cos &R

¥ 1 2 2
Torque opposing motion = (Bra’cos 6) /= E(Bn a’ )’ wcos @

1 1 .
Work dene in small §6= — (Bn a’ )7 (u~(cos 20 +1)56
R 2
Average torque = (work done in 27 revolution)/2n

__1_(37[7( )2(1)%2[ = 5115(37[71' 3)1(0

2t R
5 5. 1
B(ma” )B(ma™)
This equals M~d—5)— so that 1\»/9—— - —— 2
dr dr (p! A)2ma)
. d B (mi*)* A
—(27z'ald) €2 = ‘(ﬂLw
dr 4pnu
dw B
dr 4pd
(0/29-@_? B
o @ 04;11
B'T
2 = ==
4pd

dpdin2 4><1.70><]0_i‘><8,9()><10“’><0,6931S
B! (44.5x10 % x0.4384)°
=1.10(2) x 10°s =306 hr =12 days 18 hr

T.—,:



(a)

(b)

(©)

Question Two ~ Solution

Focusing occurs for one "cyclotron" orbit of the electron.

Angular velocity @=e¢ B/ m; so time for one orbit 7=2 7m/e B
Speed of electronu = (2 ¢ V'/ m)"”

Distance travelled D=Tucos f=~Tu= (2”2 n/B)(Vm/ e)l :
Thus charge to mass ratio=e/m=8 V x (n/B Dy

Consider condition (ii) - Force due to electric field acts upwards

In region A force due magnetic field acts upwards as well, electron hits upper
plate and does not reach the film.

In region B, force due magnetic field acts downwards, and if force is equal and
opposite to the electrostatic force, there will be no unbalanced force, and
electron will emerge from plates to expose film.

Picce was taken from region B.

We require forces to balance. Electric force given by e}/ 1, magnitude of
magnetic force given by e u B sin ¢, with u the speed of the electron.

For these to balance we require u = V'/ t B [sin ¢
Maximum  corresponds to minimum ¢ - at 23°
Therefore u = 2.687 x 10° m/s = 0.896 c.

Relativistic = (1 - vz/c:)m =2.255,
so kinetic energy of electron = (1) m¢” = 641 keV.



(d)

After emerging from region between plates, electrons experience force due to
magnetic field only. We approximate this by a vertical force, because angle of
electron to horizontal remains small.

Acceleration caused by this force a=Bewusin ¢/ ym

Initial horizontal speed is u, therefore time taken to reach the film after
emerging [rom the region between the plates 7 = 5 / u.

Change in vertical displacement during this time =y /2 =% a (s / u)2
y= Bes sin ¢/ ymu

From part (f), for electron to have emerged from plate,
we also know u=V/1B|sin g .

Therefore we eliminate u to obtain:
yZ = (e B s sin ¢/m)z {(Bs fsin ¢/ I’): - (s/c)2 }

and we plot  VERTICAL (y/Bssin ¢)z
HORIZONTAL (Bstsing/Vy
Therefore we have a gradient (¢/m)’
and a vertical-axis intercept -(es/m c)2
The intercept is read as -537.7 (Cs / kg)z, giving  e/m=1.70x 10" C/ kg

The gradient is read as 2.826x10” (C/kg)’, giving  e/m = 1.68 x 10" C / kg,



a)  Ax=ae* cos(wt+ ¢),08=e¢"" = u=45%x10"s"

b) v=(Elp)*=(7.1 x 10'°/2700)* = 5100 m.s".
At fundamental Ao = 4/ =4 m.
f=5100/4 =13 x 10" Hz.
@=2af=8.1x10"rad.s".

<) 0= fArods Vvod | Aroa = (=)F 1) = 11

: S = 1(5/).
[0.6]
8= 1x(5.0x1071.3%10)=3.8x 10" m.
d) Change in gravitational force on rod at a distance x from

the free end = mAg and m = pxA,

where A is the cross-sectional area of the rod.
Change in stress = mAg/A = pxAg.

Change in strain = 8(dx)/dx = pxAg/E;

that is, dx — (1+ mAg/E Ydx = Al = (pAgRE).

c) At fundamental A0 = 4l = Al = A4,
for Ades = 656 nm/10° = Al = 656 nm /(4 x 10%).
Al = 656 nm /(4 x 10*) = (pAgRE)P
[0.1]
Al =(2700x 107714 x 10" F = 1=92x 10" m.

a) met = hf = m=hf’
[03]
hf"=hf - GMm/R,
= h"=hf (1 = GMRS), = [ =f (1 ~ GM/RS).

by  nm=c/c(l - GMIY,
ne= 1+ 2GMrc’, for small GM/rc™; ie. a = 2.



N /
~ ] ) "

Diagram

By Snell’s law: n(r + 8r) sin 6 = n(r) sin (6 — &%),

(n(r) + (dn/dr) 8r) sin 8 = n(r) sin 6 — n(r) cos 6 &&.
(dn/dr) &r sin © = — n(r) cos 0 d&.

Now n(r) = 1 + 2GM/rc’, so (dnldr) = - 2GM/E*r,

and (2GM/c*r?) sin  8r = n(r) cos 0 8E.

Hence 8¢ = (RQGM/ ) tan © (dr/n) = (2GM tan 0 /7).
Now #* = x* + R, so rdr = xdx.

2GM ctan@dr 2GM ctanédr 2GMR 'S dx
J.df—‘- ) ,[ = J‘ e = 2 I(x2+R3)3/2

-~

2 2

r c
4AGA:
E= -I?A,{ radians = 8.4 x10°° radians.
e




IPhO2001- theoretica competition

Theoreticd Competition

Monday, July 2", 2001

Pleaseread thisfirst:

akrwnE

Thetime availableis 5 housfor the theoreticd competition.

Use only the pen provided.

Use only the front side of the paper.

Begin eadh part of the problem on a separate shed.

For each gquestion, in addition to the blank sheets where you may write, there is an answer form
where you must summarize the results you have obtained. Numerica results shoud be written
with as many digits as are gpropriate to the given data.

Write on the blank sheds of paper whatever you consider is required for the solution d the
question. Please use as little text as possible; expressyourself primarily in equations, numbers,
figures, and dots.

Fill i n the boxes at the top d ead sheet of paper used by writing your Country No and Country
Code, your student number (Student No), the number of the question (Question No), the
progressve number of each sheet (Page No), and the total number of blank sheets used for each
guestion (Total No of pages). Write the question nunber and the section letter of the part you
are answering at the top of each shed. If you use some blank sheds of paper for notes that you
do nd wish to be marked, pu a large X acrossthe entire sheet and do n¢ include it in your
numbering.

At the end d the exam, arrange dl shedsfor each problem in the following order;

o answer form

e used shedsin order

» theshedsyou do ndwish to be marked

» unused sheds and the printed question

Placethe papersinside the ewvelope and leave everything onyour desk. You are nat alowed to
take any sheets of paper out of the room.



IPhO2001- theoretica competition
Question 1

1a) KLYSTRON

Klystrons are devices used for amplifying very high-frequency signals. A klystron basicdly consists
of two identicd pairs of parallel plates (cavities) separated by a distanceb, as srown in the figure.

L, e d e b —e a

Vo >
" Lh
T~
phase
‘ shifter

An eledron bean with aninitial speed vy traverses the entire system, passng through small halesin
the plates. The high-frequency voltage to be anplified is applied to bah pairs of plates with a
ceatain phese difference (where period T corresponds to 2t phase) between them, producing
horizontal, alternating electric fieldsin the cavities. The dedrons entering the inpu cavity when the
eledric field isto the right are retarded and \vice versa, so that the amerging eledrons form bunches
a a certain dstance If the output cavity is placed at the bunching paint, the dedric field in this
cavity will absorb paver from the beam provided that its phase is appropriately chosen. Let the
voltage signal be asquare wave with period T=1.0x10° s, changing between V=+0.5 vdts. The
initial velocity of the dedrons is vo=2.0x10° m/s and the charge to massratio is e/m=1.76¢10"
C/kg. The distance a is 9 small that the transit time in the cavities can be negleded. Keeping 4
significant figures, calculate;

a) thedistanceb, where the eledrons bunch. Copy your result onto the answer form. [1.5 pts]

b) the necessary phase diff erence to be provided by the phase shifter. Copy your result onto the
answer form. [ 1.0 ptg]

1b) INTERMOLECULAR DISTANCE

Let d. and dy represent the average distances between moleaules of water in the liquid phase andin
the vapor phase, respedively. Assume that both phases are & 100 °C and atmospheric presaure, and
the vapor behaves like an ided gas. Using the following data, cdculate the ratio dy /d. and copy
your result onto the answer form. [2.5 ptg]

Density of water in liquid phese: p,=1.0x10° kg/m®,

Molar massof water: M=1.8«10? kg/mol
Atmospheric presaure: P,=1.0x10° N/m?
Gas constant: R=8.3Jmol" K
Avagadro’s number: Na=6.0x10% /mol



IPhO2001- theoretica competition

1c) SSIMPLE SAWTOOTH SIGNAL GENERATOR

A sawtooth vdtage waveform V, can be obtained across
the caacitor C in Fig. 1. Ris a variable resistor, V; is an

ided battery, and SG is a spark gap consisting of two E
+
'

| O

eledrodes with an adjustable distance between them. G
When the voltage acossthe dedrodes exceals the firing ]

voltage V;, the ar between the dectrodes bredks down, s ® -
hence the gap becomes a short circuit and remains  urtil Figure 1

the voltage acrossthe gap becomes very small.

a) Draw the voltage waveform Vy versus timet, after the switch is closed. [ 0.5 ptg]

b) What condtion must be satisfied in arder to have an amost linealy varying sawtocth vdtage
waveform Vy? Copy your result onto the answer form. [0.2 pts]

c) Provided that this condtion is stisfied, derive asimplified expresson for the period T of the
waveform. Copy your result onto the answer form. [0.4 ptg|

d) What shoud you vary( R andlor SG ) to change the period orly? Copy your result onto the
answer form. [0.2 pts]

€) What shoud youvary (Rand/or SG) to change the anplitude only? Copy your result onto the
answer form. [0.2 ptg]

AV,

f) You are given an additional, adjustable
DC voltage supdy. Design and daw a
new circuit indicaing the terminas
where you would oltain the voltage
waveform V, described in Fig. 2. [1.0 t

pts] Figure 2

Vi

1d) ATOMIC BEAM

An atomic bean is prepared by heding a
colledion d atoms to a temperature T and
allowing them to emerge horizontally through
a smal hde (of atomic dimensions) of o
diameter D in ore side of the oven. Estimate
the diameter of the beam after it hastraveled a
horizontal length L along its path. The massof
an atom is M. Copy your result onto the
answer form. [2.5 ptg]

}Diameter =D

<>
L

@@q

Oven at temperature T

s

| Atomsof massM |
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Question 2

a)

b)

BINARY STAR SYSTEM

It iswell known that most stars form binary systems. One type of binary system consists of an
ordinary star with massm, and radius R, and a more massve, compad neutron star with mass
M, rotating aroundeach aher. In all the following ignore the motion d the erth. Observations
of such abinary system reveal the foll owing information:

e The maximum angular displacement of the | 1
ordinary star is A8, whereas that of the neutron Il !
star isA@ (seeFig. 1). ‘"' ________ ."’
e The time it takes for these maximum AV

displacementsis. NN
* The radiation characteristics of the ordinary star SR R @ Ordinary star
indicate that its surface temperature is T and the / v X L/
radiated energy incident onaunit areaon earth’s N
surface per unit timeis P. o
« The cdcium linein thisradiation dffers from its i ¢ Neutronstar
norma wavelength Ao by an amourt AA, due wu
only to the gravitationa field of the ordinary
star. (For this cdculation the phaon can be T Telescope

considered to have an effective massof h/cA.) Fig. 1

Find an expresson for the distance ¢ from eath to this system, only in terms of the observed
guantities and unversal constants. Copy your result onto the answer form. [7 pts|

Asaime that M>>my, so that the ordinary star is Mo -7~

basicdly rotating around the neutron star in a = @@ A= A
circular orbit of radius ro. Assume that the ordinary (dm) \

star starts emitting gas toward the neutron star with / Vo i

a spedl vy, relative to the ordinary star (see Fig. 2). /
Asaiming that the neutron star is the dominant !
gravitational force in this problem and reglecting i /

the orbital changes of the ordinary star find the M /
distance of closest approach r; shown in Fig. 2. \ SN, A
Copy your result onto the answer form. [ 3pts| N\ f I
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Question 3
MAGNETOHYDRODYNAMIC (MHD) GENERATOR

A horizontal redangular plastic pipe of width w and height h, which closes uponitself, isfill ed with
mercury of resistivity p. An owverpresaure P is produced by a turbine which drives this fluid with a
constant spead vo. The two oppaite vertica walls of a section d the pipe with length L are made of
copper.
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The motion d areal fluid is very complex. To simplify the situation we asume the foll owing:
» Although thefluidisviscous, its geeal is uniform over the entire aoss gdion.

* Thespedl o thefluid is aways proportional to the net external force acting uponit.
e Thefluid isincompressble.

These walls are dedrically shorted externally and a uniform, magnetic field B is applied vertically
] ]
upward ony in this edion. The set upisill ustrated in the figure dowe, with the unit vedors x, vy,

O
Z to beused in the solution.

a) Find the force acting on the fluid due to the magnetic field (intermsof L, B, h, w, p and
the new velocity v) [2.0 ptg

b) Derive an expresgon for the new speeal v of the fluid (in terms of vo, P, L, B and p) after
the magnetic field is applied. [ 3.0 ptg]

c) Derive an expresson for the alditional power that must be supgied by the turbine to
increase the speed to its original value vo. Copy your result onto the answer form. [2.0 pts)|

d) Now the magnetic field is turned off and mercury is replaced by water flowing with speed
Vo. An eledromagnetic wave with a single frequency is nt along the section with length L
in the diredion d the flow. The refractive index of water is n, and vp <<c. Derive an
expresson for the contribution d the fluid’'s motion to the phase difference between the
waves entering and leaving sedion L. Copy your result onto the answer form. [ 3.0 pts]
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New diameter of the bean =
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3a)

ANSWER FORM

3b)

3¢)

Power =

3d)

Phase diff erence =
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Experimental Competition

Saturday, June 30", 2001

Please read thisfirst:

Thetime availableis5 housfor the experimental competition.

Use only the pen provided.

Use only the front side of the paper.

Begin each part of the problem on a separate shed.

For each question, in addition to the blank sheets where you may write, there is an answer form

where you must summarize the results you have obtained. Numerical results shoud be written

with as many digits as are gpropriate to the given data.

6. Write on the blank sheds of paper the results of all your measurements and whatever else you
consider is required for the solution d the question. Please use as little text as possible; express
yoursdlf primarily in equations, numbers, figures and dots.

7. Fillinthe boxes at the top d ead sheet of paper used by writing your Country no and Country
code, your student number (Student No.), the number of the question (Question No.), the
progressve number of each sheet (Page No.) and the total number of blank sheés used for each
guestion (Total No. of pages). Write the question number and the section label of the part you
are answering at the beginning of each sheet of writing paper. If you use some blank sheets of
paper for notes that you do nd wish to be marked, pu alarge X acrossthe entire shed and do
not include it in your numbering.

8. Atthe end d the exam, arrange dl shedsin the following order;

» answer form

* used shedsin order

» theshedsyou do ndwish to be marked

» unused sheds and the printed question

aorwbE

Placethe papers inside the ewvelope and leave everything on your desk. You are not allowed
to take any sheets of paper and any material used in the experiment out of the
room.
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ROTATING LIQUID

This experiment consists of threebasic parts:
1. investigation d the profile of the rotating liquid’'s surface and the determination d the
acceleration die to gravity,
2. investigation d the rotating liquid as an optical system,
3. determination d the refractive index of the liquid.

When a cylindricd container fill ed with a liquid rotates abou the verticd axis passng through its
center with a uniform anguar velocity w, the liquid's surface becomes parabadlic (see Figure 1). At
equili brium, the tangent to the surface & the point P(x, y) makes an angle 6 with the horizontal such
that

2
W X
tan@ =

for [x| <R (1)
where Risthe radius of the container and g isthe acderation die to gravity.

It can further be shown that for w<wmax (Where wmax 1S the angular speed at which the center of the
rotating liquid touches the bottom of the @ntainer)

ot x=%0= -, y(%0)=ho @

J2

that is; the height of the rotating liquid is the same asif it were not rotating.

The profile of therotating liquid’'s surfaceis a parabola defined by the egquation

2

X
y:yo+z (3)

where the vertex is at V (0, yo) and the focus is at F(0, yo+C). When opticd rays paralel to the ais
of symmetry (opticd axis) reflect at the parabalic surface, they all focus at the point F (seeFig.1).
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%Apparatus

A cylindricd rigid pastic cup containing liquid glycerin. Millim etric scades are atached to
the bottom and the sidewall of this cup.

A turntable driven by a small dc dectric motor powered by a variable voltage supdy, which
controls the angular velocity.

A transparent horizontal screen on which you can pu transparent or semi-transparent
millimetric scdes. The locaion d the screen can be adjusted aong the vertica and
horizontal diredions.

A laser pointer mounted onastand. The position d the pointer can be aljusted. The head of
the painter can be changed.

Additional head for the laser painter.

A ruler.

A highlighter pen.

A stopwatch. Push the left button to reset, the midde button to seled the mode, and the right
button to start and stop the timing.

Transmisgon gratings with 500 @ 1000li nes/mm.

Bubbelevel.

Glasss.

IMPORTANT NOTES

DO NOT LOOK DIRECTLY INTO THE LASER BEAM. BE AWARE THAT LASER
LIGHT CAN ALSO BE DANGEROUS WHEN REFLECTED OFF A MIRROR-LIKE
SURFACE. FOR YOUR OWN SAFETY USE THE GIVEN GLASSES.

Throughout the whole experiment carefully handle the cup containing glycerin.

The turntable has already been previously adjusted to be horizontal. Use bubble level only
for horizontal alignment of the screen.

Throughout the entire experiment you will observe several spots on the screen produced by
the reflected and/or refracted beams at the various interfaces between the air, the liquid, the
screen, and the cup. Be sure to make your measurements on the correct beam.

In rotating the liquid change the speed of rotation gradually and wait for long enough times
for the liquid to come into equilibrium before making any measurements.
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EXPERIMENT

PART 1: DETERMINATION of g USING aROTATING LIQUID [7.5 ptg]

* Derive Equation 1.

* Measure the height hy of the liquid in the mntainer and the inner diameter 2R of the
container.

* Insert the screen between the light source and the cntainer. Measure the distance H
between the screen and the turntable (see Figure 2).

» Alignthelaser pointer such that the beam points vertically downward and hts the surface of

. : R .
theliquid at adistancexo=—— from the center of the mntainer.

J2
* Rotate the turntable slowly. Be sure that the center of the rotating liquid is nat touching the
bottom of the mntainer.

e Itisknown that at xo= R the height of the liquid remains the same & the original height

J2

ho, regardlessof the angular speed w. Using this fad and measurements of the angle 6 of the
surface a Xxo for various values of w, perform an experiment to determine the gravitational
accelerationg.

e Prepare tables of measured and cdculated quantities for each w.

¢ Produwcethe necessary graphto calculate g.

e Calculate the value of g andthe experimental error in it

* Copy thevalues 2R, Xo, ho, H andthe experimental value of g and its error onto the answer
form.
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PART 2: OPTICAL SYSTEM

In this part of the experiment the rotating liquid will be treaed as an image forming opticd system.
Sincethe arvature of the surface varies with the angular speed of rotation, the focd distance of this
opticd system depends on w.

2a) Investigation of thefocal distance[5.5 pts|

Align the laser pointer such that the laser beam is direded verticaly downward at the center
of the mntainer. Mark the paint P where the beam strikes the screen. Thus the line joining
this point to the center of the aupisthe opticd axis of this system (seeFigure 2).

Sincethe surface of the liquid behaves like aparabadlic mirror, any incident beam paral el to
the opticd axiswill passthrough the focal point F onthe opticd axis after reflection.

Adjust the speed o rotation to locae the focal point on the screen. Measure the agular
spedl o rotation w and the distance H between the screen and the turntable.

Reped the a@ove stepsfor different H values.

Copy the measured values of 2R and ho and the value of w at each H onto the answer form.
With the help of an appropriate graph d your data, find the relationship between the focd
length and the angular speed. Copy your result onto the answer form.

2b) Analysis of the“image’ (what you seeon the screen) [3.5 pts)

In this part of the experiment the properties of the “image” produced by this opticd system will be
analyzed. To doso, follow the steps given below.

Remove the head of the laser pointer by turning it courterclockwise.

Mourt the new heal (provided in an envelope) by turning it clockwise. Now your laser
produces awell defined shape rather than a narrow bean.

Adjust the position d the laser pointer so that the beam strikes at abou the enter of the ap
amost normally.

Put a semitransparent shed of paper on the horizontal screen, which is placed close to the
cup, such that the laser beam does not passthrough the paper, but the refleded bean does.
Observe the size and the orientation d the “image” produced by the source beam and the
beam refleded from the liquid when it is not rotating.

Start the liquid rotating, and increase the speeal of rotation gradually up to the maximum
attainable spead while watching the screen. As w increases you might observe different
frequency ranges over which the properties of the “‘image’ are drasticaly different. To
describe these observations complete the table onthe answer form by adding arow to this
table for each such frequency range and fill it in by using the gpropriate notations
explained onthat page.
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PART 3: REFRACTIVE INDEX [3.5 ptg]

In this part of the experiment the refractive index of the given liquid will be determined using a
grating. When monochromatic light of wavelength A is incident normally on a diffradion grating,
the maxima of the diffradion pettern are observed at angles o, given by the equation

mA =dsina,, 4)
where, m is the order of diffradion and d is the distance between the rulings of the grating. In this
part of the experiment a diffraction gating will be used to determine the wavelength o the laser
light and the refradive index of the liquid (seeFigure 3).

e Usethe grating to determine the wavelength o the laser pointer. Copy your result onto the
answer form.

e Immerse the grating perpendicularly into the liquid at the center of the ap.

« Alignthelaser beam such that it enters the liquid from the sidewall of the aup and strikes the
grating normally.

¢ Observe the diffraction pettern produced onthe millimetric scde dtached to the aup onthe
oppasite side. Make ay necessary distance measurements.

e Cadculate therefractive index n of the liquid by using your measurements. (Ignare the eff ect
of the plastic cup onthe path of the light.)

e Copy theresult of your experiment onto the answer form.
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Figure 1. Definitions of the bank angle 6 at paint P(x,y), the vertex V and the focus F for the
parabalic surface produced by rotating the liquid, o initial height hy and radius R, at a nstant
angular speed w aroundthe y-axis.
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[

ST e e

Figure 2 Experimental setup for parts 1 and 2.

1. Laser pointer on a stand, 2. Transparent screen, 3. Motor, 4. Motor controller, 5. Turntable, 6.
Axisof rotation, 7. Cylindricd container.
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Figure 3 Top view of the grating in aliquid experiment.

1. Scded sidewall, 2. Grating onahadlder, 3. Laser painter, 4. Cylindrical container.
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Country no | Courtry code | Student No. | Question No. | Page No. Total
No. d pages

ANSWER FORM

1) Deter mination of g using arotating liquid

2R Xo ho H

Experimental value of g:

2a) Investigation of the focal distance

2R ho

Relation ketween focd length and o
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Country no | Country code | Student No. | Question No. | Page No. Total
No. d pages

2b) Analysis of the“image”

Use the appropriate notations explained below to describe what you see on
the screen due to reflected beam

wrange: For the frequency ranges only approximate values are required.

Orientation (in comparison with the objed beam as sen onthe transparent screen):
Inverted S INV
Ered 'ER

Variation of the sizewith increasing w:
Increases o

Deaesses :D

Nochange :NC

For the frequency ranges you have found above:

Write “R” if the screen is above the focd paint.
Write “V” if the screen is below the focal paint.

w Range Orientation | Variation | “image’
of thesize

w=0
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3) Refractive index

Wavelength =

Experimental valuefor n =




Solution

Part 1a
V., =+V2 —2(e/mV =1.956x10%m/s
a ret 0 )
_ 2 _ 6
Vace =yVG +2e/mV =2044x10°m/s
Xret = Vreth Xace Vacet-T/2)
v, . T
X . =X ot = &€  _—1161T
ret acc bunch _
20Va¢c ~Vret)
b=v =2272x102m

rettbunch

b. The phase difference:
t
Ap =+ (@ —N)27T=+0.61 X271 =+220°.
OR
Ad = £140°

Part 1b

:n PR
PL L N A

where n, is the number of molecules per cubic meter in the liquid phase

Average distance between the molecules of water in the liquid phase:
1
- M =
d =(n) 7% = ()
PN,
P,V=nRT,
where n is the number of moles

ATV M M~ Ny M

1
- RT .3
v =) (PaNA)
1
dy :(RT,O,_)3 —12

(0.5 pts)

(0.5 pts)

(0.3 pts)

(0.2 pts)

(1.0 pts)

(0.3 pts)

(0.2 pts)

(0.6 pts)

(0.9 pts)

(0.2 pts)

(0.3 pts)



Part 1c

a. (0.5 pts.)
Av,
Vi e e e e e e e e e = -
Vf - — ’i“‘_ ’:‘_ ": _____
t |-
T >
b. V;>>V; (0.2 pts)
c Vi=V, (1_ e_T/RC) (0.2 pts)

If
V,>>V;, T/RC<<1, e'/R =1-(T/RC)
then
T=(V¢/ V;) RC (0.2 pts)
d. R (0.2 pts)
e. SGandR (0.2 pts)
f. Correct circuit (0.4 pts)
Vo
(Vl'Vf)
+
R
\ C
SG —
+ —
Vi
Vo (0.3 pts)
V' =V with the correct polarity (0.3 pts)
Total (1.0 pts)



Part 1d

As the beam passes through a hole of diameter D the resulting uncertainty in the y-
component of the momentum;

h
Ap, =— 0.6 pts
Py=5 (0.6 pts)
and the corresponding velocity component;
Av  =—— 0.4 pts
Yy =MD (0.4 pts)
Diameter of the beam grows larger than the diameter of the hole by an amount
AD= Avy.t ,
where t is the time of travel. (0.2 pts)

If the oven temperature is T, a typical atom leaves the hole with kinetic energy

KE = SMv2 = ST (0.4 pts)
2 2

3KT
=.— 0.2 pt
v ,/ M (0.2 pts)

Beam travels the horizontal distance L at speed v in time
L

t=—,so (0.2 pts)
Y

L n _ LA LA

AD =tAv, = = = =
v MD MD\/?,kT D+/3MKT

(0.4 pts)

Hence the new diameter after a distance L will be;
La

D~/3MKT

Dpew=D + (0.1 pts)



Part 2a

The total energy radiated per second = 41R%cT*, where o is the Stephan-Boltzmann
constant. The energy incident on a unit area on earth per second is;
2 4 1/2
P :% yielding, R:(P/JT4J
by 4

The energy of a photon is hf=hc/A. The equivalent mass of a photon is h/cA. Conservation
of photon energy:

hc G h _hc

X ZMepgh _Ne (0.8 pts)

Ao R ciy 4

2 (1) (0.8 pts)

yielding
R= Gmo(/;o +0) @)
c°AA
and (2) yields,

2 ( 4?’2
c°AAP/aT
= /(3 0.2 pt
Mo G(A +24 3) (0.2 pts)

The stars are rotating around the center of mass with equal angular speeds:

w= (21/21) = TUT (4) (0.2 pts)

The equilibrium conditions for the stars are;
GM

—m% = morw? = Mra? (5) (0.8 pts)

(r+1,)
with

NG Ag¢

n=0—, 1,=0— (6 0.4 pts

1 5 2 > (6) (0.4 pts)
Substituting (3), (4) and (6) into (5) yields

) a2 2
8c A/](P/O’T )
{= (0.8 pts)
Adr r)z()lo + 0|06 +0g)2

Part 2b
Conservation of angular momentum for the ordinary star;

mr 2w = myréay, (7) (0.6 pts.)
Conservation of angular momentum for dm:

rlwdm=rfw; dm (8) (0.6 pts)
where oy is the angular velocity of the ring. Equilibrium in the original state yields,

1/2
“’0 = % 9) (0.8 pts)
3
o

and (7), (8) and (9) give,



mere (o 12 o 1/2
w= 00{—“"} L wy = OO[%J (10) (0.4 pts)

m2 (o mrf2 o
Conservation of energy for dm;
ldm(vg+r2w2j—%dm:1dmrfza)fz—GM am 11 (1.2 pts)
2 r 2 It

Substituting (10);

2
Ve +MGM[£—LJ—ZGM [i_i] =0 (12)

m? r2 r? ror

Since rg>> r¢ , if r> o, ' and r’? terms can be neglected. Hence,

1/2
_GM (hmgrovgJ _

i
ve GMm?

(0.8 pts)

To show that r>rg change in the linear momentum of the ordinary star in its reference
frame:

dv dm
- +mre? -m—-=-v,—= (13) (0.8 pts)

2
r dt dt
and (13) implies the existence of an outward force initially and hence r starts growing.
Using (7) one can write
mpro'ch
mre? =222
mr
Gravitational force 2
- amTr.
Centrifugal force

where m is definitely decreasing. If r starts decreasing at some time also, this ratio starts
decreasing, which is a contradiction.

Hence,

(0.4 pts)

So r>ro. (0.4 pts)



Part 3a

L

A 4
ol

The net force on a charged particle must be zero in the steady state

EZO:qE+q§x§

- 4 C
E=-wB=vBYy
VH =vBw
\% Vv 0
-_H_"H_ vBwLh :VBLh , direction: - Y
R pv pw p
Lh

C C C
, direction: (-yXz=-X)
yo)
Force is in the -x direction

This creates a back pressure P,

_ VB2Lhw _ vB?%L
R = =
ohw
Fnetz(P'Pb)hW;
v=0F.et (0.4 pts)

0

2
v=a(P-Pp)hw= o (P - VBTL, M

yYo _, _w,B’L
paP °  Pp
2
v(1+VOB I')—vo
Po
-1
voB2L
v:vo 1+
Po
V=V, P,O 5
Pp +V,BL

VY

_>X

(0.4 pts)

(0.6 pts)

(0.8 pts)

(0.6 pts)

(0.6 pts)

(0.6 pts)



Part 3b

From conservation of energy:

2n2
APower :VH | = M
Yo
or
’ 1.
to recover vo the pump must supply an additional pressure AP=P, (1.0pts)
2n2
APower = APhwv = P hwv, = VoBwhi
Part 3c
c C
c n Y _a
1. uU=— u'= = (0.5 pts)
n 1+EL 1+l
n.2 cn
For small v (v<<c);
v2 V.,-1
neglect the terms containing — in the expansion of (1+—)
cn
o
w=Cry—to=Cra-=Sava-3)
1+ N cn” n n
cn
. 1
Au=u-u=v(l-—) (0.5 pts)
n2
Ag=27nT, T=L, aT=2Y =Y (n2_y (0.5 pts)
u u2 C2
L .2
V=V so that, Ap=27f —2(n —1)v0 (0.5 pts)
c
_ L, 2
2. Ap=25f —2(n -Dv,
o
a phase of m/36 results in (0.4 pts)
c2
Vg=————— (0.2 pts)
O ZoL(n?-f
16
Vo 940 =3.2x10%m/ s which is not physical. (0.4 pts)

© 72x10 7 x(2.56-1)x25



For v=20 m/s, f=4x10'* Hz. But for this value of f, skin depth is about 25
nm. This means that amplitude of the signal reaching the end of the
tube is practically zero. Therefore mercury should be replaced with
water. (0.6 pts)

On the other hand if water is used instead of mercury, at 25 Hz 8=3x10°
m. Signal reaches to the end but v=6x10" m/s, is still nonphysical.
Therefore frequency should be readjusted. (0.6 pts)

For v=20 m/s electromagnetic wave of f=8x10' Hz has a skin depth of
about 3=5.6 cm in water and the emerging wave is out of phase by m/36
with respect to the incident wave. (The amplitude of the wave reaching
to the end of the section is about 17% of the incident amplitude). (0.6 pts)

Therefore mercury should be replaced with water and frequency should
be adjusted to f=8x10"* Hz. The correct choice is (iii) (0.2 pts)



Solution

Part 1
Theory:
Consider a small mass m of the

liquid at the surface (Figure 4).
At dynamic equilibrium

N cos8 = mg
and
Nsinf=mw’
Therefore:
o 2 Figure 1.
tanf= —.
g mg
The profile of the liquid surface can be found as follows:
2
tané = ﬂ , ﬂ = M
dx dx g
so that
2,2
= +
y 29 Yo

where yj is the height at x = 0.

At a certain point X = X, height of the liquid ho would be the same as if it not rotating.
In this case,

2.2
WX
hy = Yo + —2 1
b = Yo 29 (1)
and,
2 _ 29(hg = Yo)
XO_—Z.
w

Since the volume of the liquid is constant,

2,2
o _ _ WX
R hO—Jy(Zmdx)—Zﬂj(yo+ 29 )xdx ,
W’ R?
=h, - 2
Yo =No ag (2)

From Eq.1 and EqQ.2 one obtains

X0:

sl



Experiment:

2R(mm) | Xo(mm) | ho(mm) | H(mm)
145 | 51 | 30 | 160
H-ho=130 mm
Measure 10T at small speeds and measure 15T-20T at high speeds.
Use tan(26) = X and = 2—”
H-hy T
2R(mm) | xo(mm) ho(mm) |  Hmm) | H-hy(mm)
145 | 51 30 [ 160 | 130
x(mm) | 10T(s) | w(rad/s) | tan(28) | 6(rad) | B(deg) | tan(8) | w?(rad/s)?
11| 21.34 2.94 0.08 0.04 2.4 0.04 8.67
20 | 15.80 3.98 0.15 0.08 4.4 0.08 15.81
26 | 14.22 4.42 0.20 0.10 5.7 0.10 19.52
30 | 12.99 4.84 0.23 0.11 6.5 0.11 23.40
40 | 11.74 5.35 0.31 0.15 8.6 0.15 28.64
51 | 10.45 6.01 0.39 0.19 10.7 0.19 36.15
56 9.90 6.35 0.43 0.20 11.7 0.21 40.28
65 9.40 6.68 0.50 0.23 13.3 0.24 44.68
70 9.08 6.92 0.54 0.25 14.2 0.25 47.88
85 8.39 7.49 0.65 0.29 16.6 0.30 56.08
100 7.71 8.15 0.77 0.33 18.8 0.34 66.41
112 7.43 8.46 0.86 0.36 20.4 0.37 71.51
132 7.00 8.98 1.02 0.40 22.7 0.42 80.57
61.4 | 11.19 6.20 0.47 0.21 | 11.98 0.21 41.51 Ave.

The last line is for error calculation only.

The slope of the Figure 5 is 0.0052 (s/rad)? which gives

sope 0.0052



X y = 0,0052x
tan® vs w” at Xg R? = 0,9987

0,45

0,40 - /
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tan€

0,20 S

0,15 1 pd
/

0,10 | Pad

1
0,05 - //

0,00 ‘ ‘
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(w(rad/s))?

Figure 2.

Error Calculation (possible methods):
W2XO

tan @

2
a9 4[sz+ & |, (atn6)) aw_ AT
g w X tan @ w T
A(tan8) _ A8

tan @ o
(since from the table tanf [B)

2
2 (AH +Ah
g B0 () [ 0
H—ho e X H—hO

2 2
2 (nx 2 (AH +Ah
Ag _ {AT] .| 2o +(Ax] N 0
g T X0 X H —h0

g:




Using the values H=160 mm, AH=1mm, hy=30 mm, Ahy=1mm,X,=61.4 mm, Ax,=1mm,
Ta=1.1s, AT=0.01 s, xo=51 mm, Axo=1mm one obtains

g = 980+34 cm/s?
* Note that from the method of least squares one obtains the following results:
g = 982 cm/s? with a standard deviation of 6= 33 cm/s?

«  From the linear regression of the data slope tan6 vs w?is found to be 0.052 with a
standard error of 5.14x10°, therefore:

2
Ag _ (A(slope)Jz{Aon - 002

g dope X

g = 980+20 cm/s?

Part 2a
H(mm) | 10T(s) | w(rad/s) lnw H-ho(mm) | In(H-hg)
158 | 10.31 6.09 | 0.784921 128 2.107
209 | 13.19 4.76 | 0.677935 179 2.253
190 | 11.70 5.37 | 0.729994 160 2.204
150 9.80 6.41 | 0.806954 120 2.079
129 9.21 6.82 | 0.83392 99 1.996
119 8.75 7.18 | 0.856172 89 1.949
110 8.10 7.76 | 0.889695 80 1.903
In(H-hg) vs Inw Y =-1,7446x + 2,4608
R?=0,9771
1,4
1,3
1,2 \
- N
<
11 3
£
Ny
1
0,9
0,8 ‘
0,6 0,7 0,8 0,9 1
Inw
Figure 3




Thus the focal length depends on w as
f=Aw" ,

and
n~-1.7.

The plot of H-hgy vs. 1/w? is also acceptable as a correct plot.

Part 2b

w Range(rad/s) | Orientation | Variation of the size
w=0 ER
vamere | 0 v
e . R
112'5;‘*)’:0‘*:;{* ER NC v

* for H=110 mm
** for H=240 mm

w values depend on the initial values of H, hy, etc.

Note that measurements only at one H value are required from the students.




Part 3
Measurement of wavelength

Both the grating and the screen are in air. Normal incidence.

Screen to grating distance :L
Distance between the diffraction spots seen on the screen T X
Order of diffraction :m
e L=225mm, Xav=77 mm for m=+1 d=1/500 mm
X 77
tang =2 = —_
L 225

A :isjna =647nm
500

. L=128 mm, Xav=44 mm for m=+1, d=1/500 mm
44
tang =—
128

A :isjna =650nNm
500

. L=128 mm, Xav=111 mm for m=+2, d=1/500 mm
111
tanag =—
128

The average value of A is A,,=651 nm.
Measurement of refractive index
2R=145 mm
Distance between the spots measured on the curved screen = Ra

Raay =17 mm  for m=x1 O 4 =0.234 rad

using n , one obtains n=1.40

" dsin(a)

If the curvature of the screen is neglected:

17
tana = —
725

a =13.20°

. 1 _ 651(nm)
dsin(@) 1 ()08 sina)

500

=143




Grading Scheme for Experimental Competition

Part 1 7.5 pts
e Derivation of Equation 1 1.0 pts
e Calculation of w using period measurements 1.0 pts

At low speeds 10T is OK

At high speeds 20T is expected -0.2 pts
Missing units -0.2 pts
¢ Calculation of tan20, tan6 at each w 1.0 pts
Calculation of tan20 0.5 pts
Calculation of tanf 0.5 pts
«  Plot of tanf vs «’ 1.5 pts
Axes with labels and units 0.4 pts
Drawing best fit line 0.5 pts
At least 6 different data in a wide range of w 0.6 pts
No. of measurements 5: -0.2 pts
No of measurements 4: -0.4 pts
No of measurements 3 or less: -0.6 pts
e Calculations 2.0 pts
calculation of slope with unit 1.0 pts
calculation of g 1.0 pts

FULL credit for
9.3<g<10.3 m/s? (#5% error)
For g values credits to be subtracted from the total credit of 7.5:

10.3<g<10.5m/s?, 9.1<g<9.3m/s? -0.5 pts
8.8<9<9.1 m/s?, 10.3<g<10.8 m/s? -1.0 pts
outside the above ranges -1.5 pts

e Error Calculation 1.0 pts



Part 2a

Measurements of H vs w
Calculation of w using period measurements

At low speeds 10T is OK
At high speeds 20T is expected
H-w table

Plot of Fvs w

Calculation of F=H-hq

Plot with axis labels

Drawing best fit line

At least 6 different data in a wide range of w

No. of measurements 5:
No of measurements 4:
No of measurements 3 or less:

Calculations
Calculation of slope with unit
Dependence Fa 1/’

Part 2b

Part 3

Every correct item in the table

(At least 3 measurements at different orders are required)

Wavelength measurement
Distance measurements and calculation of angle
Calculation of A

Credits to be subtracted from the total credit of 1.2:

If A is outside the range 600-700 nm
If less then 3 measurements

Measurement of n

Distance measurements and calculation of angle
Realizing A/n

Calculation of n

credits to be subtracted from the total credit of 2.3:

If n is outside range 1.3-1.6
If less then 3 measurements
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|. Ground-Penetrating Radar

Ground-penetrating radar (GPR) is used to detect and locate underground objects near the
surface by means of tranamitting eectromagnetic waves into the ground and receiving the
waves reflected from those objects. The antenna and the detector are directly on the
ground and they are located & the same point.

A linearly polarized eectromagnetic plane wave of angular  frequency ® propagding in
the z direction is represented by the following expression for itsfidd:

E=E e*’coqwt-bz), )

where B iscongtant, a is the attenuation coefficient and b is the wave number expressed
respectively asfollows

ne SZ 1/2 Lz 2 1/2 12
a=w 7[(“ ezwzj - } , b_w{%l(ue‘fwzj +1} @)

with Mg and S denating the magnetic permeability, the dectricd permittivity, and the
electricd conductivity respectively.

The sgnd becomes undetected when the amplitude of the radar sgnd ariving & the
object drops bdow 1/e (= 37%) of its initid vaue. An dectromagnetic wave of vaiable
frequency (10 MHz — 1000 MHz) is usudly used to dlow adjusgment of range and
resolution of detection.

The peformance of GPR depends on its rexolution. The resolution is given by the
minimum separdtion between the two adjacent reflectors to be detected. The minimum
sparation should give rise to a minimum phase difference of 180° between the two
reflected waves at the detector.

Questions:
(Given : 3= 4p x10 " H/m and @ = 8.85x10™** F/m)

1 Assume that the ground is non-magnetic (n=ng) satisfying the condition

2
(%j ({1. Derive the expresson of propagetion speed v in terms of mend €

using equaions (1) and (2) [1.0 pts].
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2

4.

Determine the maximum depth of detection of an object in the ground with
conductivity of 10 mSm and pemittivity of 9o, saidfying the condition

(ij (@, (S=ohm'* ; use p=po). [2.0 pts]
we

Condder two padld conducting rods buried horizontaly in the ground. The rods
ae 4 mee deep. The ground is known to have conductivity of 1.0 mSm and
pemitivity of  9eo. Suppose the GPR measurement is caried out & a postion
goroximately above one of the rod. Assume point detector is used. Determine the
minimum frequency required to get alaterd resolution of 50 cm [3.5 pts].

To deemine the depth of a buried rod d in the same ground, congder the
measurements carried out dong a line pependicular to the rod. The reault is
described by the following figure:

detector pogtion X

Gregph of travdtimet vs detector pogtion X, tmin =100 ns.

Derivet asafunction of x and determine d [3.5 pts).
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Il. Sensing Electrical Signals

Some seawater animds have the ability to detect other creatures a some distance
away due to dectric currents produced by the creatures during the bregthing processes
or other processes involving muscular contraction. Some predators use this dectricd
sgnd to locate their preys, even when buried under the sands.

The phydcd mechanism underlying the current generation a the prey and its
detection by the predator can be modded as described by Figure 11-1. The current
generaed by the prey flows between two spheres with postive and negative potentid
in the prey’s body. The distance between the centers of the two spheres is |, each
having a radius of rs, which is much smdler then ls. The seawater resdtivity is r.
Assume that the resdtivity of the prey’s body is the same as tha of the surrounding
seawater, implying that the boundary surrounding the prey in the figure can be
ignored.

Figurell-1. A modd describing the detection of dectric power coming
fromaprey by its predetor.
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In order to describe the detection of dectric power by the predator coming from the
prey, the detector is modded smilally by two spheres on the predetor's body and in
contact with the surrounding seawater, lying padld to the par in the prey’s body.
They ae separated by a digance of g4, each having a radius of ryq which is much
gndler then lg. In this case, the center of the detector is located at a distance vy right
above the source and the line connecting the two spheres is pardld to the eectric
fidd as shown in Figure 1I-1. Both Is and |4 are dso much smdler than y. The dectric
fidd drength dong the line connecting the two spheres is assumed to be condant.
Therefore the detector forms a closed circuit sysem connecting the prey, the
surrounding seawater and the predator as described in Fgure 11-2.

R,
AW\

I+
Y

Rdé v,

Figure 1I-2. The equivdent cdosed circuit sysem involving the sensing
predator, the prey and the surrounding seaweter.

In the figure, V is the voltage difference between the detector's spheres due to the
dectric fidd induced by the prey, Ry is the inner resstance due to the surrounding sea
water. Further, Vu and Ry are respectively the voltage difference between the detecting
spheres and the resistance of the detecting eement within the predator .

Questions:
1. Determine the current density vector j (current per unit area) caused by a
point current source Is a adistance r inaninfinite medium [1.5 ptg
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2. Basedonthelaw E =rJ , determine thedectricfidd strength E | a the

middle of the detecting spheres (a point P) for a given current | thet flows
between two spheresin the prey’s body [2.0 pt.

3. Deemine for the same current |, the voltage difference between the source
spheres (Vy) intheprey [1.5 pts]. Determine the resistance between the two
source spheres (R) [0.5 ptg and the power produced by the source (Py) [0.5
pts].

4. Determine Rn [0.5 ptd, V4 [1.0 ptg in Hgurell-2 and calculate aso the
power transferred from the source to the detector (Py) [0.5 ptg.

5. Determine the optimum vaue of Ry leading to maximum detected power [1.5
pts] and determine aso the maximum power [0.5 ptg.
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1. A Heavy VehicleMoving on An Inclined Road

rear cylinde

1§}
front cylinder

Fgure IlI-1: A smplified modd of a heavy vehide moving on an indined
roed.

The above figure is a amplified modd of a heavy vehicle (road roller) with
one rear and one front cylinder as its whedls on an inclined road with indinatiion angle
of € as shown in HFgure IlI-1. Each of the two cylindes has a totd mass
M(m=me=M) and consgs of a cylindricad shdl of outer radius R, , inner radius R =
08 Ro and eight number of spokes with totd mass 02 M. The mass of the
undercarriage  supporting the vehidés body is negligble The cylinder can be
modded as shown in Fgure 11l1-2. The vehide is moving down the road under the
influence of gravitationd and frictiond forces. The front and rear cylinder are
positioned symmetrically with repect to the vehide.
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Ro

Figurelll-2. A amplified modd of the cylinders.

The gatic and kinetic friction coefficients between the cylinder and the road are m
and ny respectively. The body of the vehicle hasamassof 5M |, length of L and
thicknessof t . The distance between the front and the rear cylinder is 2| whilethe
distance from the center of cylinder to the base of the vehicle sbody ish. Assume that
the rolling friction between the cylinder and its axis is negligible.

Questions:
1. Cdculate the moment of inertia of either cylinder [1.5 ptg.

2. Draw dl forces that act on the body, the front cylinder, and the rear one. Write
down equations of motion for each part of them [2.5 pty.

3. The vehide is assummed to move from rest, then fredy move under
gravitationd influence. State dl the possble types of motion of the sysem and
derive their accderations in terms of the given physica quantities [4.0 ptg.

4. Assume tha after the vehicle travels a distance d by pure ralling from rest the
vehide enters a section of the road with dl the friction coefficients drop to
gndler congant vdues my and m’ such tha the two cylinders gart to dide.
Cdculae the lineer and angular velocities of esch cylinder after the vehide
has travdled a total distance of s meters. Here we assume that d and s is much
larger then the dimension of vehidle[2.0 ptg
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|. Determination of e/ks Through Electrolyss Process

Background Theory

The dectrolyss of water is described by the reaction :

H,0 —» H" + 07
H'+26 5 H,, O°> %oz+2e'

The reaction tekes place when an dectric current is supplied through a par of
dectrodes immersed in the water. Assume that both gases produced in the reection are
idedl.

One of the gases produced by the reaction is kept in a test tube marked by abitrary
scade. By knowing the totd charge transferred and the volume of the gas in the test
tube the quantity ekg can be determined, where e is the charge of dectron and kg is
the Boltzmann condant.

For the purpose mentioned above, this experiment is divided into two parts.

Part A: Cdibration of the arbitrary scde on the test tube by using a dynamic method.
Thisresult will be used for part B

Part B: Determination of the physicd quantity ek g by means of water dectrolyss

Y ou are not obligedto carry out the two experiments (part A and part B ) in
aphabetical order

The following physical quantities are assumed:
e Acceleration of gravity, g = (9.78 + 001) ms?

e Ratio of internd vs externd diameters of the test tube, o = 0.82+0.01
Thelocd vaues of temperature T and pressure P will be provided by the organizer.

Lig of tools and apparatus given for experiment (part A & B):
o Inaulated copper wires of three different diameters.
1. Brown of larger diameter
2. Brownof amdler diameter
3. Blue
e A regulated voltage source (0-60V, max.1A)
A plastic container and a bottle of water.
A block of brasswith plagtic damp to keep the eectrode in place without
damaging theinsulation of thewire.
A digitd sopwatch.
A multimeter (beware of its proper procedure).
A wooden tegt tube holder designed to hold the tube verticaly.

A multipurpose pipette
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A veticd sand.

A battle of white correction fluid for marking.

A cutter

A pair of scissors

A rall of cdlotgpe

A ged bl

A piece of dainless sted plate to be used as eectrode.
A test tube with scales.

Graph papers.

Note that al scales marked on the graph papers and the apparatus for the experiments
(e.g. the test tube) are of the same scale unit, but not calibrated in millimeter.

EXPERIMENT

Part A: Calibration of the arbitrary scale on the test tube

Determine a dynamic method capable of trandating the arbitrary length scdeto a
known scde avalable.

Write down an expression that relates the measurable quantities from your
experiment in terms of the scale printed on the test tube, and sketch the
experiment set up.

Collect and andyze the data from your experiment for the determination and
cdibration of the unknown length scae.

Part B: Determination of physical quantity eks

St up the eectrolysis experiment with a proper arrangement of the test tube in
order to trap one of the gases produced during the reaction.

Derive an equation rdating the quantities: timet, current 1, and weter leve
difference Dh, messured in the experiment.

Coallect and andyze the data from your experiment. For smplicity, you may
assume that the gas pressure ingde the tube remains congtant throughout the
experiment.

Determine the vaue of ekg.



IPhO2002

Country Student No. | Experiment No. | Page No.

Total Pages

ANSWER FORM

PART A

1.

State the method of your choice and sketch the experimental set up of
the method: [0.5 pts]

Write down the expression relating the measurable quantities in your
chosen method: [0.5 pts]. State all the approximations used in
obtaining this expression [1.0 pts].

Collect and organize the data in the following orders : physical
quantities, values, units [1.0 pts]

Indicate the quality of the calibration by showing the plot relating two
independently meas ured quantities and mark the range of validity. [0.5

pts]

Determine the smallest unit of the arbitrary scale in term of mm and its
estimated error induced in the measurements. [1.5 pts]
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Country

Student No.

Experiment No.

Page No.

Total Pages

PART B

1. Sketch of the experimental set up. [1.0 pts]

2. Derive the following expression:

I At =

2
e 2P(pr )Ah

B

[1.5 pts]

3. Collect and organize the data in the following format : physical

guantities (value, units) [1.0 pts]

4. Determine the value of e/kg and its estimated error [1.5 pts]
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II.OPTICAL BLACK BOX

Description

In this problem, the dudents have to identify the unknown opticd components indde the
cubic box. The box is seded and has only two narrow openings protected by red platic
covering. The components should be identified by means of opticd phenomena obsarved in
the experiment. Ignore the smdl thickness effect of the plagtic covering layer.

A line going through the centers of the dits is defined as the axis of the box. Apart from the
red plagic coverings, there are three (might be identicd or different) dements from the
following list:

«  Mirror, either plane or spherica

. Lens dther pogtive or negative

. Trangparent plate having pardld flat surfaces (so cdled plane-pardld plate)

+ Prism

. Diffraction grating.

The trangparent components are made of maerid with a refractive index of 147 a the
waveength used.

Appar atus available:

« A lesr pointer with a wavdength of 670 nm. CAUTION: DO NOT LOOK
DIRECTLY INTO THE LASER BEAM.

. Anopticd ral

. A plaform for the cube, movable dong the opticd rall

« A streen which can be dtached to the end of the ral, and detached from it for other
measurements.

« A shet of graph paper which can be pasted on the screen by cellotape.

« A veticd gand eguipped with a universd damp and a test tube with arbitrary scaes,
which areaso used inthe Problem I.

Note that al scales marked on the graph papersand the apparatus for the experiments are
of the same scde unit, but not calibrated in millimeter.
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The Problem
Identify each of the

three components and give its regpective Specification:

Possibletype of component

Specification required

mirror radius of curvature, angle between the mirror axis and
the axis of the box
lens* postive or negative, its focd length, and its pogtion indde the
box
plane-pardld plate thickness, the angle between the plate and the axis of the box
prism goex angle, the angle between one of its deflecting sdes and
the axis of the box
diffraction grating* line spacing, direction of the lines, and its pogtion indde the

box

. impliesthat itsplaneis @ right angle to the axis of the box

Express your find answers for the specification parameters of each component (eg. foca
length, radius of curveture) in terms o millimeter, micrometer or the scale of graph paper.

Y ou don't have to determine the accuracy of the results.
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Country |Student No. | Experiment No.

Page No.

Total Pages

1.
nnl ...
NO.2..  toivininnnn.
N03. i,
2.

ANSWER FORM

Write down the types of the optical components inside the box :

denote each component with its code number in answver 1.
[0.5 pts for each correct position]

direction of the dit

[0.5 ptg

The cross section of the box is given in the figure below. Add a sketch in thefigure
to show how the three components are positioned inside the box. In your sketch,

axis of the box

direction of the dit
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Country

Student No.

Experiment No.

Page No.

Total Pages

3. Add dedled information with additiond sketches regarding arangement of the opticd
components in answer 2, such as the angle, the distance of the component from the dit, and
the orientation or direction of the components. [1.0 ptg
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Country

Student No.

Experiment No.

Page No.

Total Pages

4. Summarize the cbserved data[0.5 ptg, determine the specification of the optica

component no.1 by deriving the gpropriate formulawith the help of drawing [1.0 ptd,

cdculate the spedificationsin question and enter your answer in the box below [0.5 pts).

Name of component no.1

Specification
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Country

Student No.

Experiment No.

Page No.

Total Pages

5. Summarize the obsarved data[0.5 ptg, determine the specification of the optica

component no.2 by deriving the gppropriate formula with the help of drawing [1.0 ptd,

caculae the specifications in question and enter your answer in the box below [0.5 pts).

Name of component no.2

Specification

10
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Country

Student No.

Experiment No.

Page No.

Total Pages

6. Summarize the obsarved data0.5 ptg, determine the specification of the optica

component no.3 by deriving the gppropriate formula with the help of drawing [1.0 ptd,

cdculate the spedificationsin question and enter your answer in the box below [0.5 pts).

Name of component no.3

Specification

1




|PhO2002

33rd
INTERNATIONAL
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BALI IHDOH ESIA

THEORETICAL COMPETITION
Tuesday, July 23, 2002

Solution |: Ground-Penetrating Radar

1. Speed of radar sgnd in the materid vp:
Wt —bz= constant — bz=-congtant + wt (0.2 pts)

wW
vV, o=—
b
v, = 1 (0.4 pts)
m ne SZ 1/2 b
i 12
\N{ > {(1+ezwz) +1}

(0.4 pts)
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2. The maximum depth of detection (skin depth, d) of an object in the ground is
inversaly proportiona to the attenuation congtant:
(0.5 pts) (0.3 pts) (0.2 pts)

1 1 1 1

12

f2lese ) el EiE

m, where s isinmSm. (0.5 pts)

Numericdly d = @

For amedium with conductivity of 1.0 mS/m and relaive permittivity of 9, the skin depth

o (5.319)

= 1593 m (0.3 pts) + (0.2 pts)
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3. Laterd resolution:

Antenna
r’+d?=(d+-)
d
d+|—
4 ld 1? %
r= —+-—
[2 16]
;
rod rod
(1.0 pts)
_ 1 (a0 % )
r=05md=4m: ==| —+—1| , 1 “+321 -4=0 (0.5 pts)
2 2 16
The wavdength isA=0.125 m. (0.3 pts) + (0.2 pts)

The propagation speed of the sgnd in mediumis

111

— 1 —
Vm_J__Jnameoe ~Jme, /me

¢ m/ns where ¢ = ! ——andm=1
~Jme. J— me,
v, =0.1mns =10° m/s (0.5 pts)

The minimum frequency need to distinguish the two rods as two separate objectsis

frin :I— (0.5 pts)
0.3
J9 e
. x10° Hz =800 MHz 0.3 pts) + (0.20 pts
mn = 0105 (0.3 pts) + (0.20 pts)
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4. Path of EM waves for some positions on the ground surface

_ Antenna Pogtions
4 ........... N > &:a’]mng d| ra:u on
TIR TR TR | >
A
; €1, 01
: 2
; 1 3
v Il <—— Buried rod(e,, 6»)
Thetravdtime as function of x is
t vy o,
7 =d +x , (10 ptS)
2 2
¢(x) = 4d+4x (1.0 pts)
t(x) = %\/dz + X
Graph of traveltime, t(x)
Antenna Pogitions X
-
t
For x =0 (1.0 pts)
100 =2x%(3/0.3) d
d=5m (0.5 pts)
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Solution |1: Sensing Electrical Signals

1 When a point current source | isin infinite isotropic medium, the current
dengity vector at a distance r from the point is

J - 4pr3
[+1.5 pts] (without vector notetion, -0.5 pts)

2. Assuming thet the resdtivities of the
prey body and that of the surrounding
seawater are the same, implying the

- P elimination of the boundary surrounding

the prey, the two spheres seemto bein

infiniteisotrgpic medium with the
resstivity of r . When asmal sphere

Yy produces current at arate |, the current

flux dengty at adigtance r from the

spher€'s center isaso

The seawater resdtivity isr , therefore the field Strength at r is

= - rl
Er)=rj = = +0.2 pts|
(F)=rj s [+0.2 pts]

In the moddl, we have two small spheres. Oneis at postive voltage rdlative to the
other therefore current |5 flows from the positively charged sphere to the negatively
charged sphere. They are separated by |s. The field strength a P(O)y) is



E,~sCi) for Is<cy [+10ptg

3. The fidd strength dong the axis between the two source spheresis:

E)- I;‘lli)s ( 1|SJ2+( 1|sz (~1) [+0.5 pts]
X——= X+ =
2 2

The voltage difference to produce the given current I is

7+ rl 1 1
V,=AV =V, -V = [E(x)dx=-—=] ~+ (=i )idx) [+0.5pts]
S Y
2 2
gl 1 1 1 1 1 1

_rl(2 2 j_ZrIS[IS—rS—rSJ_rIS(IS—ZrSJ
4p I's Is_rs 4p (Is_rs)rs 2prs Is_rs
V,=AV = erls for I;>>r,.  [+0.5ptg

r‘S

— + —
-2+l I—S—rs—l—S —I—S+rs—|—S -2+l I—S—r5+|—S —l—s+rs+—
| 2 2 2 2 2 2 2 2



The resistance between the two source spheresis:

V, r
R5 = —
I 2pr

[+0.5 pts|

The power produced by the sourceis:

2
Py, =1l

S°S

2or

[+0.5 pts|

4. V isthe voltage difference between the
detector’s spheres due to the eectric

WA fied induced bythe prey, Ry, istheinner
—_— resistance due to the surrounding sea
L water. Vy and R, are respectively the
V= R, § V, voltage difference between the detecting
o spheres and the resistance of the
detecting e ement within the predator
and iy isthe current flowing in the dosed
circuit.

Analog to the resi stance between the two
source spheres, the resstance of the
medium with residtivity r between the
detector spheres, each having aradius of
Iq1S

r
an =
y 2pr,
prey [+0.5 pts]
— +
@i @ Since Iy ismuch smdler thany, the
«— ) dectric fild strength between the
ls detector spheres can be assumed to be
congtant, thet is.
E-= les [+0.2 ptg]
4py* '
Therefore, the voltage difference present in the medium between the detector spheres
is
riJld,
V=E,=—"5% [+0.3 pt]



The voltage difference across the detector spheresis:
Vd _ Rd _ rl slsld Rd

B Rd+Rm_ py* R, + r
2pr,

[+0.5 pts|

The power transferred from the source to the detector is:

.,V (g, Y R,
Pd_IdVd_Rd‘FRde _( 4py3 ) (Rd-i— r jZ

2pr,
[+0.5 pts]
5. P4 is maximum when
R = Ry ~= Ry ~  is maximum
R, + r (Rs +Ry)
2pr,
Therefore,

R IR, +R.) -R2R R _( r,05pg

dR, (Ry +Ry)’
(Rd + Rm)_ZRd =0
optimum __ _ r
R =R, = oy [+0.5 ptg]

The maximum power is

{r Islsld ]2&_ r (Islsld)zrd

max imum
Pd =

4py*

2r 32py°

[+0.5 pts]

[+0.5 pts|



SOLUTIONT3:. A Heavy Vehicle Moving on An Inclined Road

To smplify the modd we use the above figure with hy = h+0.5 t
Ro=R

1. Calculation of the moment inertia of the cylinder
R=0.8 R,

Mass of cylinder part : Myiinder =0.8 M
Mass of each rod " Mog=0.025 M

" -1



| = §r2dm: frzdm+ §r2dm+...+ <.fr2dm 0.4pts

wholepart cyl .shell rodl rodn

fr 2dm= 2ps R.|9r3dr =0.5ps(R’ —R") = 0.5m,,, . (RS +R?)

cyl .shell

= 0.5(0.8M)R *(1+ 0.64) = 0.656MR * 0.5pts
Rin

ridm=1 [r*dr :%I R’ :%mmd R? = %0.0ZSM (0.64R?) = 0.00533MR? 0.5pts
rod 0

The moment inetia of each whed becomes
| = 0.656MR? +8x0.00533MR? = 0.7MR? 0.1pts

2. Forcediagram and balance equations:

To amplify the andyss we devide the system into three parts. frame (partl) which
mainly can be treated as flat homogeneous plate, rear cylinders (two cylinders are treated
collectively as part 2 of the system), and front cylinders (two front cylinders are treated
collectively as part 3 of the system).

Pat 1: Frame

N12

fion

N13

f13n /

h

Mg

0.4 pts
The baance equation related to the forces work to this parts are:

" -2



Required conditions:

Bdance of forceinthe horizontd axis
mgsng - f,, —f=ma

Bdance of forceinthe vertica axis
mgcosq =Ny, + N,

Thentors onagang Ois zero, so that
lel - N13| + flzhhl + f13hh1 =0

Part two : Rear cylinder

N2
fo

f21n

N21
Mg

From balance condition in rear whed :
f,.,— f, +Mgsng=Ma
N, -N,, —Mgcosq=0

For purerolling:
f,R=la,=1-2
or f,= Iza
For ralling with diding:
Fo= w N2

Part Three: Front Cylinder:

" -3

(1) 0.2pts

(2) 0.2pts

(3) 0.2pts

0.25 pts

(4 0.15pts
(5) 0.15pts

(6)

@)

0.2 pts



N3
f3

f31n

N3z

M
J 0.25 pts

From balance condition inthe front wheel :
f.,,— f; +Mgsnqg = Ma
N, - N,, —Mgcosgq =0

For purerolling:

For ralling with diding:

Fz= Wu N3

3. From equation (2), (5) and (9) we get

My gcos = N2 — mpg coH+N3-nmsg cosH
N2 + N3 = (my+mp+mg)gecosb=7MgcosH

And from equation (3), (5) and (8) we get
(N3-Mg cos0) | — (N2-Mg cos 0) I=hy (f, +Ma-Mg Snf+z+Ma-Mg Sn)
(N3 = N2)=hy (f2 +2Ma-2Mg sind+f3)/l
Equations 12 and 13 are given 0.25 pts
CASE ALL CYLINDER IN PURE ROLLING

From equation (4) and (6) we get

" -4

(8)
)

0.15pts
0.15pts

(10)

(11)

0.2 pts

(12)



fo1n = (I/R%)a+Ma-Mg sind (14) 0.2pts
From equation (8) and (10) we get

fain = (I/R?)a+Ma-Mg snd (15) 0.2pts
Thenfrom eg. (1) , (14) and (15) we get
5Mg snd - {(I/R?)a+Ma-Mg snb} -{ (I/R?)a+Ma-Mg snf} = ma

7Mgsnd = (21/R? +7M)a
4 7/Mgsng  7Mgsnq
0.7MR?

RZ

=0.833g3nq (16) 0.35pts

|
™ +2? ™ +2

h

N, =¥gcosq+l—[(M +%)x0.83395'nq—Mgs'nq]

= 3.5Mgcosq +ﬁ[(M +0.7M) x0.833ganq—Mgsnq]

I
=3.5Mgcosqg + 0.41% Mgsnq

N, :%gcosq—li[(%+M)x0.83393'nq— Mgsnq]
h, 7Mgsng :
=35 -—[(0.7TM + M) —————-2M
90054, | i )o.7|v| +7M gsnd]

=3.5g cosq — O.41|ﬁ Mgsnq

0.2 pts
The Conditions for pure ralling:
f, <mN, and f, <mN,
0.2 pt
%as mN, and %as mN, PS

2 3
Theleft equation becomes

0.7M x0.833g snq < m,(3.5Mgcosqg —0.41:1—1 Mgsinq)

3.5m,
0.5831+0.41m, Ii

tanq <

[l -5



While theright equation becomes

0.7mx0.833gsng < m(3.5mgcosq +O.41|ﬁ mgsing)
tang < 3.5m
0.5831- 0.41m, rl'l_
a7 0.1 pts
CASE ALL CYLINDER SLIDING
Fromeq. (4) fin = Ma+wN2 — Mgano (18) 0.15 pts
Fromeq. (8) fsin = Ma+wN3z— Mgsno (29 0.15 pts

From eg. (18) and 19:
5Mgsno - (Ma+ N2 — Mgsng)- (Ma+ N3 — Mg snb)=ma

a—Masna-mN, —mN, _ oo MmN N o0 oo e
7M ™M

N, + N, = 7Mgcosq

From the above two equations we get :
a=gsnqgq-mgcosq 0.25 pts

The Conditions for complete diding: are the opposite of that of pure rolling

f,)mN’, and f,)mN’,

I , | , 21 0.2 pts
—22a>rr51N2 and _Bza>nQN3 @) P
R; R3

Where N2’ and N3’ iscdculated in case dl cylinder in purerolling. 0.1 pts

Finally weget
tang) 35m and tang) 3.5m 0.2 pts
0.5831+0.41m, Iﬁ 0.5831-0.41m, Iﬁ

The left inequdity findly become decisve.

CASE ONE CYLINDER IN PURE ROLLING AND ANOTHER IN SLIDING
CONDITION

{ For example Rs (front cylinders) pure rolling while R, (Rear cylinders) diding}

[ -6



From equation (4) we get
F21n = Mpat wN2-mpg Sno (22 0.15 pts
From equation (5) we get
fa1p = meat(I/R%)a -msg Snd (23) 0.15 pts
Thenfromeg. (1) , (22) and (23) we get
myg S - { MparUN2-eg SN} -{ mear+(1/R)a-msg Sinb} = mya
My g SN + mpg SN + mg SNB- U2 = (I/R? +mg)a+ My a+ my a

5Mgsnd + Mgsnd + Mg sno- N> = (0.7M +M)a+ Ma+ 5Ma

7Mgsng- mN . N
a— 299N~ MW _ §o091gsnq— 22 24  02pts
77 77M

N, — N, :Iﬁ(rrlgN2 +#a+ 2Ma-2Mgsdnq)

N, - N, :Ii(rm N, +2.7M x0.9091gsnqgq-2.7mN, / 7.7-2Mgsdnq)
N, - N,(1+0.65m Iﬁ) = 0.4546Mgsnq

N, + N, = 7Mgcos6

Therefore we get

_ 7Mgcosq — 0.4546Mgsn g

N2

2+ 0.65m h
| | 25  03pts

7Mgcosq — 0.4546Mgsnq

2+ o.asrmlﬂ

N, = 7Mg cosq -

Then we can subgtitute the results above into equation (16) to get the following result

‘M 7gcosq—0.4546gsng

. N .
a=0.9091gsngq —% — 0.9091gsn g —

£ 7 24065m Iﬂ

(26)

0.2 pts

" -7



The Conditions for this partid diding is
f, <mN; and f;)mN;

, I , 2 0.25 pts
?as MmN, and Eaﬂ@Ns @0 P

where N, and N, are norma forces for purerolling condition

4. Assumed that after rolling d meter dl cylinder sart to diding until reaching the end of
inclineroad (total digtant is s meter). Assummed that nmeter isreached in t; second.
Vg =V, +at, = 0+a1tl =at

1 1
d=vt, +§a1t12 = Ealtlz
[

Q

V, =2, i—d =./2da, =./2d0.833gsnq = 41.666dgsnq (28)

0.5 pts

The angular velocity after rolling d metersis same for front and rear cylinders:

J/1.666dgsnq (29)

0.5 pts

V,
\Ntl:;lz
R

1
R

Then the vehicle diding untill the end of declining road. Assumed thet the time needed
by vehicle to move from d position to the end of the declining road ist, second.

Vv, =V, +ayt, =./1.666dgsnq + a,t,

1
s—d=v,t, + Ea2t22

Va4V +23,(s—d) (30)  O4pts

&

V,, = +/1.666dgsnq —v,, + \/vj +2a,(s—d)

Inserting w1 and & from the previous results we get the find results.

t

For the angular velocity, while diding they receive torson:

[ -8



t =mNR
t _mNR (31)

. NR =V, +4/V2
W, =W, +at, =%1/1.666dgan + m‘l at Ve

+2a,(s—d)
aZ

0.6 pts

" -9



SOLUTION EXPERIMENT |

PART A

1. [Total 0.5 ptg]
The experimental method chosen for the cdibration of the arbitrary sceisasmple

pendulum method [0.3 pts]

Arbitrary scde —»
mark -~ Verticd gand
Wire\
Sted bdl
Mo :
I S

Figure 1. Sketch of the experimenta set up [0.2 pts|

2. [Total 1.5pts]
The expression rdating the measurable quantities: [0.5 pts]

| 2
Tosc = 2 p\/: ; Tosc
g9

Approximations:
snq~qg [0.5 pts]
mathematical pendulum (mass of the wire << mass of the stedl ball,
the radius of the sted bl << length of the wire [0.5 pts]
flexibility of thewire, ar friction, etc [0.1 pts, only when one of the two

maor points above is not given]

4p2|—
g



3. [Total 1.0 pts] Data sample from smple pendulum experiment
#of cyde> 20[0.2 pts] , differencein T > 0.01 s [0.4 pts], # of data> 4 [0.4 pts]

No. | t(s) for 50 cycles Period, T (s) Scale marked on the
wire (arbitrary scale)
1 91.47 1.83 200
2 89.09 1.78 150
3 86.45 1.73 100
4 83.8 1.68 50
4. [Total 0.5 pts
No. | Period, T (s) Scale marked on the wire T(s9)
(arbitrary scale)
1 1.83 200 3.35
2 1.78 150 3.17
3 1.73 100 2.99
4 1.68 50 2.81

The plot of T? vs scale marked on the wire:
T (s9)

Scale marked on the wire (arbitrary scale)

5. Deerminaion of the amdlest unit of the arbitrary scaein term of mm [Total 1.5
pts]

2 2
oicl = 4p Ll ! Toicz = 4p I‘2
g g
2 2
(2 -7z )= | ,= AL



AL = 432 (TjSCL —TOZSCZ) or other equivaent expression [0.5 pts]
No. AL in arbitrary | Values of smallest
Calculated AL (m) scale unit of arbitrary
scale (mm)
1. T,°-T,* =0.171893 s° 0.042626 50 0.85
2. T,"-Ts" =0.357263 s° 0.088595 100 0.89
3. T,"-T,” =0.537728 s° 0.133347 150 0.89
4. T,"-Ts~ =0.18537 s° 0.045968 50 0.92
5. T,°-T,” =0.365835 s° 0.09072 100 0.91
6. T5°-T,~ =0.180465 s° 0.044752 50 0.90
The average value of smallest unit of arbitrary scale, | = 0.89 mm [0.5 pts]

The estimated error induced by the measurement: [0.5 ptg|

No. Valu_es of smallest (| _|‘) (| _|‘)2
unit of arbitrary
scale (mm)
1 0.85 -0.04 0.0016
2. 0.89 0 0
3. 0.89 0 0
4, 0.92 0.03 0.0009
5. 0.91 0.02 0.0004
6. 0.90 0.01 0.0001

And the standard deviation is

other legitimate methods may be used




PART B

1. Theexpeimenta set up[Total 1.0 ptg|

[0.2 pts] [0.2 pts]
V oltage source Power
Ampere meter
supply -‘4|+ P
Test tube
~
Arbitrary scales [ |
&f
Water and Electrodes [0.2 pts]
electrode <4+
insde the Watey
lass tube
?0.2 pts] »  Container filled with
water [0.2 pts]
VY
Weight

2. Derivationof equetion reating the quantitiestimet, current |, and water level
difference Oh: [Total 1.5 ptg)

| _AQ
At
From thereaction: 2H" +2e ——pHy, the number of molecules produced in the
process (AN) requires the transfer of eectric changeisAQ=2e AN : [0.2 ptg|
AN 2e
| = :
AL [0.5 pts]
PAV=ANKk, T [0.5 pts]
LA T
2e
PAR(pr?) = AtKe ¢ [0.2 ptg]
2 e
2 0.1 ptg|
At =-22P00) 4, 104 prs

kB



3. Theexperimentd data: [ Total 1.0 pts]

No. | Ah (arbitrary I (mA) At (s)
scale)
1 12 4.00 1560.41
2 16 4.00 2280.61
3 20 4.00 2940.00
4 24 4.00 3600.13

The circumference ¢, of the test tube = 46 arbitrary scale
The chosen vaues for Ah (> 4 scae unit) for acceptable error due to uncertainty
of the water level reading and for | (< 4 mA) for acceptable disturbance [0.3 pts]

# of data> 4

[0.3 pt]

[0.4 ptg]

The surrounding condition (T,P) in which the experimenta data given above taken:
T=300K
P =1.0010° Pa

4. Determination the vaue of kg [Total 1.5 ptg|

No. Ah (arbitrary Ah (mm) I (mA) At (s) IAt (C)
scale)

1 12 10.68 4.00 1560.41 6241.64

2 16 14.24 4.00 2280.61 9120.48

3 20 17.80 4.00 2940.00 11760.00

4 24 21.36 4.00 3600.13 14400.52




Plot of 1At vs Ah from the data listed above

| At

L e}

ARBITRARY SCALE

2588
The dlope obtained from the plot is 763.94;
e 70394x30xp ~ =1.28x10* Coulomb K/J
k, 2x10°x(23x 0.89x10° x 0.82)
[1.0 pts]
Alternatively [the same credit points]
No. Ah (mm) IAt(C) Slope elky
1 10.68 6241.64 584.4232 9774.74
2 14.24 9120.48 640.4831 10712.37
3 17.80 11760.00 660.6742 11050.07
4 21.36 1440052 674.1816 11275.99




Average of elkp = 1.07 x 10* Coulomb K/J

[1.0 pts]
No. e/kp difference Square

difference

1 9774.74 -928.55 862205.5

2 10712.37 9.077117 82.39405

3 11050.07 346.7808 120256.9

4 11275.99 572.6996 327984.9
Esimated error

The standard deviation obtained is 0.66 x 10° Coulomb K/J,

Other legitimate measures of estimated error may be aso used

[0.5 ptg]



SOLUTION OF EXPERIMENT PROBLEM 2

1. Theoptica components are [total 1.5 ptsg):

no.1l Diffraction grating [0.5 pts]
no.2 Diffraction grating [0.5 pts]
no.3 Plan-padld plate [0.5 pts]

2. Cross section of the box [total 1.5 pts]:

|

no.1l Nno.3 no.2

[0.5 pts] [0.5 pts] [0.5 pts]



3. Additional information [total 1.0 ptg]:

W

| ____________ _

no.1
Digtance of the grating (no.1)
to the left wall is practicaly zero
[0.2 pts]

Lines of grating no.1is at
right angle to the dit
[0.3 pts]

|

no.2
Distance of the grating (no.2)
to theright wal is practically zero
[0.2 pts]

Lines of grating no. 2
is parale to the dit
[0.3 pts]



4. Diffraction grating [total 2.0 pts):

drawing and labels should be complete

d [0.6 pts]
Path length difference:
A=ddno , d = spacing of the grating
Diffraction order:
A= mh, m = order number
Hence, for the first order (m = 1):
sne=A/d [0.4 pts]
Observation data:
tan 6 0 sno
0.34 18.78° 0.3219
0.32 17.74° 0.3048 number of data3 3
0.32 17.74° 0.3048 [0.5 pts]
Name of component no.1 Specification
Diffraction grating Spacing = 2.16 pm [0.4 pt]
Lines at right angle to the dlit [0.1 pts]

Note: true value of grating spacing is 2.0 um, deviation of the result < 10%



5. Diffraction grating [total 2.0 ptg]:

For the derivation of the formula, see nr.4 above.

Observation data:
tand 0 sno
1.04 46.12° 0.7208
0.96 43.83° 0.6925
1.08 47.20° 0.7330
Name of component no.2 Specification

Diffraction grating

Spacing = 0.936 um
Lines paralld to the dit

Note: true value of grating spacing is 1.0 um, deviation of the result < 10%

[1.0 pts]

number of data3 3

[0.5 pts]

[0.4 pts]
[0.1 pts]



6. Plan-pardld plate [total 2.0 pts):

[0.4 pts]|
------------------- OO
Sndl’s law:
sne = nsng’ o' = £ZBAC
Path length insde the plate:
AC = AB/coso’ , AB = h = plate thickness
Beam displacement:
CD =t = ACsn«ZCAD , ZCAD = ¢—-¢'
Hence:
t = hsne [1-cose/ (N —dn®¢)"?] [0.6 pts]
Observation data:
[0} t
0 0 (angle between beam and axis 49°)
49° 7.3 arbitrary scale [0.5 pts]
Name of component no.3 Specification
Plane-pardld plate Thickness=17.9 mm [0.2 pts]

Angle to the axis of the box 49° | [0.3 pts]

Note: - truevaue of plate thicknessis 20 mm
- true value of angle to the axis of the box is 52°
- deviation of the results < 20%.

drawing and labels should be complete



Theoretical Question 1

A Swing with a Falling Weight

A rigid cylindrical rod of radius R is held horizontal above the ground. With a string of
negligible mass and length L (L > 22R), a pendulum bob of mass m is suspended from point
A at the top of the rod as shown in Figure 1a. The bob is raised until it is level with A and then
released from rest when the string is taut. Neglect any stretching of the string. Assume the
pendulum bob may be treated as a mass point and swings only in a plane perpendicular to the
axis of the rod. Accordingly, the pendulum bob is also referred to as the particle. The
acceleration of gravity is g .

o
m

’ Figure la

Let O be the origin of the coordinate system. When the particle is at point P, the string
is tangential to the cylindrical surface at Q. The length of the line segment QP is called s.
The unit tangent vector and the unit radial vector at Q are given by t and f, respectively.
The angular displacement & of the radius OQ, as measured counterclockwise from the
vertical x-axis along OA, is taken to be positive.

When 6 =0, the length sis equal to L and the gravitational potential energy U of the
particle is zero. As the particle moves, the instantaneous time rates of change of ¢ and sare
givenby @ and $, respectively.

Unless otherwise stated, all the speeds and velocities are relative to the fixed point O.

Part A
In Part A, the string is taut as the particle moves. In terms of the quantities introduced

above (ie.,s 6,5,0,R L, g, fand f), find:

(a) The relation between 0 and s. (0.5 point)
(b)The velocity v, of the moving point Q relativeto O. (0.5 point)
(c) The particle’s velocity v’ relative to the moving point Q when it is at P (0.7 point)
(d)The particle’s velocity v relative to O when it is at P. (0.7 point)

2



(e) The  -component of the particle’s acceleration relative to O when itisat P. (0.7 point)

(f) The particle’s gravitational potential energy U when it is at P. (0.5 point)
(9)The speed v, of the particle at the lowest point of its trajectory. (0.7 point)
Part B
In Part B, the ratio L to R has the following value:
L_9z 2 7 _ _
R- 8 + 3 cot16 =3.534 +3.352 = 6.886
(h)What is the speed vg of the particle when the string segment from Q to P is both straight
and shortest in length? (in terms of g and R) (2.4 points)
(i) What is the speed vy of the particle at its highest point H when it has swung to the other
side of the rod? (in terms of g and R) (1.9 points)
Part C

In Part C, instead of being suspended from A, the pendulum bob of mass m is
connected by a string over the top of the rod to a heavier weight of mass M, as shown in
Figure 1b. The weight can also be treated as a particle.

M Figure 1b

Initially, the bob is held stationary at the same level as A so that, with the weight
hanging below O, the string is taut with a horizontal section of length L. The bob is then
released from rest and the weight starts falling. Assume that the bob remains in a vertical
plane and can swing past the falling weight without any interruption.

The kinetic friction between the string and the rod surface is negligible. But the static
friction is assumed to be large enough so that the weight will remain stationary once it has
come to a stop (i.e. zero velocity).

() Assume that the weight indeed comes to a stop after falling a distance D and
that(L — D)>> R. If the particle can then swing around the rod to @ = 2z while both
segments of the string free from the rod remain straight, the ratio « = D/L must not be
smaller than a critical value «.. Neglecting terms of the order R/L or higher, obtain an
estimate on «. in terms of M/m. (3.4 points)



Answer Sheet Theoretical Question 1
A Swing with a Falling Weight

(a) The relation between @ and ¢ is

(b) The velocity of the moving point Q relative to O is

Vo ~

(c) When at P, the particle’s velocity relative to the moving point Q is

v =

(d) When at P, the particle’s velocity relative to O is

\7_

(e) When at P, the {-component of the particle’s acceleration relative to O is

(f) When at P, the particle’s gravitational potential energy is

U=

(9) The particle’s speed when at the lowest point of its trajectory is

Vin ~

(h) When line segment QP is straight with the shortest length, the particle‘s speed is
(Give expression and value in terms of g and R)

Vg —

(i) At the highest point, the particle’s speed is (Give expression and value in terms of g and R)

VH_

() In terms of the mass ratio M/m, the critical value «. of the ratio D/L is

Qe —




Theoretical Question 2
A Piezoelectric Crystal Resonator under an Alternating Voltage

Consider a uniform rod of unstressed length ¢ and cross-sectional area A (Figure 2a).
Its length changes by A¢ when equal and opposite forces of magnitude F are applied to its
ends faces normally. The stress T on the end faces is defined to be F/A. The fractional
change in its length, i.e., A¢/, is called the strain Sof the rod. In terms of stress and strain,
Hooke’s law may be expressed as

F_, A
T=YS o —=Y= 1
A=Y (1)

where Y is called the Young's modulus of the rod material. Note that a compressive stress T
corresponds to F < 0 and a decrease in length (i.e., A¢ < Q). Such a stress is thus negative in
value and is related to the pressure p by T =—p.

For a uniform rod of density p, the speed of propagation of longitudinal waves (i.e.,
sound speed) along the rod is given by

u=\1p @)

Lo / _/ X Figure 2a
4 AC

The effect of damping and dissipation can be ignored in answering the following
questions.

Part A: mechanical properties

A uniform rod of semi-infinite length, extending from x = 0 to « (see Figure 2b), has a
density p. It is initially stationary and unstressed. A piston then steadily exerts a small
pressure p on its left face at x = 0 for a very short time At, causing a pressure wave to
propagate with speed u to the right.

l—a>V

X
p -] e unstressed
compressed unstressed | ‘i’ v
I . P -— " wave motion
x=0 ) ©
Figure 2b Figure 2c

(a) If the piston causes the rod’s left face to move at a constant velocity v (Figure 2b), what are



the strain Sand pressure p at the left face during the time At? Answers must be given in
terms of p, u, and v only. (1.6 points)

(b)Consider a longitudinal wave traveling along the x direction in the rod. For a cross section
at x when the rod is unstressed (Figure 2c), let &(x, t) be its displacement at time t and
assume

E(x, t) =& sink(x—ut) (3)
where &, and k are constants. Determine the corresponding velocity v(x, t), strain §x, t),
and pressure p(x, t) as a function of x and t. (2.4 points)

Part B: electromechanical properties (including piezoelectric effect)

Consider a quartz crystal slab of length b, thickness h, and width w (Figure 2d). Its
length and thickness are along the x-axis and z-axis. Electrodes are formed by thin metallic
coatings at its top and bottom surfaces. Electrical leads that also serve as mounting support
(Figure 2e) are soldered to the electrode’s centers, which may be assumed to be stationary for
longitudinal oscillations along the x direction.

y Z y K |<__b_/2——>|4--b/_2-->|
* T quartz
. V(t) |- ‘
L s - ® hE N N
’ bh 7y T ol z | electrodes
______ b__ T | &
Figure 2d Figure 2e

The quartz crystal under consideration has a density p of 2.65x10° kg/m® and Young’s
modulus Y of 7.87x10" N/m? The length b of the slab is 1.00 cm and the width w and height
h of the slab are such that h << w and w << b. With switch K left open, we assume only
longitudinal modes of standing wave oscillation in the x direction are excited in the quartz
slab.

For a standing wave of frequency f =@/ 2 7, the displacement &(x, t) at time t of a cross
section of the slab with equilibrium position x may be written as

E(x, 1) =25, 9(x)cosmt, (0<x<h) (4a)
where & is a positive constant and the spatial function g(x) isof the form
g(x) = B;sin k(x—gj+ B, cosk(x—gj (4b)

g(x) has the maximum value of one and k= @/u. Keep in mind that the centers of the electrodes
are stationary and the left and right faces of the slab are free and must have zero stress (or
pressure).



(c) Determine the values of B; and B, in Eq. (4b) for a longitudinal standing wave in the

quartz slab. (1.2 point)
(d)What are the two lowest frequencies at which longitudinal standing waves may be excited
in the quartz slab? (1.2 point)

The piezoelectric effect is a special property of a quartz crystal. Compression or
dilatation of the crystal generates an electric voltage across the crystal, and conversely, an
external voltage applied across the crystal causes the crystal to expand or contract depending
on the polarity of the voltage. Therefore, mechanical and electrical oscillations can be coupled
and made to resonate through a quartz crystal.

To account for the piezoelectric effect, let the surface charge densities on the upper and
lower electrodes be —o and +o;, respectively, when the quartz slab is under an electric field E
in the z direction. Denote the slab’s strain and stress in the x direction by Sand T, respectively.
Then the piezoelectric effect of the quartz crystal can be described by the following set of
equations:

S=@Q/Y)T+d,E (5a)

oc=d,T+&E (5b)

where 1/Y = 1.27x10 ** m?/N is the elastic compliance (i.e., inverse of Young’s modulus) at

constant electric field and & = 4.06x10 ™ F/m is the permittivity at constant stress, while dj,
= 2.25x10 ¥ m/V is the piezoelectric coefficient.

Let switch K in Fig. 2d be closed. The alternating voltage V(t) = Vi, cos @t now acts
across the electrodes and a uniform electric field E(t) = V(t)/h in the z direction appears in the
quartz slab. When a steady state is reached, a longitudinal standing wave oscillation of
angular frequency  appears in the slab in the x direction.

With E being uniform, the wavelength 4 and the frequency f of a longitudinal standing
wave in the slab are still related by A4 = u/f with u given by Eq. (2). But, as Eq. (5a) shows, T
= YSis no longer valid, although the definitions of strain and stress remain unchanged and the
end faces of the slab remain free with zero stress.

(e)Taking Egs. (5a) and (5b) into account, the surface charge density o on the lower
electrode as a function of x and t is of the form,

o(xt) = {Dl cosk(x—gj + Dz}w
2 h
where k=m/u. Find the expressions for D; and D.. (2.2 points)
(f) The total surface charge Q(t) on the lower electrode is related to V(t) by
Q(t) = {1+ az(kib tan%—lﬂCOV(t) (6)
Find the expression for Cyand the expression and numerical value of . (1.4 points)



[Answer Sheet] Theoretical Question 2
A Piezoelectric Crystal Resonator under an Alternating Voltage

Wherever requested, give each answer as analytical expressions followed by
numerical values and units. For example: area of a circle A= zr®=1.23 m%

(a) The strain Sand pressure p at the left face are (in terms of p, u, and v)

S=

p:

(b) The velocity v(x, t), strain §x, t), and pressure p(x, t) are

v(x, t) =

S 1) =

p(x, 1) =

(c) The values of B; and B; are

B]_:

Bzz

(d) The lowest two frequencies of standing waves are (expression and value)

The Lowest

The Second Lowest

(e) The expressions of D; and D, are

D1:

D2:

(f) The constants «? (expression and value) and C are (expression only)

2 _
a” =

Co:




Theoretical Question 3
Part A
Neutrino Mass and Neutron Decay

A free neutron of mass m,decays at rest in the laboratory frame of reference into three
non-interacting particles: a proton, an electron, and an anti-neutrino. The rest mass of the
proton is m,, while the rest mass of the anti-neutrino m, is assumed to be nonzero and much
smaller than the rest mass of the electron me. Denote the speed of light in vacuum by c. The
measured values of mass are as follows:

m,=939.56563 MeV/c?, my= 938.27231 MeV/c?, me=0.5109907 MeV/c*

In the following, all energies and velocities are referred to the laboratory frame. Let E be the

total energy of the electron coming out of the decay.

(@) Find the maximum possible value Eqax of E and the speed vi, of the anti-neutrino when E
= Emax. BOth answers must be expressed in terms of the rest masses of the particles and the
speed of light. Given that m, < 7.3 eV/c? compute Enma and the ratio vim/c to 3 significant
digits. (4.0 points)



Part B
Light Levitation

A transparent glass hemisphere with radius R and mass m has an index of refraction n. In
the medium outside the hemisphere, the index of refraction is equal to one. A parallel beam of
monochromatic laser light is incident uniformly and normally onto the central portion of its
planar surface, as shown in Figure 3. The acceleration of gravity g is vertically downwards.
The radius ¢ of the circular cross-section of the laser beam is much smaller than R. Both the
glass hemisphere and the laser beam are axially symmetric with respect to the z-axis.

The glass hemisphere does not absorb any laser light. Its surface has been coated with a
thin layer of transparent material so that reflections are negligible when light enters and leaves
the glass hemisphere. The optical path traversed by laser light passing through the
non-reflecting surface layer is also negligible.

(b) Neglecting terms of the order (8/R)® or higher, find the laser power P needed to balance
the weight of the glass hemisphere. (4.0 points)
Hint: cosé@ ~1-6*/2when 0 is much smaller than one.

z
N
glass hemisphere
n
_ laser beam
| o
Figure 3
[<>|
20
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[Answer Sheet] Theoretical Question 3

Wherever requested, give each answer as analytical expressions followed by numerical
values and units. For example: area of a circle A= zr?=1.23 m%

Neutrino Mass and Neutron Decay

(@) (Give expressions in terms of rest masses of the particles and the speed of light)
The maximum energy of the electron is (expression and value)

Emax =

The ratio of anti-neutrino’s speed at E = Enax to C is (expression and val ue)

Vi /C =

Light Levitation

(b) The laser power needed to balance the weight of the glass hemisphere is
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Apparatuses and materials
1. Available apparatuses and materials are listed in the following table:

Item Apparatus & material Quantity| |Item Apparatus & material Quantity

A [Photodetector (PD) 1 | |Batteries 2
Polarizers with

B 2 J |Battery box 1
Rotary mount

c |0TN-LC cell (yellow 1 K |Optical bench 1
wires) with rotary LC mount

D |Function generator 1 L |Partially transparent papers 2

E |Laser diode (LD) 1 M [Ruler 1

i White tape *
F |Multimeters 2 N i 1
(for marking on apparatus)

Parallel LC cell _

G ) 1 O |Scissors 1
(orange wires)

H |Variable resistor 1 P |Graph papers 10

* Do not mark directly on apparatus. When needed, stick a piece of the white tape on the parts
and mark on the white tape.

Fig. 1



2. Instructions for the multimeter:

« “DC/AC” switch for selecting DC or AC measurement.
+ Use the “VQ” and the “COM?” inlets for voltage and resistance measurements.

+ Use the “mA” and the “COM?” inlets for small current measurements. The display then
shows the current in milliamperes.

« Use the function dial to select the proper function and measuring range. “V” is for

voltage measurement, “A” is for current measurement and “Q”is for resistance
measurement.

\oltage
range Current
range
Function
dial hee NPN®
o ([ o Resistance
EBCE
. range
Current '
port (mA) \oltage &
Resistance
port
Common T
oort port

Fig. 2



3. Instructions for the Function Generator:
« The power button may be pressed for “ON” and pressed again for “OFF”

« Select the frequencies range, and press the proper button.

« The frequency is shown on the digital display.

+ Use the coarse and the fine frequency adjusting knobs to tune the proper frequency.
« Select the square-wave form by pressing the left most waveform button.

« Use the amplitude-adjusting knob to vary the output voltage.

Power
On/Off
button

Frequency
Range
buttons

Waveform
buttons

Frequency

_ —\ 1

Frequency Frequency

Coarse Fine Amplitude connector
Adjusting Adjusting Adjusting

knob knob knob

Fig.3



Part A: Optical Propertiesof Laser Diode

|. Introduction

1. Laser Diode

The light source in this experiment is a laser diode which emits laser light with
wavelength 650 nm. When the current of the laser diode (LD) is greater than the threshold
current, the laser diode can emit monochromatic, partially polarized and coherent light.
When the current in the laser diode is less than the threshold, the emitted light intensity is
very small. At above the threshold current, the light intensity increases dramatically with
the current and keeps a linear relationship with the current. If the current increases further,
then the increasing rate of the intensity with respect to the current becomes smaller because
of the higher temperature of the laser diode. Therefore, the optimal operating current range
for the laser diode is the region where the intensity is linear with the current. In general, the
threshold current Iy, is defined as the intersection point of the current axis with the

extrapolation line of the linear region.
Caution: Do not look directly into the laser beam. You can damage your eyes!!

2. Photodetector

The photodetector used in this experiment consists of a photodiode and a current
amplifier. When an external bias voltage is applied on the photodiode, the photocurrent is
generated by the light incident upon the diode. Under the condition of a constant
temperature and monochromatic incident light, the photocurrent is proportional to the light
intensity. On the other hand, the current amplifier is utilized to transfer the photocurrent
into an output voltage. There are two transfer ratios in our photodetector — high and low
gains. In our experiment, only the low gain is used. However, because of the limitation of
the photodiode itself, the output voltage would go into saturation at about 8 \olts if the
light intensity is too high and the photodiode cannot operate properly any more. Hence the
appropriate operating range of the photodetector is when the output voltage is indeed
proportional to the light intensity. If the light intensity is too high so that the photodiode
reaches the saturation, the reading of the photodetector can not correctly represent the
incident light intensity.

[1. Experiments and procedures

Characteristics of thelaser diode & the photodetector

In order to make sure the experiments are done successfully, the optical alignment of
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light rays between different parts of an experimental setup is crucial. Also the light source
and the detector should be operated at proper condition. Part A is related to these questions
and the question of the degree of polarization.

1. Mount the laser diode and photodetector in a horizontal line on the optical bench, as shown
in Fig. 4. Connect the variable resistor, battery set, ampere meter, voltage meter, laser
diode and photodetector according to Fig. 5. Adjust the variable resistor so that the current
passing through LD is around 25 mA and the laser diode emits laser light properly. Choose
the low gain for the photodetector. Align the laser diode and the photodetector to make the
laser light level at the small hole on the detector box and the reading of the photodetector
reaches a maximum value.

Caution: Do not let the black and the red leads of the battery contact with each other
to avoid short circuit.

LD f--------- > PD

Fig. 4 Optical setup (LD : laser diode; PD : photodetector).

=G

1000 LD PD

3V — K —»:

Fig. 5 Equivalent circuit for the connection of the laser diode.

2. Use the output voltage of the photodetector to represent the laser light intensity 7. Adjust
the variable resistor to make the current | of the laser diode varying from zero to a
maximum value and measure the 7 as | increases. Be sure to choose appropriate current
increment in the measurement.



Question A-(1) (1.5 point)
Measure, tabulate, and plot the 7vs. | curve.

Question A-(2) (3.5 points)

Estimate the maximum current I, with uncertainty in the linear region of the

gvs. | curve. Mark the linear region on the 7 - | curve figure by using arrows (¥) and
determine the threshold current I with uncertainty.

3. Choose the current of the laser diode as I, + 2(Im — 11)/3 to make sure the laser diode and
photodetector are operated well.

4. Topreparefor the part B experiment: Mount a polarizer on the optical bench close to the
laser diode as shown in Fig. 6. Make sure the laser beam passing through the center portion
of the polarizer. Adjust the polarizer so that the incident laser beam is perpendicular to the
plane of the polarizer. (Hint: You can insert a piece of partially transparent paper as a test
screen to check if the incident and reflected light spots coincide with each other.)

LD f-f--P--qmmmee- » PD

Fig. 6 Alignment of the polarizer (P : polarizer).

5. Keep the current of the laser diode unchanged, mount a second piece of polarizer on the
optical bench and make sure proper alignment is accomplished, i.e., set up the source,
detector and polarizers in a straight line and make sure each polarizer plane is
perpendicular to the light beam.



Part B Optical Propertiesof Nematic Liquid Crystal :
Electro-optical switching characteristic of 90° TN LC cell

|. Introduction

1. Liquid Crystal

Liquid crystal (LC) is a state of matter that is intermediate between the crystalline
solid and the amorphous liquid. The nematic LCs are organic compounds consist of
long-shaped needle-like molecules. The orientation of the molecules can be easily aligned
and controlled by applying an electrical field. Uniform or well prescribed orientation of the
LC molecules is required in most LC devices. The structure of the LC cell used in this
experiment is shown in Fig 7. Rubbing the polyimide film can produce a well-aligned
preferred orientation for LC molecules on substrate surfaces, thus due to the molecular
interaction the whole slab of LC can achieve uniform molecular orientation. The local
molecular orientation is called the director of LC at that point.

The LC cell exhibits the so-called double refraction phenomenon with two principal
refractive indices. When light propagates along the direction of the director, all polarization
components travel with the same speed v, = c/n,, where n, is called the ordinary index of
refraction. This propagation direction (direction of the director) is called the optic axis of
the LC cell. When a light beam propagates in the direction perpendicular to the optic axis,
in general, there are two speeds of propagation. The electric field of the light polarized
perpendicular (or parallel) to the optic axis travels with the speed of v, =c/n, (or
v, =c/n,, where ne is called the extraordinary index of refraction). The birefringence
(optical anisotropy) is defined as the difference between the extraordinary and the ordinary
indices of refraction An=n_,—n,.

Pl alignment Film

/ \
7 \

Glass Substrate —— ——— Glass Substrate

ITO Electrode  LC Layer  ITO Electrode
Fig. 7 LC cell structure



2. 90° Twisted Nematic LC Cell
In the 90° twisted nematic (TN) cell shown in Fig. 8, the LC director of the back
surface is twisted 90° with respect to the front surface. The front local director is set
parallel to the transmission axis of the polarizer. An incident unpolarized light is converted
into a linearly polarized light by the front polarizer.

LC molecules

Light
Propagation
Direction

Polarizer p| Pl Analyzer

Fig. 8 90° TN LC cell

When a linearly polarized light traverses through a 90° TN cell, its polarization
follows the twist of the LC directors (polarized light sees ne only) so that the output beam
remains linearly polarized except for that its polarization axis is rotated by 90° (it’s called
the polarizing rotary effect by ne; similarly we can also find polarizing rotary effect by n,).
Thus, for a normally black (NB) mode using a 90° TN cell, the analyzer’s (a second
polarizer) transmission axis is set to be parallel to the polarizer’s transmission axis, as
shown in Fig. 9. However, when the applied voltage V across the LC cell exceeds a critical
value V¢, the director of LC molecules tends to align along the direction of applied external
electrical field which is in the direction of the propagation of light. Hence, the polarization
guiding effect of the LC cell is gradually diminishing and the light leaks through the
analyzer. Its electro-optical switching slope v is defined as (Voo - V10)/V10, Where V14 and
Vg are the applied voltages enabling output light signal reaches up to 10% and 90% of its
maximum light intensity, respectively.



Polarizer 90° TN-LC Analyzer

NB operation ) ) /
, 1 E /I

R a

Fig. 9 NB mode operation of a 90° TN cell

[1. Experiments and procedures

. Setup a NB 90° TN LC mode between two polarizers with parallel transmission axes and
apply 100 Hz square wave voltage using a function generator onto the ITO portions of two
glass substrates and vary the applied voltage (Vms) from 0 to 7.2 Volts.

* In the crucial turning points, take more data if necessary.

Question B-(1) (5.0 points)
Measure, tabulate, and plot the electro-optical switching curve (7 vs. Vs curve) of the
NB 90° TN LC, and find its switching slope o, where o is defined as (Voo - V10)/V1o.

Question B-(2) (2.5 points)

Determine the critical voltage V. of this NB 90° TN LC cell. Show explicitly with graph
how you determine the value V.

Hint:* When the external applied voltage exceeds the critical voltage, the light
transmission increases rapidly and abruptly.
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Part C Optical Properties of Nematic Liquid Crystal :
Electr o-optical switching characteristic of parallel aligned L C cell

[. Introduction
Homogeneous Parallel-aligned L C Céll
For a parallel-aligned LC cell, the directors in the front and back substrates are
parallel with each other, as shown in Fig. 10. When a linearly polarized light impinges on a
parallel-aligned cell with its polarization parallel to the LC director (rubbing direction), a
pure phase modulation is achieved because the light behaves only as an extraordinary ray.

SSSSSN

LC molecule

Glass substrate (ITO+PI)
Fig. 10 Homogeneous parallel aligned LC

On the other hand, if a linearly polarized light is normally incident onto a parallel
aligned cell but with its polarization making & =45° relative to the direction of the
aligned LC directors (Fig. 11), then phase retardation occurs due to the different
propagating speed of the extraordinary and ordinary rays in the LC medium. In this
6 = 45° configuration, when the two polarizers are parallel, the normalized transmission
of a parallel aligned LC cell is given by

T = cosZé
Il 2

The phase retardation ¢ is expressed as
o =2rxdAn(V,1)/ A

where d is the LC layer thickness, Ais the wavelength of light in air, V is the root mean
square of applied AC voltage, and An, a function of A and V, is the LC birefringence. It
should be also noted that, at V = 0, An(= n.—n,) has its maximum value, so doesd. Also
An decreases as V increases.

In the general case, we have

T, =1-sin®26sin’ g
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T, =sin? Zesinzg

where , and 1 represent that the transmission axis of analyzer is parallel and
perpendicular to that of the polarizer, respectively.

I1. Experiments and procedures

1. Replace NB 90° TN LC cell with parallel-aligned LC cell.

2. Set up 6= 45° configuration at V = 0 as shown in Fig. 11. Let the analyzer’s transmission
axis perpendicular to that of the polarizer, then rotate the parallel-aligned LC cell until the
intensity of the transmitted light reaches the maximum value (T, ). This procedure
establishes the 0 = 45° configuration. Take down T, value, then, measure the intensity of
the transmitted light (T, ) of the same LC cell at the analyzer’s transmission axis parallel to

that of the polarizer (also at V = 0).

For Ty

A

Homogeneous 0
Parallel Aligned
LC cell

Analyzer ForT.

Polarizer

Fig. 11 Schematic diagram of experimental setup
(The arrow L is the alignment direction.)

Question C-(1) (2.5 points)

Assume that the wavelength of laser light 650 nm, LC layer thickness 7.7 um, and
approximate value of An~ 0.25 are known. From the experimental data T. and
T obtained above, calculate the accurate value of the phase retardation & and accurate
value of birefringence An of this LC cell at V=0.
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3. Similar to the above experiment (1), in the 6= 45° configuration, apply 100 Hz square
wave voltage using a function generator onto the 1TO portions of two glass substrates, vary
the applied voltage (Vi) from 0 to 7 Volts and measure the electro-optical switching
curve (T,) at the analyzer’s transmission axis parallel to the polarizer’s transmission axis.
(Hint: Measuring the T. switching curve is helpful to increase the data accuracy of the
above T, measurement; the data of T. are not needed in the following questions. )

* In the crucial turning points, take more data if necessary (especially in the range of
0.5-4.0 Volts).

Question_C-(2) (3.0 points)
Measure, tabulate, and plot the electro-optical switching curve for T, of_this parallel
aligned LC cell in the 8 = 45° configuration.

Question C-(3) (2.0 points)
From the electro-optical switching data, find the value of the external applied voltage V.
Hint: * V. is the applied voltage which enables the phase retardation of this anisotropic
LC cell become 7 (or 180°).
* Remember that A n is a function of applied voltage, and An decreases as V
increases.
* Interpolation is probably needed when you determine the accurate value of this V.
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Solution to Theoretical Question 1

A Swing with a Falling Weight

Part A

(a)

(b)

(©)

(d)

(€)

Since the length of the string L =s+ Ré# is constant, its rate of change must be zero.
Hence we have

$+RO=0 (A1)
Relative to O, Q moves on a circle of radius R with angular velocity 8, so

Vo =ROt =-st (A2)

Refer to Fig. Al. Relative to Q, the displacement of P in a time interval At
is AT' =(sA0) (1) + (As)f =[(s8)(-F) + st]At. It follows

V' =—sOf + st (A3)

Figure Al

The velocity of the particle relative to O is the sum of the two relative velocities given in
Egs. (A2) and (A3) so that

V=V'+Y, = (-sOf +st) + ROt = —sOf (A4)
Refer to Fig. A2. The ( —t )-component of the velocity change AV is given
by (—f)- AV =VvA@ = vOAt. Therefore, thet-component of the acceleration a=Av/At

is given by f-a=-v@ . Since the speed v of the particle is s@ according to Eq. (A4),
we see that the f-component of the particle’s acceleration at P is given by

a-f =—vh=—(s6)f = —sb? (A5)

_F _f

Figure A2
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(f)

(9)

Note that, from Fig. A2, the radial component of the acceleration may also be obtained as
a-f=—dv/dt=—d(s6)/dt.

Refer to Fig. A3. The gravitational potential energy of the particle is given byU = —-mgh.

It may be expressed in terms of sand & as
U (@) = —-mg[R(1—cos ) + ssin 4] (A6)

Figure A3

P

At the lowest point of its trajectory, the particle’s gravitational potential energy U must
assume its minimum value U, By differentiating Eq. (A6) with respect to 6 and using

Eq. (Al), the angle & corresponding to the minimum gravitational energy can be

obtained.
w_ —mg(RsinHJrEsin9+ scosej
déo déo
= —mg[Rsin @ + (-R)sin & + scos 0]
= —mgscosé
At =26, ?j—l; =0. We haved, :%. The lowest point of the particle’s trajectory is
On

shown in Fig. A4 where the length of the string segment of QP is s=L—zR/2.

Figure A4

From Fig. A4 or Eq. (A6), the minimum potential energy is then

U, =U(7/2)=-mg[R+L - (7R/2)] (A7)
Initially, the total mechanical energy E is 0. Since E is conserved, the speed v, of the
particle at the lowest point of its trajectory must satisfy
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E=0=2m+Up, (A8)

From Egs. (A7) and (A8), we obtain

Vi =/~ 2U /M =/20[R+ (L - 7R/ 2)] (A9)
Part B
(h) From Eg. (A6), the total mechanical energy of the particle may be written as
EzOz%mvz+U(0):%mv2—mg[R(l—cose)+ssin9] (B1)

From Eq. (A4), the speed v is equal to s@ . Therefore, Eq. (B1) implies
v? = (s6)? = 2g[R(L—cos6) + ssind] (B2)

Let T be the tension in the string. Then, as Fig. B1 shows, thef -component of the net
force on the particle is =T + mg sin 8. From Eq. (A5), the tangential acceleration of the

particle is (—592) . Thus, by Newton’s second law, we have
m(-s6?) = -T + mgsin @ (B3)

x 4
A

Figure B1

According to the last two equations, the tension may be expressed as
T =m(sé %+ gsin @) = m[2R(1—cos¢9) +3ssin 6]

2ng[t ———(49——)](S|n 0) (B4)

(Y1 = ¥,)(sin®)

The functions y; =tan(@/2) and y, =3(¢—-L/R)/2 are plotted in Fig B2.
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] Figure B2
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From Eq. (B4) and Fig. B2, we obtain the result shown in Table B1. The angle at

which .y, =y is called 64(7 <05 <27) and is given by

3 Ly .. 0
2(6?S R)—tan > (B5)
or, equivalently, by
L _g. _24nfs
R_HS 3tan > (B6)
Since the ratio L/R is known to be given by
L 9 2 V4 7y 2.1 V4
S = t+oCot = (z+ ) -Stan> (7 + 5 B7
R™ 8 +3cot16 (7r+8) 3tan2(7r+8) (B7)

one can readily see from the last two equations that 65 =97/8.

Table B1
(Y1 —-Y>) sing tension T
0<O0<rx positive positive positive
O=rx + © 0 positive
<6< negative negative positive
0 =0 zero negative zZero
s <0<2r positive negative negative

Table B1 shows that the tension T must be positive (or the string must be taut and straight)
in the angular range 0<@ < .. Once @ reaches G5, the tension T becomes zero and the
part of the string not in contact with the rod will not be straight afterwards. The shortest
possible value smin for the length s of the line segment QP therefore occurs at 6 = 6 and

is given by

15



97r 2 Or, 2R
=L-R6; =R —Ccot———")=—cot—= 2R B
Smin 0 ( 3cot16 3 3 cot16 3.35 (B8)

Whené = 65, we have T=0 and Eqs. (B2) and (B3) then leads to v 2= —gs,;, Sind,.
Hence the speed vgis

= /= OSqin SiNOs = \/—cot—s inZ = \/— COS— (B9)
=1.133Jg_

When 6 > 6, the particle moves like a projectile under gravity. As shown in Fig. B3, it is
projected with an initial speed vs from the position P = (X, Ys) in a direction making
an angle ¢ = (37 /2 - 6,) with the y-axis.

The speed vy, of the particle at the highest point of its parabolic trajectory is equal to the
y-component of its initial velocity when projected Thus,

Vy =Vgsin(@s — ) = 1} cos—sm— =0.4334,/gR (B10)

The horizontal distance H traveled by the partlcle from point P to the point of maximum
height is

2 2
2 —_
_ Vg sin2(6g — ) _ V_smgTﬂ =0.4535R (B11)

29 29

Figure B3
The coordinates of the particle when @ = 6 are given by
Xs = RC0SOg — Spipy SINOg = ~RcosZ gt Smin S 8 =0.358R (B12)
Ys = Rsin O + Sy €050 = —Rsin % — Spin cos% = -3.478R (B13)

Evidently, we have | ys| > (R+ H) . Therefore the particle can indeed reach its maximum
height without striking the surface of the rod.
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Part C

() Assume the weight is initially lower than O by h as shown in Fig. C1.

Figure C1

When the weight has fallen a distance D and stopped, the law of conservation of total
mechanical energy as applied to the particle-weight pair as a system leads to

—Mgh=E'-Mg(h+ D) (C1)
where E’ is the total mechanical energy of the particle when the weight has stopped. It
follows

E’'=MgD (C2)

Let A be the total length of the string. Then, its value at &= 0 must be the same as at any
other angular displacement €. Thus we must have

A:L+%R+h:s+R(6?+%)+(h+D) (C3)
Noting that D = « L and introducing ¢ = L—D, we may write
(=L-D=(-a)L (C4)
From the last two equations, we obtain
s=L-D-R8=/-RH (C5)

After the weight has stopped, the total mechanical energy of the particle must be
conserved. According to Eqg. (C2), we now have, instead of Eq. (B1), the following

equation:
E'= MgD :%m\/2 —mg[R(1-cos @) + ssin 6] (C6)
The square of the particle’s speed is accordingly given by
V2 = (s6)? :M+29R{(1—c050)+§sin 0} (C7)
m R
Since Eq. (B3) stills applies, the tension T of the string is given by
—T +mgsing = m(-s6?) (C8)

From the last two equations, it follows

17



T = m(s8 *+ gsin )

—m‘:mDﬁ-ZR(l cosH)+3ssm0} (C9)
s| m
_ 2mgR| M —+(1 cos&)+3(£—t9jsin6’

s | MR 2\ R

where Eq. (C5) has been used to obtain the last equality.
We now introduce the function

f(0)=l—cose+g(é—0)sin0 (C10)
From the fact/ = (L — D) >> R, we may write
£(6) ~ 1+%%sin9 —c0s6 =1+ Asin(6—¢) (C11)
where we have introduced
_ 3 Ly2 2R
A= l+(2R , ¢=tan” (%J (C12)

From Eq. (C11), the minimum value of f(6) is seen to be given by

foo1-A=1- |14 (”) (C13)
V2R

Since the tension T remains nonnegative as the particle swings around the rod, we have
from Eq. (C9) the inequality

2
MD ¢ =MLL=0) 1+(3lj >0 (C14)
mR mR 2R
or
2
el Gl ) G o
mR mR 2R mR 2R
From Eq. (C4), Eqg. (C15) may be written as
(&}1 (ML 3LJ( ~a) (C16)
mR R 2R

Neglecting terms of the order (R/L) or higher, the last inequality leads to

(MLjJrl 37L_1 1_5

mR 2R 3L 1
> - = I~
¢ ML 3L) ML 3L 2M 2M (C17)
—+ —+1 1+—
mR 2R mR 2R 3m 3m
The critical value for the ratio D/L is therefore
1
@ =—r (C18)
1+ —
3m
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Marking Scheme

Theoretical Question 1
A Swing with a Falling Weight

Total Sub Marking Scheme for Answers to the Problem
Scores | Scores
Part A (@  |Relation between and 5. ($=-R0)
> 0.2for Ocs.
43pts. 0.5 |5 0.3 for proportionality constant (-R).
() |Velocity of Qrelativeto O. (v, = RéY)
0.5 |» 0.2 for magnitude RO.
» 0.3 for direction t .
(©) Particle’s velocity at P relative to Q. (V' =—sOf + $t)
0.7 » 0.2+0.1 for magnitude and direction of r -component.
' > 0.3+0.1 for magnitude and direction of f-component.
(()d; Particle’s velocity at Prelativeto O. (V=V'+V, = —sOf)
' > 0.3 for vector addition of v' and v, .
» 0.2+0.2 for magnitude and direction of V.
(6)  |f-component of particle’s acceleration at P.
07 > 0.3forrelating a or a-t to the velocity in a way that implies
' |la-t|=V?/s.
> 0.4for a-f=-s6? (0.1 for minus sign.)
() Potential energy U.
» 0.2 for formula U =-mgh.
0.5 » 0.3for h=R(@-cosd)+ssind orU as a function of 4, s, and R.
(9) Speed at lowest point vp,
» 0.2 for lowest pointat 8 =x/2 or U equals minimum Up,
0.7 > 0.2 for total mechanical energy E =mv2/2+U,, =0.
> 0.3for vy, =.-2U,/m=2g[R+(L-7R/2)].
PartB|  (h)  |particle’s speed vswhen QP is shortest.
4.3 pts. 24 > 0.4 for tension T becomes zero when QP is shortgst.
» 0.3 for equation of motion —T + mgsiné = m(—sé’z) .
> 0.3for E=0=m(sd)?/2-mg[R(L—cosd)+ssind].
3 L 0
> 0. (O ——=)=tan—=.
0.4 for > (A R) tan >
>
>

0.5for 65=971/8.
0.3+0.2 for vg =/4gR/3cosz /16 =1.133,/gR
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() The speed vy of the particle at its highest point.
> 0.4 for particle undergoes projectile motion when 8 > 6.
1.9 » 0.3 for angle of projection ¢ =(37/2-6;).
»> 0.3 for vy isthey-component of its velocity at 6 = 6.
» 0.4 for noting particle does not strike the surface of the rod.
» 0.3+0.2 for
Vi =+/4gR/3cos(x /16)sin(z /8) = 0.4334,/gR .
Part C ()  |Thecritical value «. of the ratio D/L.
0.4 for particle’s energy E'=MgD when the weight has stopped.
3.4 pts 3.4

VVVVYV V VYV

0.3for s=L-D-Ré4.
0.3 for E'=MgD =nv?/2-mg[R(1-cosd) + ssind].

0.3 for —T +mgsing = m(—-s6?).

0.3 for concluding T must not be negative.

0.6 for an inequality leading to the determination of the range of D/L.
0.6 for solving the inequality to give the range of « = D/L.

0.6 for a. =(1+2M/3m).
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Solution to Theoretical Question 2

A Piezoelectric Crystal Resonator under an Alternating Voltage

Part A
(@) Refer to Figure Al. The left face of the rod moves a distance vAt while the pressure wave
travels a distance uAt with u= /Y / p . The strain at the left face is

g_ Al _—vat _—-v

¢ udt u (Ala)
From Hooke’s law, the pressure at the left face is
p:—YS:Y%:puv (Alb)
| UAt |
| |
_pP t=0
Figure Al P_[, P At/2
P — P At

VAt

(b) The velocity v is related to the displacement & as in a simple harmonic motion (or a
uniform circular motion, as shown in Figure A2) of angular frequency @ = ku. Therefore,
If&(xt) = &y sink(x—ut), then

V(X t) = —ku&, cosk(x—ut). (A2)
The strain and pressure are related to velocity as in Problem (a). Hence,

S(x,t) = —v(x,t)/u = k&, cosk(x—ut) (A3)

p(x,t) = puv(x,t) = —kpu?&, cosk(x—ut) (Ad)
=-Y§(x,t) = —kY&, cosk(x—ut)

Alternatively, the answers may be obtained by differentiations:

v(x,t) = Z‘—f =—kué, cosk(x—ut),

S(xt) = % = k&, cosk(x—ut), Figure A2

p(xt) = - % = —-kY&, cosk(x—ut).




Part B

(c) Since the angular frequency @ and speed of propagation u are given, the wavelength is
given by 4 =2z / kwith k= @/ u. The spatial variation of the displacement &is therefore
described by

g(x) = B, sin k(x—ngr B, cosk(x—gj (B1)

Since the centers of the electrodes are assumed to be stationary, g(b/2) = 0. This leads to
B, = 0. Given that the maximum of g(x) is 1, we have B; = +1 and

9(x) = isin%(x—g) (B2)
Thus, the displacement is

E(x,t) = £2&, sin%[x—gjcoswt (B3)

(d) Since the pressure p (or stress T) must vanish at the end faces of the quartz slab (i.e., x=0
and x = b), the answer to this problem can be obtained, by analogy, from the resonant
frequencies of sound waves in an open pipe of length b. However, given that the centers
of the electrodes are stationary, all even harmonics of the fundamental tone must be
excluded because they have antinodes, rather than nodes, of displacement at the bisection
plane of the slab.

Since the fundamental tone has a wavelength A= 2b, the fundamental frequency is
given by f; =u/(2b). The speed of propagation u is given by

7.87x10%

— =5.45x10° m/s (B4)
2.65x10
and, given that b =1.00x10 m, the two lowest standing wave frequencies are
u 3u
fl = % = 273 (kHZ) ’ f3 = 3 fl = % = 818 (kHZ) (B5)

[Alternative solution to Problems (c) and (d)]:

A longitudinal standing wave in the quartz slab has a displacement node at x = b/2. It
may be regarded as consisting of two waves traveling in opposite directions. Thus, its
displacement and velocity must have the following form

E(x,t) = fm{sin k(x—g— utj +sin k(x—ng utﬂ

(B6)
=2&,sin k(x—g) cosawt

V(X,t) = —kugm{cos k(x - g - utj —C0S k(x - g + utﬂ
(B7)

=—-2w& sin k(x—g)sin ot
where @ = ku and the first and second factors in the square brackets represent waves
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traveling along the +x and —x directions, respectively. Note that Eq. (B6) is identical to Eq.
(B3) if we set &y = £&).

For a wave traveling along the —x direction, the velocity v must be replaced by —v in
Egs. (Ala) and (Alb) so that we have

S= _TV and p=puv (waves traveling along +x) (B8)

S= % and p=-puv  (waves traveling along —x) (B9)
As in Problem (b), the strain and pressure are therefore given by
S(x,t) = —kfm{— cos k(x—g— ut) —C0S k(x—g+ utﬂ
(B10)
= 2ké,, cos k(x—g) cosmt

p(xt)=-p Ua)gm{cos k(x - g - ut) + C0S k(x — g + utﬂ
(B11)

=-2puwé  cos k(x—gj coswt

Note that v, S and p may also be obtained by differentiating & as in Problem (b).
The stress T or pressure p must be zero at both ends (x = 0 and x = b) of the slab at all
times because they are free. From Eq. (B11), this is possible only if cos(kb/2) = 0or
27f

_Op_ -
kb = J b g b=nr, n=13,5, (B12)
In terms of wavelength 4, Eq. (B12) may be written as
z:z—:, N=135,-. (B13)
The frequency is given by
_u_nu_n ¥ -
TR n=1375,:--. (B14)

This is identical with the results given in Egs. (B4) and (B5).

(e) From Eqgs. (5a) and (5b) in the Question, the piezoelectric effect leads to the equations
T=Y(S-d,E) (B15)

d2

U=de5+€T[1—Y—ij (B16)
&y

Because x = b/2 must be a node of displacement for any longitudinal standing wave in the

slab, the displacement & and strain Smust have the form given in Egs. (B6) and (B10), i.e.,
with w = ku,

E(x,t)=¢&, sin k(x—gjcos(wwqﬁ) (B17)
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S(x,t) = k&, cos k(x - g) cos(ot + @) (B18)

where a phase constant ¢ is now included in the time-dependent factors.
By assumption, the electric field E between the electrodes is uniform and depends only

on time:

V() Vpcosot

E(xt) = o H (B19)
Substituting Egs. (B18) and (B19) into Eq. (B15), we have
d
T= Y{kim cos k(x - gj cos(wt + @) — vam cos a)t} (B20)

The stress T must be zero at both ends (x = 0 and x = b) of the slab at all times because they

are free. This is possible only if ¢ =0 and

kb V
kf cos—=d -1
gm 2 P h

Since ¢ =0, Egs. (B16), (B18), and (B19) imply that the surface charge density must have
the same dependence on time t and may be expressed as

o(xt) =o(x)cosmt (B22)
with the dependence on x given by

d2
o(X) =Yd k&, cos k[x—gj +&; [l_Y_p]VTm

(B21)

&r

(B23)

(F) At time t, the total surface charge Q(t) on the lower electrode is obtained by integrating
o(x,t)in Eq. (B22) over the surface of the electrode. The result is

QW) I o(x,t)wdx = ijb o(X)wdx
V() V() Vin 70
d? d?
= ﬂj‘ob \% pkb cos k(x—E) +e (1-Y )] dx
h cos— 2 ér
(B24)
d’ d’
= [gT b—W) Y—"(itan@j +11-Y2
h &r \ kb 2 &
=C, [az(itan@j+(l—a2)}
ko 2
where
d2 2 -2
Co=ér bw oy O (2297107 445 90 (B25)

h’ & 127x4.06
(The constant « is called the electromechanical coupling coefficient.)
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Note: The result Co = &1 bw/h can readily be seen by considering the static limit k=0
of Eq. (5) in the Question. Sincetan X ~ X when x << 1, we have

klimOQ(t)/V(t) ~ Cola? +(1-a?)] = C, (B26)

Evidently, the constant Cy, is the capacitance of the parallel-plate capacitor formed by the
electrodes (of area bw) with the quartz slab (of thickness h and permittivity &) serving as
the dielectric medium. It is therefore given by &1 bw/h.
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Marking Scheme

Theoretical Question 2

A Piezoelectric Crystal Resonator under an Alternating Voltage

Total Sub Marking Scheme for Answers to the Problem
Scores | Scores
Part A @) The strain Sand pressure p on the left face.
» 0.4 for |A¢| = vAtand ¢ = uAt.
4.0 pts. 1.6 » 0.4 for S=-v/u. (0.1 br 49gn)
» 0.4 for relating pto Sas p=-YS (0.1 for sign)
»> 0.4 forp=puv. (0.1 for sign)
(b) The velocity v(x, t), strain S, t), and pressure p(X, t).
» 0.3x3 sinusoidal variation with correct phase constant. (0.2 for phase
2.4 constant.)
» 0.3x3 for amplitude.
» 0.2x3 for dependence on x and t as (kx- ku t).
Part B () The function g(x) for a standing wave of angular frequency w.
> 0.4 for g(b/2) = 0.
6.0pts| 12 |» 0.3+0.1 for B;==+1 (0.1 for both signs)
» 04forB,=0
(d) The two lowest standing wave frequencies.
» 0.2 for wavelength of fundamental tone 4 = 2b.
1.2 » 0.2 for excluding even harmonics.
» (0.3+0.1) for f; = u/2b = 273 kHz. (0.1 for value)
» (0.3+0.1) for f3 = 3u/2b = 818 kHz. (0.1 for value)
(e) The surface charge density o as a function of x and t.
» 0.1x2for & and S each a separable function of x and t.
2.2 |» 0.1x2for £and S each depends on time as cos wt with ¢ = 0.
» 0.3 for spatial part £(x) =&, Ssink(x—b/2).
» 0.3 for spatial part S(x) = k&, cosk(x—b/2).
> 03for T(x)=[k&,cosk(x—b/2)-dV, /h]Y.
» 03for k&, cos(kb/2)=dV,/h.
» 0.6 for D1 (0.3) and D, (0.3) ino(X) .
() |The constants C, and 2.
14 » 0.2 for relation between oand Q as

QM) = (] o(x)wdx) cos wt.

» 0.3 for noting Q(t)/V(t) ~ Cpas k — 0.
» 0.4 for Cy = erbw/h.
» 0.4+0.1for o® =Yd} /&, =9.82x107°. (0.1 for value)
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Solution toTheoretical Question 3
Part A
Neutrino Mass and Neutron Decay

(a) Let (c’E,,cq.), (C’E,.cd,),and (c’E,,cq,)be the energy-momentum 4-vectors of the

electron, the proton, and the anti-neutrino, respectively, in the rest frame of the neutron.
Notice thatE,, E,E,, 0., T,,d, are all in units of mass. The proton and the anti-neutrino

may be considered as forming a system of total rest mass M., total energy c? E.., and
total momentum cqj.. Thus, we have
. 2 22
EczEp+Ev' 4. =4, + 4, Mc =Ec —dc (A1)

Note that the magnitude of the vector q, is denoted as g.. The same convention also

applies to all other vectors.
Since energy and momentum are conserved in the neutron decay, we have

E.+E,=m, (A2)
qc = _qe (A3)

When squared, the last equation leads to the following equality
dc =de =E¢ —m¢ (A4)

From Eq. (A4) and the third equality of Eq. (A1), we obtain
E -M¢ =E¢-mg (AS5)

With its second and third terms moved to the other side of the equality, Eq. (A5) may be
divided by Eq. (A2) to give

1
Ec—Ee=-—(Mc -m) (A6)
n
As a system of coupled linear equations, Egs. (A2) and (A6) may be solved to give
1
Eo = gy (Th —Me + M¢) (A7)
1
Ee = gy (Mh +Me ~ M) (A8)

Using Eq. (A8), the last equality in Eq. (A4) may be rewritten as

Qe = : \/(mﬁ +m§—|\/|§)2 _(zmnme)z
o (A9)
= om \/(mn +me+M c)(mn + Mg -M c)(mn — Mg +M c)(mn — Mg -M c)
n

Eq. (A8) shows that a maximum of E. corresponds to a minimum ofMS. Now the
rest mass M, is the total energy of the proton and anti-neutrino pair in their center of

mass (or momentum) frame so that it achieves the minimum
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(M) =M =m_ +m, (A10)

when the proton and the anti-neutrino are both at rest in the center of mass frame. Hence,
from Egs. (A8) and (A10), the maximum energy of the electron E = c’Ec is

2
Emax = %[mﬁ +mg —(m, + mv)z]z 1.292569 MeV ~1.29 MeV (A11)
n

When Eq. (A10) holds, the proton and the anti-neutrino move with the same velocity vq,
of the center of mass and we have

v_m:(&J :(&] :(&j :(&J (AL2)
c EV E=Eax EP E=E EC E=E EC Mc=m,+m,

where the last equality follows from Eg. (A3). By Egs. (A7) and (A9), the last expression
in Eq. (A12) may be used to obtain the speed of the anti-neutrino when E = Epax. Thus,
with M = my+m,, we have

Vi _ /(M + Mg + M)(my, +m — M)(M, —m + M)(M, —me — M)
c Mg —m@ + M2 (A13)
~ 0.00126538 ~ 0.00127

[Alter native Solution]

Assume that, in the rest frame of the neutron, the electron comes out with momentum
cq. and energy c’E., the proton with cg, and cZEp, and the anti-neutrino with cg, and

c? E, . With the magnitude of vector q, denoted by the symbol q,, we have
Ep=ms+q5, Ef=m{+qf, EZ=mi+qs (1A)
Conservation of energy and momentum in the neutron decay leads to
Ep,+E,=m,—E; (2A)
qp +qV :_qe (3A)
When squared, the last two equations lead to
E5 +EJ +2E,E, = (m, - Eg)? (4A)
dp + 0 +20,-0, =0 = Eo —m. (5A)
Subtracting Eg. (5A) from Eqg. (4A) and making use of Eq. (1A) then gives
m;2)+n]3+2(EpEv_qp'qv):mr21+m§_quﬁEe (GA)

or, equivalently,
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2mE, =m; +m; —-m; -m; - 2(E,E, -q,-q,) (7TA)
If 6 is the angle between ¢, and q,, we haveq, -q, =q,d, cosd < g,q, so that Eq. (7A)
leads to the relation

2mnEeSm§+m§_m%_m\3_2(EpEv_quv) (8A)

Note that the equality in Eq. (8A) holds only if 8= 0, i.e., the energy of the electron c’E. takes
on its maximum value only when the anti-neutrino and the proton move in the same direction.

Let the speeds of the proton and the anti-neutrino in the rest frame of the neutron be
cfp and cp,, respectively. We then have q, = B,E, and q, = B E,. As shown in Fig.

Al, we introduce the angle ¢y (0 < ¢, < z/2) for the antineutrino by

Qu=mtang,, E,=4mi+ql =m,secg,, B, =0,/E, =sing,  (9A)

Ev
Qv

y Figure Al
m,

Similarly, for the proton, we write, with 0<¢, <7 /2,

qp=mytang,, E,=.mi+q5=mysecs,, B,=0,/E,=sing, (10A)
Eq. (BA) may then be expressed as

1-sing, sing
2MmE, <m’ +mi —m2 —m¢ —2m P 11A
hEe <M, + M —m; —m, "m“[cos¢pcos¢vj (114)
The factor in parentheses at the end of the last equation may be expressed as
1-si in 1-sin i —CO0S ¢, COS 1-cos(¢, —
singpsing, _1-singpsing, —cosgycosdy  1co5(@y—) 0 o0

OS¢, COSh, COS ¢, COS ¢, ~ COS¢p, COSgy

and clearly assumes its minimum possible value of 1 when ¢, = ¢, i.e., when the
anti-neutrino and the proton move with the same velocity so that g, = Syv. Thus, it follows
from Eq. (11A) that the maximum value of Egis

1
(Ee)max :R(rns + ms - m; _rnf _2mprn\/)

1 (13A)
=—m+m—(m +m,)’
and the maximum energy of the electron E = ¢’E is
Enax = c? (Ee) max =1.292569 MeV ~1.29 MeV (14A)
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When the anti-neutrino and the proton move with the same velocity, we have, from Egs.
(9A), (10A), (2A) ,(3A), and (1A), the result
q q dp +9
Py = ﬁp = E_p = =_F .

2 2
v _ _ Qe _ Ee_me
p EBEv Ep+E, my-E. my-E

(15A)
Substituting the result of Eqg. (13A) into the last equation, the speed vy, of the anti-neutrino
when the electron attains its maximum value Emay is, with M = mg+m,, given by

Vim

Yo g3 V(Era —mE (M +mE ~M?)? —amZmd
c TVMET My —(E)max

2mé —(m2 +m2 —M2)
:\/(mn+me+M)(mn+me_M)(mn_me+M)(mn_me_M)

(16A)
2 2 + M2
~ 0.00126538 ~ 0.00127

Light Levitation

(b) Refer to Fig. B1. Refraction of light at the spherical surface obeys Snell’s law and leads to
nsing; =sin &, (B1)
Neglecting terms of the order (5/R)or higher in sine functions, Eq. (B1) becomes

For the triangle AFAC in Fig. B1, we have

(B2)
Z -~
B =06, -06, =nb; -6, =(n-1)6, (B3) E
Let f, be the frequency of the incident light. If n,
is the number of photons incident on the plane surface per 6t
unit area per unit time, then the total number of photons [ B
incident on the plane surface per unit time is np7z52. The A\“
total power P of photons incident on the plane surface is \6i
(npﬂ52)(hf0), with h being Planck’s constant. Hence, '
P S n
n, = (B4) .‘\
P 252, 0\
C
The number of photons incident on an annular disk of 1 s
inner radius r and outer radius r +dr on the plane surface
per unit time is n,(2zrdr), where r=Rtan6, ~ RY, . _
Fig. B1
Therefore,

N, (2ardr) = n, (22R%)6;d6,

(B5)
The z-component of the momentum carried away per unit time by these photons when
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refracted at the spherical surface is

z

2
dF, =n, h:;o (2zrdr)cos B ~n, h—(f;’(Zzsz)[l—%jadei

(B6)
zmﬂﬁedf{ _(n-1° %9
C 2
so that the z-component of the total momentum carried away per unit time is
F, = 27R%n (hfjj [ei (n-2)° }d@
c )% 2
(B7)
=ﬂR2p[hfjezﬁ_ (n-1° 92}
C 4
where tané;,, = % = 6. Therefore, by the result of Eq. (B5), we have
2 hf 2 _1N\2 g2 _1N\2 g2
Zz;zR;P( )52 1_(n 1)25 =El_(n 1)25 (B8)
7o “hf R 4R c 4R

The force of optical levitation is equal to the sum of the z-components of the forces exerted
by the incident and refracted lights on the glass hemisphere and is given by

CH(F)=o- P[l—(n_l)zgz}z(n_l)zyﬁ (B9)

c 4R? 4R* ¢

Equating this to the weight mg of the glass hemisphere, we obtain the minimum laser
power required to levitate the hemisphere as

3 4mgcR?

_ _ B10
(n-1)252 (B0
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Marking Scheme

Theoretical Question 3
Neutrino Mass and Neutron Decay

Total
Scores

Sub
Scores

Marking Scheme for Answers to the Problem

Part A

4.0 pts.

(@)

4.0

The maximum energy of the electron and the corresponding speed of the

anti-neutrino.

» 0.5 use energy-momentum conservation and can convert it into
equations.

> 0.5 obtain an expression for E, that allows the determination of its
maximum value.

» (0.5+0.2) for concluding that proton and anti-neutrino must move
with the same velocity when E,_ is maximum. (0.2 for the same
direction)

> 0.6 for establishing the minimum value of (E/E, -q,-Gy,) tobe

mym, or a conclusion equivalent to it.
» (0.5+0.1) for expression and value of Eqax.

0.5 for concluding B, =+ Eg — mé I(m, —Eg).

> (0.5+0.1) for expression and value of vy/cC.

A\

Light Levitation

Part B

4.0 pts

(b)

4.0

Laser power needed to balance the weight of the glass hemisphere.
0.3 for law of refraction nsing; =siné,.

0.3 for making the linear approximation né; = 6, .

0.4 for relation between angles of deviation and incidence.

0.3 for photon energy €= hv.

0.3 for photon momentum p = ¢/c.

0.3 for momentum of incident photons per unit time = P/c.

0.6 for momentum of photons refracted per unit time as a function of
the angle of incidence.

0.4 for total momentum of photons refracted per unit time =
[1-(n-1)26%/(4R)]P/c.

» 0.4 for force of levitation = sum of forces exerted by incident and

refracted photons.
> 0.4 for force of levitation = (n-1)>52P/(4cR?).
> 0.3 for the needed laser power P = 4mgcR?/(n-1)>52.

VVVVY VY V

A\
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Solutions to Experimental Problems

Part A: Optical Properties of Laser Diode

Question A-(1) (Total 1.5 point)
Measure, tabulate, and plot the 7vs. | curve.

a. Data (0.3 pts.) : Proper data table marked with variables and units.
Table A-(1): Data for gvs. I.

I (mA) 9.2 15.2 195 21.6 22.2 22.7 23.0 23.4 23.8

J(V) 0.00 0.01 0.02 0.03 0.05 0.06 0.09 0.12 0.30

I (mA) 24.2 24.6 25.0 25.4 25.8 26.2 26.6 27.0 27.4

7 (V) 0.66 1.02 1.41 1.88 2.23 2.64 3.04 3.36 3.78

I (mA) 27.8 28.2 28.6 29.0 29.4 29.8 30.2 30.5 31.0

7(V) 412 | 448 | 479 | 513 | 544 | 572 | 605 | 625 | 655

I (mA) 314 31.8 32.2 32.6 33.0 334 33.8 34.2 34.6

7(V) 6.75 6.99 1.22 7.40 7.60 7.78 7.93 8.07 8.14

I (mA) 35.0 35.5 36.0 36.5 37.0 37.6 38.0 38.6

J(V) 8.18 8.20 8.22 8.24 8.24 8.25 8.26 8.27

Current error : +0.1 mA; Voltage error : £0.01 V
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b. Plotting (0.3 pts.): Proper sizes of scales, and units for abscissa and ordinate that bear
relation to the accuracy and range of the experiment.

c. Curve (0.9 pts.): Proper data and adequate line shape
« Asshown in Fig. A-1. Start ~0 — Threshold — Linear — Saturate.

gf

Light Intensity (V)
@

0 - . o oo

0 5 10 15 20 25 30 35
Current (mA)

Fig. A-1 Graph of light intensity 7versus current |
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Question A-(2) ( Total 3.5 points)
Estimate the maximum current I, with uncertainty in the linear region of the 7- I. Mark
the linear region on the 7- | curve figure by using arrows (¥) and determine the threshold

current Iy, with detailed error analysis.

a. Linear region marking (0.5 pts.) in Fig. A-1.
b. Least-square method or eye-balling with ruler and error analysis (1.5 pt.)

Least-square fitting Eye-balling with ruler
Error bar in graph 0.0x mA (0.5 pts) | Error bar in graph 0.x mA (0.5 pts)
Least-square method (0.5 pts) Expanded scale graph (0.5 pts)
Error analysis (0.5 pts) draw three lines for error analysis(0.5 pts)

C. Im+ A1y (0.5 pts.): Adequate value of I, (0.3 pts.) and error(+ A4 I, ) (0.2 pts.) from the
linear region of 7-1 curve.
d. Adequate value of Iy, with error (1.0 pts.)

lth = (21~26) + (0.01 or 0.2 for single value) mA

Adequate value of Iy, (0.5 pts.) and error (# 4 1y,) (0.5 pts.)
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| (mA)

32

31

30

29

28

27

26

25

24

23

22

L

JRRREN)
N

s\

TR
T

T

Light Intensity (V)
Fig. A-2 Straight lines and extrapolations
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Appendix :

OA1-1

e L east-Square Method :
l=m7+b — b=Iy

Fory=mx +b
y:I(mA)| x 7 Xy Xy =mxtb | (y-y()’
1 238/  0.30 7.14)  0.090 23.7937|  3.969E-05
2 24.2 0.66| 15.972| 0.4356 24.17134|  0.000821
3 24.6 1.02| 25.092| 1.0404 24.54898 0.00260
4 25.0 1.41] 35.25 1.9881 24.95809 0.00176
5 25.4 1.88| 47.752| 3.5344 25.45112 0.00261
6 258  2.23| 57.534| 4.9729 25.81827|  0.000334
7 26.2 2.64| 69.168| 6.9696 26.24836 0.00234
8 26.6|  3.04| 80.864| 9.2416 26.66796 0.00462
9 270/  3.36| 90.72| 11.2896 27.00364|  1.325E-05
10 27.4|  3.78| 103.572| 14.2884 27.44422 0.00196
11 27.8|  4.12| 114.536| 16.9744 27.80088|  7.744E-07
12 28.2|  4.48| 126.336| 20.0704 28.17852|  0.000461
13 28.6|  4.79| 136.994| 22.9441 28.50371 0.00927
Ty =  x=| Ixy=| IX= T (y-y(x)* =
340.6] 33.71| 910.93| 113.840 0.0268

A = N2x? - (2x)* =13(113.840) — (33.71)* = 343.556

e % (NExy— x5y) = 13(910.93;;3(.3;3;671)(340.6) 1049

b % (xsy - Txxy) = (113.840)(340.6) - (33.71)(910.93) _ 5 ¢

343.556
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o - /z(y—y(x))2 _ [0.0268 0,049
Y N-2 13-2

o= \/ (o,)? + (;—‘iax) — /(0.049)? + (1.049 x 0.005)° =0.049

2 2
. :\/NO' :\/13><o.o49 _ 0.0095
A 343.556

2
o, = 255 = 0.049 x| 113840 _ ¢ 508
A 343.556

|, =23.48+0.03 MA

OA1-2

e Eye-balling Method :
l=m7+b — b=l
Fory=mx+b

Line 1: y=1.00 x + 23.66
Line 2: y=1.05 x+ 23.48
Line3:y=1.13x+ 23.31
lin(av.) = 23.48

lin(std.) =0.18

l, =23.5+02 MA
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Part B: Optical Properties of Nematic Liquid Crystal
Electro-optical switching characteristic of 90° TN LC cell

Question B-(1) (5.0 points)
Measure, tabulate, and plot the electro-optical switching curve (7vs. Vs curve) of the NB
90° TN LC, and find its switching slope y, where 1 is defined as (Vg - V10)/V1o0.

a. Proper data table marked with variables and units. (0.3 pts)

Applied voltage| Light intensity |Applied voltage| Light intensity
(\Volts) (\Volts) (\Volts) (\Volts)
0.00 0.00 2.44 1.22
0.10 0.00 2.50 1.26
0.20 0.00 2.55 1.27
0.30 0.00 2.60 1.29
0.40 0.00 2.67 1.32
0.50 0.00 2.72 1.33
0.60 0.00 2.85 1.36
0.70 0.00 2.97 1.37
0.80 0.00 3.11 1.38
0.90 0.00 3.20 1.39
1.00 0.00 3.32 1.39
1.10 0.02 3.41 1.39
1.20 0.04 3.50 1.40
1.24 0.04 3.60 1.39
1.30 0.04 3.70 1.40
1.34 0.03 3.80 1.40
1.38 0.02 4.03 1.40
1.45 0.01 4.22 1.40
1.48 0.01 4.40 1.39
1.55 0.02 4.61 1.39
1.59 0.03 4.78 1.40
1.64 0.05 5.03 1.39
1.71 0.11 5.20 1.39
1.78 0.21 5.39 1.38
1.81 0.26 5.61 1.39
1.85 0.33 5.81 1.38
1.90 0.44 6.02 1.38
1.96 0.57 6.21 1.38
2.03 0.70 6.40 1.38
2.08 0.80 6.63 1.38
2.15 0.92 6.80 1.38
2.21 1.02 7.02 1.38
2.28 1.10 7.20 1.38
2.33 1.14
2.39 1.19
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b. Properly choose the size of scales and units for abscissa and ordinate that bears the
relation to the accuracy and range of the experiment. (0.3 pts)
c. Correct measurement of the light intensity (7) as a function of the applied voltage (Vims)
and adequate 7- Vms curve plot.
m The intensity of the transmission light is smaller than 0.05 Volts in the normally
black mode. (0.4 pts)
m  There is a small optical bounce before the external applied voltage reaches the
critical voltage. (0.8 pts)
m The intensity of the transmission light increases rapidly and abruptly when the
external applied voltage exceeds the critical voltage. (0.4 pts)
m The intensity of the transmission light displays the plateau behavior as the external
applied voltage exceeds 3.0 Wolts. (0.4 pts)

1.5 7
L Vg\’-‘#‘llll' Nyl e BE-EE
I L] T
| H
g . Plateau
o 1.0r - ]
S i "
b .
a L .-
< .
Q - u
g | ;
z Optical ™
05 bounce i
_I | -
L T=0 | v " o
_ :"
o.oo '""3'"'4""5""6""7

Applied Voltage (Volts)

d. Adequate value of y with error.
m  Find the maximum value of the light intensity in the region of the applied voltage
between 3.0 and 7.2 Volts (0.6 pts)
m  Determine the value of 90 % of the maximum light intensity. Obtain the value of the
applied voltage Vg by interpolation. (0.6 pts)
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m  Determine the value of 10 % of the maximum light intensity. Obtain the value of the
applied voltageV1 by interpolation. (0.6 pts)
m  Correcty = Ay value, (0.42 ~ 0.44) + 0.02. (0.4+0.2 pts)

Question B-(2) (Total 2.5 points)
Determine the critical voltage V. of this NB 90° TN LC cell. Show explicitly with
graph how you determine the value V.

a. Adequate value of V¢ with error, V¢ = AVc.
m  Make the expanded scale plot and take more data points in the region of V.
(0.8 pts)
m  Determine the value of V¢ when the intensity of the transmission light increases
rapidly and abruptly. (0.7 pts)
m  Correct V¢ + AVcvalue, (1.20 ~ 1.50) £+ 0.01 Volts. (0.8+0.2 pts)

O —
0.14| p
0.12+ ._
<0.10f i
0.08% W -
0.06] "= P

\%
=, 0.04 + "u i p i

Volts)

Light Intensity
n
) |

0.02} S -

OOO PR T TR T [N T TN T N T TN TN TN TN [N ST TN TN O AN S TN S
1.2 13 14 15 16 1.7
Applied Voltage (Volts)

(The data shown in this graph do not correspond to the data shown on the previous
page. This graph only shows how to obtain Vc.)
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Part C: Optical Properties of Nematic Liquid Crystal :
Electro-optical switching characteristic of parallel aligned LC cell

Question C-(1) (2.5 points)
Assume that the wavelength of laser light 650 nm, LC layer thickness 7.7 um, and
approximate value of An= 0.25 are known. From the experimental data T, and T
obtained above, calculate the accurate value of the phase retardation & and accurate
value of birefringence An of this LC cell at V=0.

a. Adequate value of & and An with error.
m Take and average the values of T . (0.3 pts)
m Take and average the values of T . (0.3 pts)
m  Determine the value of order m. (0.9 pts)
m Correct 6 value, 15.7 ~ 18.2. (0.5 pts)
m  Correct Anvalue, 0.20 ~0.24 (0.5 pts)

T, =230 0':‘:’“ 031 0314001 Volts
T, =1 +1'§3 +10% 1045001 Volts
an =¥ 183 - s-414+2mz (or —2.14+2mx)
2 NTu
5 2mAn _27x77x025 oo
p) 0.65
Take m=2(or3) ..0=16.70(5.327)
From 522790 . an= %t 022
2rd

Accepted value for .. An=(0.20 ~ 0.24)
*If tan§=1.83, the value for & will be either 4.687 or 6.687, which is not

consistent with data figure of problem C-(2).
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Question C-(2) (Total 3.0 points)
Measure, tabulate, and plot the electro-optical switching curve for T, of this parallel
aligned LC cell in the 8 = 45° configuration.

a. Proper data table marked with variables and units. (0.3 pts)

Applied voltage| Light intensity |Applied voltage| Light intensity |Applied voltage| Light intensity
(\Volts) (\Volts) (\Volts) (\Volts) (\Volts) (\Volts)
0.00 0.30 2.01 1.47 3.33 0.00
0.10 0.30 2.04 1.48 3.36 0.00
0.20 0.29 2.07 1.48 3.39 0.00
0.30 0.29 2.10 1.48 3.42 0.00
0.40 0.29 2.13 1.45 3.45 0.00
0.50 0.28 2.16 1.42 3.48 0.00
0.60 0.26 2.19 1.38 3.51 0.00
0.70 0.23 2.22 1.33 3.60 0.01
0.80 0.19 2.25 1.27 3.70 0.02
0.90 0.09 2.28 1.20 3.80 0.03
0.99 0.00 2.31 1.14 3.90 0.04
1.02 0.06 2.34 1.07 4.00 0.07
1.05 0.16 2.37 1.00 4.10 0.09
1.08 0.25 2.40 0.94 4.20 0.11
1.11 0.40 2.43 0.87 4.30 0.14
1.14 0.67 2.46 0.79 4.40 0.16
1.17 0.93 2.49 0.72 4.50 0.19
1.20 1.25 2.52 0.66 4.60 0.22
1.26 1.31 2.55 0.61 4.70 0.25
1.29 1.36 2.58 0.56 4.80 0.28
1.32 1.32 2.61 0.51 4,90 0.31
1.35 1.09 2.64 0.46 5.01 0.34
1.38 0.85 2.67 0.42 5.11 0.37
1.41 0.62 2.70 0.37 5.21 0.39
1.44 0.46 2.73 0.33 5.29 0.42
1.47 0.29 2.76 0.30 5.39 0.44
1.50 0.13 2.79 0.26 5.51 0.48
1.53 0.06 2.82 0.23 5.57 0.49
1.59 0.03 2.85 0.21 5.70 0.52
1.62 0.05 2.88 0.18 5.80 0.55
1.65 0.15 291 0.16 5.90 0.57
1.68 0.24 2.94 0.14 6.01 0.60
1.71 0.34 2.97 0.12 6.10 0.62
1.74 0.49 3.00 0.09 6.19 0.64
1.77 0.63 3.06 0.08 6.30 0.66
1.80 0.78 3.09 0.06 6.40 0.69
1.83 0.92 3.12 0.05 6.60 0.73
1.86 1.05 3.18 0.04 6.70 0.74
1.89 1.19 3.21 0.03 6.80 0.76
1.92 1.27 3.24 0.02 7.00 0.80
1.95 1.34 3.27 0.02 7.20 0.83

1.98 1.40 3.30 0.01
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b. Properly choose the size of scales and units for abscissa and ordinate that bears the
relation to the accuracy and range of the experiment. (0.3 pts)

c. Correct measurement of the T as a function of the applied voltage (Vms) and
adequate T -V ms curve plot.

m Three minima and two sharp maxima. (1.5 pts)
m  Maxima values within 15% from each other. (0.5 pts)
= Minima are less than the values of 0.1 Volts. (0.4 pts)
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| L I o
= C B .
%_5’0-5‘ Ll om n " _
1 3 B N -

i o n ]
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™ o ' % d '

i S 1

Ln ."..
i '-.i*" -.- |
||||i||||I||||I rol SN W N N NN N N N W NN Y Y M W
O'OO 1 2 3 4 5 6 o/

Applied Voltage (Volts)
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Question C-(3) (Total 2.0 points)
From the electro-optical switching data, find the value of the external applied voltage V..

a. Adequate value of V, with error.

0,12

O

H

o
N
|

O
o
(00]
|
|

Light Intensity (Volts)

Make the expanded scale plot and take more data points in the region of V. (0.3 pts)
Indicate the correct minimum of V,. (0.8 pts)

Obtain the value of V; by interpolation or rounding. (0.5 pts)

Correct V, value : (3.2 ~ 3.5) + 0.01 Volts. (0.2+0.2 pts)

30 32 34 36 38 40
Applied Voltage (Volts)
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Marking Scheme

Part A: Optical Properties of Laser Diode

No. Contents Sub | Total
Scores| Scores
A(1) Measure, tabulate, and plot the 7vs. | curve. 1.5 pts.
a |Proper data table marked with variables and units. 0.3
b |Proper sizes of scales, and units for abscissa and ordinate that bear| 0.3
relation to the accuracy and range of the experiment.
¢ |Proper data and adequate curve plotting (Fig. A-1) 0.9
A(2) |Estimate the maximum current |, with uncertainty in the linear region 3.5 pts.
of the gvs. | curve. Mark the linear region on the 7- | curve figure by
using arrows (3) and determine the threshold current Iy with
uncertainty.
a Mark the linear region. 0.5
b |Least-square fit or eye-balling with ruler and error analysis 1.5
c |Obtain I, + Al properly 0.5
d |Adequate value of Iy, £ A Iy, 1.0
Part B: Optical Properties of Nematic Liquid Crystal
Electro-optical switching characteristic of 90° TN LC cell
No. Contents Sub | Total
Scores| Scores
B-(1) |Measure, tabulate, and plot the electro-optical switching curve (7 vs. 5.0 pts.
Vs curve) of the NB 90° TN LC, and find its switching slope 7,
where v is defined as (Vgo -~ V10)/V1o.
a Proper data table marked with variables and units. 0.3
b |Properly choose the size of scales and units for abscissa and ordinate| 0.3
that bears the relation to the accuracy and range of the experiment.
¢ |Correct measurement of the light intensity (7) as a function of the
applied voltage (Vims) and adequate 7- Vs curve plot.
m The intensity of the transmission light reaches zero value in the 0.4
normally black mode.
m There is a small optical bounce before the external applied voltage| 0.8
reaches the critical voltage.
m The intensity of the transmission light increases rapidly and 0.4
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abruptly when the external applied voltage exceeds the critical
voltage.

m The intensity of the transmission light displays the plateaul 0.4
behavior as the external applied voltage exceeds 3.0 Volts.
d |Adequate value of y with error, y + Ay.
m Correctly analyzing the maximum light intensity. 0.6
m Correctly analyzing the value of Vgp. 0.6
m Correctly analyzing the value of V1. 0.6
m Correct y + Ay value, (0.42 ~ 0.44) = 0.02. 0.6
B-(2) Determine the critical voltage V. of this NB 90° TN LC cell. 2.5 pts.
Show explicitly with graph how you determine the value V.,
Adequate value of V¢ with error, Ve £ A Ve.
m Make the expanded scale plot and take more data points in the 0.8
region of V.
m Correctly analyzing the value of V. 0.7
m Correct V¢ + A Ve value, (1.2 ~ 1.5) + 0.01 Volts. 1.0
Part C: Optical Properties of Nematic Liquid Crystal :
Electro-optical switching characteristic of parallel aligned LC cell
No. |Contents Sub | Total
Scores| Scores
C-(1) |Assume that the wavelength of laser light 650 nm, LC layer thickness 2.5 pts.
7.7 um, and approximate value of An~= 0.25 are known. From the
experimental data T. and T, obtained above, calculate the accurate
value of the phase retardation 6 and accurate value of birefringence
An of this LC cell at V=0.
Adequate value of 6 and An with error.
m Correctly analyzing the values of T . 0.3
m Correctly analyzing the values of T .. 0.3
m Correctly determining the value of order m. 0.9
m Correct o value, 17.7 ~ 18.2. 0.5
m Correct Anvalue, 0.23 ~ 0.25. 0.5
C-(2) |Measure, tabulate, and plot the electro-optical switching curve for T 3.0 pts.
of this parallel aligned LC cell in the 0 = 45° configuration.
a Proper data table marked with variables and units. 0.3
b |Properly choose the size of scales and units for abscissa and ordinate| 0.3
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that bears the relation to the accuracy and range of the experiment.

c |Correct measurement of the T as a function of the applied voltage
(Vms) and adequate T | -Vms curve plot.
m Three minima and two sharp maxima. 1.5
m Maxima values within 15 % from each other. 0.5
= Minima are less than the values of 0.1 Volts. 0.4
C-(3) |[From the electro-optical switching data, find the value of the external 2.0 pts.
applied voltage V-
Adequate value of V. with error.
m Make the expanded scale plot and take more data points in the 0.3
region of V.
» Indicate the correct minimum of V. 0.8
m Correctly analyzing the value of V.. 0.5
m Correct V.t A V.value, (3.2~3.5)+0.1 Volts. 0.4
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Theoretical Question 1 Page 1/2

Theoretical Question 1:
“Ping-Pong” Resistor

A capacitor consists of two circular parallel plates both with radius R separated by
distance d, where d << R, as shown in Fig. 1.1(a). The top plate is connected to a
constant voltage source at a potential /' while the bottom plate is grounded. Then a thin
and small disk of mass m with radius » (<< R, d ) and thickness ¢ (<<r) is placed on
the center of the bottom plate, as shown in Fig. 1.1(b).

Let us assume that the space between the plates is in vacuum with the dielectric
constant &, ; the plates and the disk are made of perfect conductors; and all the
electrostatic edge effects may be neglected. The inductance of the whole circuit and the

relativistic effects can be safely disregarded. The image charge effect can also be

neglected.
side view +V
vV
“mm d ;
tv T
A L
— — v mg -
(a) ®)

Figure 1.1 Schematic drawings of (a) a parallel plate capacitor
connected to a constant voltage source and (b) a side view of the
parallel plates with a small disk inserted inside the capacitor. (See text
for details.)

(a) [1.2 points] Calculate the electrostatic force £, between the plates separated by d

before inserting the disk in-between as shown in Fig. 1.1(a).

(b) [0.8 points] When the disk is placed on the bottom plate, a charge ¢ on the disk of
Fig. 1.1(b) is related to the voltage V' by ¢= yV .Find y intermsof r, d,and ¢g,.

(¢) [0.5 points] The parallel plates lie perpendicular to a uniform gravitational field g .

To lift up the disk at rest initially, we need to increase the applied voltage beyond a
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threshold voltage V, . Obtain V, intermsof m, g, d,and y.

(d) [2.3 points] When V >V, , the disk makes an up-and-down motion between the
plates. (Assume that the disk moves only vertically without any wobbling.) The
collisions between the disk and the plates are inelastic with the restitution coefficient

1= (Ve / Vieore ) » Where v and v are the speeds of the disk just before and

after

after the collision respectively. The plates are stationarily fixed in position. The speed of
the disk just after the collision at the bottom plate approaches a “steady-state speed” v_,

which depends on V' as follows:

v, =vaVi+f. (1.1)

Obtain the coefficients ¢ and f intermsof m, g, y, d,and 7. Assume that the
whole surface of the disk touches the plate evenly and simultaneously so that the

complete charge exchange happens instantaneously at every collision.

(e) [2.2 points] After reaching its steady state, the time-averaged current / through the
capacitor plates can be approximated by I =V> when ¢V >>mgd . Express the
coefficient y intermsof m, y, d,and 7.

() [3 points] When the applied voltage V' is decreased (extremely slowly), there exists
a critical voltage V. below which the charge will cease to flow. Find ¥V, and the

corresponding current /_ intermsof m, g, y, d,and . By comparing V, with
the lift-up threshold V, discussed in (c), make a rough sketch of the -V

characteristics when V' is increased and decreased in the range from V' =0 to 3V, .
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Answer Form

(@) F, =
b)) x=
© Va=
d a= [ =
() y=
H 1=
V. =
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Theoretical Question 2
Rising Balloon

A rubber balloon filled with helium gas goes up high into the sky where the pressure
and temperature decrease with height. In the following questions, assume that the shape
of the balloon remains spherical regardless of the payload, and neglect the payload
volume. Also assume that the temperature of the helium gas inside of the balloon is
always the same as that of the ambient air, and treat all gases as ideal gases. The

universal gas constant is R =8.31 J/mol-K and the molar masses of helium and air are
M, =4.00x10"kg/mol and M, = 28.9x10 > kg/mol, respectively. The gravitational

acceleration is g = 9.8 m/s”.

[Part A |

(a) [L.5 points] Let the pressure of the ambient air be P and the temperature be 7 .
The pressure inside of the balloon is higher than that of outside due to the surface

tension of the balloon. The balloon contains # moles of helium gas and the pressure
inside is P+ AP . Find the buoyant force F, acting on the balloon as a function of P

and AP.

(b) [2 points] On a particular summer day in Korea, the air temperature 7 at the height
z from the sea level was foundtobe 7(z)=7,(1-z/z,) intherange of 0<z <15
km with z,=49 km and 7, =303 K. The pressure and density at the sea level were P,
=1.0atm= 1.01x10° Paand p,=1.16 kg/m’, respectively. For this height range, the
pressure takes the form

P(z)=P,(1-z/z,)" . 2.1)

Express 7 in terms of z,, p,, F,, and g, and find its numerical value to the two
significant digits. Treat the gravitational acceleration as a constant, independent of
height.
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[Part B |

When a rubber balloon of spherical shape with un-stretched radius 7, is inflated to a

sphere of radius r (>r,), the balloon surface contains extra elastic energy due to the

stretching. In a simplistic theory, the elastic energy at constant temperature 7 can be

expressed by

U =471 kRT Q1 +%—3) (2.2)

where A=r/r, (1) is the size-inflation ratio and x is a constant in units of mol/m’.

(¢) [2 points] Express AP in terms of parameters given in Eq. (2.2), and sketch AP as
a function of A=r/r.

(d) [1.5 points] The constant x can be determined from the amount of the gas needed

to inflate the balloon. At 7,=303 K and P,=1.0 atm = 1.01x10° Pa, an un-stretched

balloon (A =1) contains #,=12.5 moles of helium. It takes »=3.6 n,=45 moles in total

to inflate the balloon to A=1.5 at the same 7, and F,. Express the balloon parameter

P
"0 Evaluate a

a, defined as a=x/x,, in terms of n, n,, and A, where «, =
0

to the two significant digits.

[Part C]

A balloon is prepared as in (d) at the sea level (inflated to A=1.5 with n=3.6n, =45
moles of helium gas at 7,=303 K and P,=1 atm=1.01x10" Pa). The total mass
including gas, balloon itself, and other payloads is M. =1.12 kg. Now let the balloon

rise from the sea level.

() [3 points] Suppose that the balloon eventually stops at the height z, where the

buoyant force balances the total weight. Find z, and the inflation ratio 4, at that



Theoretical Question 2 Page 3/3

height. Give the answers in two significant digits. Assume there are no drift effect and

no gas leakage during the upward flight.
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Theoretical Question 2:

v

(@) Fy =
(b)y n= Numerical
value of =
AP 4
(c) AP=
0
1 2
(d) a = Numerical
value of a=

(e) z, = km /lf =
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Theoretical Question 3

Atomic Probe Microscope

Atomic probe microscopes (APMs) are powerful tools in the field of nano-science.
The motion of a cantilever in APM can be detected by a photo-detector monitoring the
reflected laser beam, as shown in Fig. 3.1. The cantilever can move only in the vertical
direction and its displacement z as a function of time ¢ can be described by the
equation

d’z  dz

" +bE+kz:F, 3.1)

m

where m is the cantilever mass, k =ma, is the spring constant of the cantilever, b
is a small damping coefficient satisfying @, >>(b/m)>0, and finally F is an

external driving force of the piezoelectric tube.

Vi=coxz output
> >
lock-in
....... @ photo-detector r“t amplifier
4 4
e '
- reference
nput 4 4 signal
laser v Vi *‘_@
R
A} \ 4 VR
< phase shifter —
k piezotube
z=(0 ¢ F piezotube
m
9 000300 \ )
SEBSEEEEELTSs Cantilever—__ | =,
sample > v—m__o

Figure 3.1 A schematic diagram for a scanning probe microscope (SPM).
The inset in the lower right corner represents a simplified mechanical

model to describe the coupling of the piezotube with the cantilever.

[Part A]
(a) [1.5 points] When F =F sinwt, z(t) satisfying Eq. (3.1) can be written as

z(t) = Asin(wt —@p) , where A>0 and 0<¢4<7 . Find the expression of the
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amplitude 4 and tang in terms of F,, m, w, ®w,, and b. Obtain 4 and the

phase ¢ at the resonance frequency o = w,.

(b) [1 point] A lock-in amplifier shown in Fig.3.1 multiplies an input signal by the lock-
in reference signal, V, =V,,sinwt, and then passes only the dc (direct current)
component of the multiplied signal. Assume that the input signal is given by
V.=V, sin(wt—-¢,). Here V,,, V,,, o,,and ¢ are all positive given constants. Find

the condition on @ (>0) for a non-vanishing output signal. What is the expression for

the magnitude of the non-vanishing dc output signal at this frequency?

(¢) [1.5 points] Passing through the phase shifter, the lock-in reference voltage
V.=V sinawt changes to V', =V, sin(wt+7/2). V', applied to the piezoelectric
tube, drives the cantilever with a force F =c,}J'',. Then, the photo-detector converts the
displacement of the cantilever, z, into a voltage V, =c,z. Here ¢, and ¢, are

constants. Find the expression for the magnitude of the dc output signal at o= w,.

(d) [2 points] The small change Am of the cantilever mass shifts the resonance
frequency by Aw,. As a result, the phase ¢ at the original resonance frequency ,
shifts by A¢ . Find the mass change Am corresponding to the phase shift
A¢ =7r/1800, which is a typical resolution in phase measurements. The physical
parameters of the cantilever are given by m= 1.0x10"> kg, k=1.0 N/m, and
(b/m)= 1.0x10° s'. Use the approximations (1+x)“ ~l+ax  and
tan (7/2+x)=—-1/x when |x|<<1.

[Part B]
From now on let us consider the situation that some forces, besides the driving force

discussed in Part A, act on the cantilever due to the sample as shown in Fig.3.1.

(e) [1.5 points] Assuming that the additional force f(#) depends only on the distance

h between the cantilever and the sample surface, one can find a new equilibrium
position Ah,. Near h=h,, we can write f(h)= f(h,)+c;(h—h,), where c, is a

constantin /. Find the new resonance frequency @', intermsof ®,, m,and c;.

(f) [2.5 points] While scanning the surface by moving the sample horizontally, the tip of

the cantilever charged with Q = 6e encounters an electron of charge ¢ =e trapped
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(localized in space) at some distance below the surface. During the scanning around the
electron, the maximum shift of the resonance frequency Aw,(=®',—w,) is observed to
be much smaller than @,. Express the distance d, from the cantilever to the trapped
electron at the maximum shift in terms of m, ¢, O, ®,, Aw,, and the Coulomb
constant k. Evaluate d, innm (1 nm= 1x10~m)for Aw,=20 s

The physical parameters of the cantilever are m=1.0x10"% kg and & =1.0 N/m.
Disregard any polarization effect in both the cantilever tip and the surface. Note that
k,=1/4re, =9.0x10° N-m*C*and e=-1.6x10" C.
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Answer Form

Theoretical Question 3:

(a) 4= and tang =

At w=a,, A= and ¢:

(b) The condition on @ for a non-vanishing output signal :

The magnitude of the dc signal =

(c) The magnitude of the signal =

d) Am= ke
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(e) @'y=
() d,= ; Evaluated d, = nm.
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IPhO

35th International
Physics Olympiad

POHANG , KOREA

35" International Physics Olympiad

Pohang, Korea
15 ~ 23 July 2004

Experimental Competition
Monday, 19 July 2004

Please, first read the following instruction carefully:

Eal ol

The time available is 5 hours.

Use only the pen provided.

Use only the front side of the writing sheets. Write only inside the boxed area.

In addition to the blank writing sheets, there are Answer Forms where you must
summarize the results you have obtained.

Write on the blank writing sheets the results of your measurements and whatever
else you consider is required for the solution to the question. Please, use as little text
as possible; express yourself primarily in equations, numbers, figures, and plots.

In the boxes at the top of each sheet of paper write down your country code
(Country Code) and student number (Student Code). In addition, on each blank
writing sheets, write down the progressive number of each sheet (Page Number)
and the total number of writing sheets used (Total Number of Pages). If you use
some blank writing sheets for notes that you do not wish to be marked, put a large X
across the entire sheet and do not include it in your numbering.

At the end of the experiment, arrange all sheets in the following order:

Answer forms (top)

used writing sheets in order

the sheets you do not wish to be marked

unused writing sheets

e the printed question (bottom)

It is not necessary to specify the error range of your values. However, their
deviations from the actual values will determine your mark.

Place the papers inside the envelope and leave everything on your desk. You are not
allowed to take any sheet of paper or any material used in the experiment out of

the room.
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Apparatus and materials
1. List of available apparatus and materials
Name Quantity Name Quantity
A | Photogate timer 1 L | Philips screw driver 1
B | Photogate 1 M | Weight with a string 1
C | Connecting cable 1 N | Electronic balance 1
D | Mechanical “black box” 1 O | Stand with a ruler 1
(Black cylinder)
E | Rotation stage 1 P | U-shaped support 1
F | Rubber pad 1 Q | C-clamp 1
G | Pulley 2 Ruler (0.50 m, 0.15 m) 1 each
H | Pin 2 Vernier calipers 1
I | U-shaped plate 1 Scissors 1
J | Screw 2 Thread 1
K | Allen (hexagonal, L- 1 Spares  (string, thread,
shaped) wrench pin, screw, Allen wrench)
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2. Instruction for the Photogate Timer

The Photogate consists of an infrared LED and a photodetector. By connecting the
Photogate to the Photogate Timer, you can measure the time duration related to the

blocking of the infrared light reaching the sensor.

+ Be sure that the Photogate is connected to the Photogate Timer. Turn on the
power by pushing the button labelled “POWER”.

+ To measure the time duration of a single blocking event, push the button
labelled “GATE”. Use this “GATE” mode for speed measurements.

+ To measure the time interval between two or three successive blocking events,
push the corresponding “PERIOD”. Use this “PERIOD” mode for oscillation
measurements.

« If “DELAY” button is pushed in, the Photogate Timer displays the result of each
measurement for 5 seconds and then resets itself.

« If “DELAY” button is pushed out, the Photogate Timer displays the result of the
previous measurement until the next measurement is completed.

« After any change of button position, press the “RESET” button once to activate

the mode change.

Caution: Do not look directly into the Photogate. The invisible infrared light may be
harmful to your eyes.

Photogate, Photogate Timer, and connection cable
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3. Instruction for the Electronic Balance

« Adjust the bottom legs to set the balance stable. (Although there is a level
indicator, setting the balance in a completely horizontal position is not
necessary.)

«  Without putting anything on the balance, turn it on by pressing the “On/Off”
button.

+ Place an object on the round weighing pan. Its mass will be displayed in grams.

« If there is nothing on the weighing pan, the balance will be turned off
automatically in about 25 seconds.

©

v @B
IE SERIES E

Balance
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4. Instruction for the Rotation Stage

« Adjust the bottom legs to set the rotation stage stable on a rubber pad in a near
horizontal position.

« With a U-shaped plate and two screws, mount the Mechanical “Black Box”
(black cylinder) on the top of the rotating stub. Use Allen (hexagonal, L-shaped)
wrench to tighten the screws.

+ The string attached to the weight is to be fixed to the screw on the side of the
rotating stub. Use the Philips screw driver.

Caution: Do not look too closely at the Mechanical “Black Box” while it is rotating.
Your eyes may get hurt.

Mechanical “Black Box” and rotation stage

Rotating stub Weight with a string
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Mechanical “Black Box”

[Question]| Find the mass of the ball and the spring constants of two
springs in the Mechanical “Black Box”.

General Information on the Mechanical “Black Box”

The Mechanical “Black Box” (MBB) consists of a solid ball attached to two
springs in a black cylindrical tube as shown in Fig. 1. The two springs are fashioned
from the same tightly wound spring with different number of turns. The masses and the
lengths of the springs when they are not extended can be ignored. The tube is
homogeneous and sealed with two identical end caps. The part of the end caps plugged
into the tube is 5 mm long. The radius of the ball is 11 mm and the inner diameter of the
tube is 23 mm. The gravitational acceleration is given as g = 9.8 m/s”. There is a finite

friction between the ball and the inner walls of the tube.

lem

Fig. 1 Mechanical “Black Box™ (not to scale)

The purpose of this experiment is to find out the mass m of the ball and the spring
constants k; and k, of the springs without opening the MBB. The difficult aspect of this
problem is that any single experiment cannot provide the mass m or the position / of the
ball because the two quantities are interconnected. Here, / is the distance between the
centers of the tube and the ball when the MBB lies horizontally in equilibrium when the
friction is zero.

The symbols listed below should be used to represent the physical quantities of

interest. If you need to use other physical quantities, use symbols different from those

already assigned below to avoid confusion.
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Assigned Physical Symbols

Mass of the ball: m

Radius of the ball: » (= 11 mm)

Mass of the MBB excluding the ball: M

Length of the black tube: L

Length of each end cap extending into the tube: & (= 5.0 mm)

Distance from the center-of-mass of the MBB to the center of the tube: Im

Distance between the center of the ball and the center of the tube: x (or / at
equilibrium when the MBB is horizontal)

Gravitational acceleration: g (= 9.8 m/s?)

Mass of the weight attached to a string: m,

Speed of the weight: v

Downward displacement of the weight: /

Radius of the rotating stub where the string is to be wound: R

Moments of inertia: /, 1,, 11, I, and so on

Angular velocity and angular frequencies: @, @, @, and so on

Periods of oscillation: 77, 7>

Effective total spring constant: k

Spring constants of the two springs: ki, k>

Number of turns of the springs: Ni, N,

Caution: Do not try to open the MBB. If you open it, you will be disqualified

and your mark in the Experimental Competition will be zero.

Caution: Do not shake violently nor drop the MBB. The ball may be detached
from the springs. If your MBB seems faulty, report to the proctors
immediately. It will be replaced only once without affecting your
mark. Any further replacement will cut down your mark by 0.5
points each time.
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PART-A Product of the mass and the position of the ball (mx/) (4.0 points)

[ 1s the position of the center of the ball relative to that of the tube when the MBB
lies horizontally in equilibrium as in Fig. 1. Find the value of the product of the mass m
and the position / of the ball experimentally. You will need this to determine the value of
m in PART-B.

1. Suggest and justify, by using equations, a method allowing to obtain mx/. (2.0
points)

2. Experimentally determine the value of mx/. (2.0 points)
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PART-B The mass m of the ball (10.0 points)

Figure 2 shows the MBB fixed horizontally on the rotating stub and a weight
attached to one end of a string whose other end is wound on the rotating stub. When the
weight falls, the string unwinds, and the MBB rotates. By combining the equation
pertinent to this experiment with the one obtained in PART-A, you can find an equation
for m.

Between the ball and the inner walls of the cylindrical tube acts a frictional force.
The physical mechanisms of the friction and the slipping of the ball under the rotational
motion are complicated. To simplify the analysis, you may ignore the energy dissipation
due to kinetic friction.

JfCF Jf{,'g

?
L : i

Fig. 2 Rotation of the Mechanical “Black Box™ (not to scale)
The angular velocity @ of the MBB can be obtained
from the speed v of the weight passing through the
Photogate. x is the position of the ball relative to the
rotation axis, and d is the length of the weight.



Experimental Competition / Question Page 10/12

Measure the speed of the weight v for various values of downward displacement
h of the weight. It is recommended to scan the whole range from /= 1.0x10% m
to 4.0x 10" m by measuring v just once at each / with an interval of 1.0x 107
~2.0x 107 m. Plot the data on graph paper in a form that is suitable to find the
value of m. After you get a general idea of the relation between v and 4, you may
repeat the measurement or add some data points, if necessary. When the MBB
rotates slowly, the ball does not slip from its static equilibrium position because
of the friction between the ball and the tube. When the MBB rotates sufficiently
fast, the ball hits and actually stays at the end cap of the tube because the springs
are weak. Identify the slow rotation region and the fast rotation region on the
graph. (4.0 points)

Show your measurements are consistent with the fact that % is proportional to v*
( h=CV") in the slow rotation region. Show from your measurements that / =
AV*+B in the fast rotation region. (1.0 points)

The moment of inertia of a ball of radius » and mass m about the axis passing
through its center is 2mr*/5. If the ball is displaced a distance a perpendicular to
the axis, the moment of inertia increases by ma®. Use the symbol [ to represent
the total moment of inertia of all the rotating bodies excluding the ball. Relate

the coefficient C to the parameters of the MBB such as m, /, etc. (1.0 points)

Relate the coefficients 4 and B to the parameters of the MBB such as m, /, etc.
(1.0 points)

Determine the value of m from your measurements and the results obtained in
PART-A. (3.0 points)
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PART-C The spring constants ky and k, (6.0 points)

In this part, you need to perform small oscillation experiments using the MBB as a
rigid pendulum. There are two small holes at each end of the MBB. Two thin pins
inserted into the holes can be used as the pivot of small oscillation. The U-shaped
support is to be clamped to the stand and used to support the pivot. Note that the angular
frequency @ of small oscillation is given as @@= [torque/(moment of inertia X

angle)]l/ 2

. Here, the torque and the moment of inertia are with respect to the pivot.
Similarly to PART-B, consider two experimental conditions, shown in Fig. 3, to avoid

the unknown moment of inertia /, of the MBB excluding the ball.

A &
'.
(o)
Al
(o]
-
(=)
[ o)
S
[ = )
il
e
[ r— )
il 4 'y
'.
[ rm— )
.-
L g
amn’
L " L
(o)
"-"_
(ot
il
.-
)
_-i:==:h_
—=1
¥ Y
(D (2)

Fig. 3 Oscillation of the Mechanical “Black Box™ (not to scale)
The periods of small oscillation, 7 and 75, for two
configurations shown above can be measured using
the Photogate. Two pins and a U-shaped support are

supplied for this experiment.



IPhO
i e Experimental Competition / Question Page 12/12

1. Measure the periods 77 and 7 of small oscillation shown in Figs 3(1) and (2) and

write down their values, respectively. (1.0 points)

2. Explain (by using equations) why the angular frequencies @, and @, of small
oscillation of the configurations are different. Use the symbol /, to represent the
moment of inertia of the MBB excluding the ball for the axis perpendicular to the
MBB at the end. Use the symbol A4/ as the displacement of the ball from the

horizontal equilibrium position. (1.0 points)

3. Evaluate 4/ by eliminating /, from the previous results. (1.0 points)

4. By combining the results of PART-C 1~3 and PART-B, find and write down the

value of the effective total spring constant k of the two-spring system. (2.0 points)

5. Obtain the respective values of k; and k,. Write down their values. (1.0 points)
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Answer Form

PART-A

1. Suggest and justify, by using equations, a method allowing to obtain mx/. (2.0
points)

2. Experimentally determine the value of mx/. (2.0 points)

mxl =
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Country Code Student Code

PART-B

1. Measure v for various values of 4. Plot the data on a graph paper in a form that is
suitable to find the value of m. Identify the slow rotation region and the fast rotation
region on the graph. (4.0 points)

(On a separate graph paper)

2. Show from your measurements that # = Cv* in the slow rotation region, and A =

AV*+B in the fast rotation region. (1.0 points)
(In the plot above)

3. Relate the coefficient C to the parameters of the MBB. (1.0 points)
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4. Relate the coefficients 4 and B to the parameters of the MBB. (1.0 points)
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5. Determine the value of m from your measurements and the results obtained in
PART-A. (3.0 points)
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PART-C

1. Measure the periods 7} and 7, of small oscillation shown in Figs. 3 (1) and (2) and

write down their values, respectively. (1.0 points)

T1=

T2=

2. Explain, by using equations, why the angular frequencies @, and @, of small
oscillation of the configurations are different. (1.0 points)
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3. Evaluate Al by eliminating /, from the previous results. (1.0 points)

Al

Country Code

Student Code
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4. Write down the value of the effective total spring constant & of the two-spring

system. (2.0 points)

5. Obtain the respective values of k; and k,. Write down their values. (1.0 points)
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Theoretical Question 1: Ping-Pong Resistor

1. Answers
1 y?
(a) FR :_EﬂRngF
727_2
(b) X==6
2med
(© V= |75
X

) v.=+aV’+p

e | 7
© 7= 1-n \ 2md*

v 1-n° |mgd ; 2+J1-1° Sz
(f) c 1 2 b c 2 g m}(
+n°\ (I+m)A+nr7)

I A

I~y
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2. Solutions
(a) [1.2 points]
The charge O induced by the external bias voltage /* can be obtained by applying

the Gauss law:

—

50§E-d§

0 (al)

Q:goE-(;sz):go[gj-(sz), (a2)

where V =FEd.

The energy stored in the capacitor:

V 4 Vr 1 VZ
U=|0(V"dV'=|g,aR*| — |dV' ==&, R’ —. a3
! o) j : ( dj ek~ (a3)
The force acting on the plate, when the bias voltage V' is kept constant:
ou 1 V2
LF =t — =g R —. a4
Y ad 2" 4 (&4)

[An alternative solution:]

Since the electric field E' acting on one plate should be generated by the other plate

and its magnitude is

E'= lE _ , (as5)
2 2d
the force acting on the plate can be obtained by
F, =0F". (a6)

(b) [0.8 points]
The charge ¢ on the small disk can also be calculated by applying the Gauss law:

goﬁ-dg:q. (b1)

Since one side of the small disk is in contact with the plate,
2

q:—gOE-(mz)z—go%V:;(V. (b2)
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2
. : ar
Alternatively, one may use the area ratio for g = —( 5 jQ .

2

r
.'.12—807. (b3)

(¢) [0.5 points]
The net force, F

net >

acting on the small disk should be a sum of the gravitational and

electrostatic forces:

Fo=F+F.. (cl)

The gravitational force: F, =-mg .

The electrostatic force can be derived from the result of (a) above:

2
F. :%go%rﬂ :%Vz. (c2)

In order for the disk to be lifted, one requires F, ., >0:

net

Xy e >0, (c3)

2d

v, = [Pmed (c4)
Ve
(d) [2.3 points]

Let v, be the steady velocity of the small disk just after its collision with the bottom

plate. Then the steady-state kinetic energy K of the disk just above the bottom plate

is given by

K, = lmVS2 . (d1)

2

For each round trip, the disk gains electrostatic energy by

AU =2qV . (d2)
For each inelastic collision, the disk lose its kinetic energy by

1
AI<lcoss = Kbefore - Kafter = (1 - nz)Kbefore = (? - leafter . (d3)

Since K, is the energy after the collision at the bottom plate and (K, +¢qV —mgd) 1is
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the energy before the collision at the top plate, the total energy loss during the round trip
can be written in terms of K_:

AK =(%—1st+(1—772)(Ks+qV—mgd)- (d4)

In its steady state, AU should be compensated by AK

2qV=(L2_1jKS+(1—n2)(KS +qV —mgd). (d5)
n

Rearranging Eq. (d5), we have

772
K= [a+n)qV +1=1")mgd]

2 2
:(lﬁnzqu+(lf772 ]mgd (d6)

Therefore,

ST -

Comparing with the form:

v, =+al’+ 2, (d3)

a=(1’72 j(z—;‘j ﬂ{ i 2](2gd). (d9)
-n m I+7

[An alternative solution:]

Let v, be the velocity of the small disk just after n-th collision with the bottom plate.
Then the kinetic energy of the disk just above the bottom plate is given by
K, :lmvi . (d10)
2
When it reaches the top plate, the disk gains energy by the increase of potential energy:
AU, =qV —mgd . (dI1)

Thus, the kinetic energy just before its collision with the top plate becomes

1
K =Emvip =K, +AU,, . (d12)

n—up
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Since 7=V .. / Vi » the kinetic energy after the collision with the top plate becomes

scaled down by a factor of 77:

K, =n""K, - (d13)

n—up

Now the potential energy gain by the downward motion is:
AU =qV +mgd (d14)

so that the kinetic energy just before it collides with the bottom plate becomes:

down

=K' +AU

n—down n—up down *

K (d15)

Again, due to the loss of energy by the collision with the bottom plate, the kinetic
energy after its (n+1) -th collision can be obtained by

K, . :772 K, _down
=117 (K, + AU o)
=" (" (K, +AU ) + AU ) (d16)
=0’ (* (K, +qV —mgd) +qV +mgd)
="K, +n*(1+n")qV +n°(1-n")mgd.

. . 1
As n — o, we expect the velocity v, — v, thatis, K, > K = Emvf :

1
K, =—— A+ 5")qV +7°(~n* ymgd]

S 1_774

2 2

n Ui
= V+ mgd d17
(l_nzjq (an] g (d17)

(e) [2.2 points]
The amount of charge carried by the disk during its round trip between the plates is
AQ =2¢q, and the time interval At =t +t¢_, where ¢, (¢ ) is the time spent during the

up- (down-) ward motion respectively.
Here ¢, (¢_) can be determined by

Vol +la+tf =d
2
(el)

\na +%at2 =d

where v, (v,_) is the initial velocity at the bottom (top) plate and a, (a_) is the up-
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(down-) ward acceleration respectively.

Since the force acting on the disk is given by

F:mai:qumg:%img, (e2)
in the limit of mgd <<qV ', a, can be approximated by
¢ =a —a ~1" (e3)
md

which implies that the upward and down-ward motion should be symmetric. Thus,
Eq.(el) can be described by a single equation with ¢, =t =t , v,=v, =v,, and
a,=a, =a_. Moreover, since the speed of the disk just after the collision should be

the same for the top- and bottom-plates, one can deduce the relation:

Vs = U(Vs + aOtO ) H (64)
from which we obtain the time interval Af¢ =2z,

At=2t, = 2(“—”]3 . (e5)

n Ja,
From Eq. (d6), in the limit of mgd << qV , we have
| n’
K. =—mv, = V. e6
s =MV (1 e jq (e6)

By substituting the results of Egs. (e3) and (e6), we get

2 2 2
ar=2| 1) [ 21 md” _, [1=7 2’”‘[2 . (€7)
n )\Nl=n"\ qV I+n\ 2V
AQ _2q
At At°

2 3
1=y M0 2V W0 2 e (e8)
At 1-n\2md 1-n\2md
7 1-n\ 2md’

Therefore, from [ =

[Alternative solution #1:]

Starting from Eq. (e3), we can solve the quadratic equation of Eq. (el) so that
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\% 2da

R ) e (e10)
a Vor

When it reaches the steady state, the initial velocities v,, are given by

V0+:Vs (ell)

2d
Vo =1 (v, +agt,) =nv, 1+ D, (e12)
VS

where v, can be rewritten by using the result of Eq. (e6),

2 2
v: zaV:(I?nzjziV =(li7772j2a0d, (el3)

As a result, we get VO_;UVS-l:VS and consequently ¢, =£(1—1j, which is
n ag\1

equivalent to Eq. (e4).

[Alternative solution #2:]

The current / can be obtained from
;o249 _2qv
At d

where Vv is an average velocity. Since the up and down motions are symmetric with the

, (el4)

same constant acceleration in the limit of mgd << gV,

v:l(vs+£) (e15)
2 n
Thus, we have
=411 (e16)
2d n

Inserting the expression (Eq. (el5)) of v, into Eq. (e16), one obtains an expression

identical to Eq. (e8).

(f) [3 points]
The disk will lose its kinetic energy and eventually cease to move when the disk can not

reach the top plate. In other words, the threshold voltage V., can be determined from

the condition that the velocity v, of the disk at the top plate is zero, i.e., v, =0.

In order for the disk to have v, =0 at the top plate, the kinetic energy K, at the
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top plate should satisfy the relation:
K. =K, +qV.-mgd =0, (f1)

where K_ is the steady-state kinetic energy at the bottom plate after the collision.

Therefore, we have

n’ n’
T laVe+ 7 [mgd +qV, —mgd =0, (f2)
-7 l+7
or equivalently,
(1+7n7)qV, —(1=n")mgd =0. (f3)
22
gV, =+ mgd ()
l+7

From the relation g = yV_,

_ 2
= T /”Lgd. (5)
I+ \ x

In comparison with the threshold voltage ¥V, of Eq. (c4), we can rewrite Eq. (f5) by
Vc = Zthh (f6)
where z_ should be used in the plotof / vs. (V/V,) and

_ | 1-7
ZC_/20+UG. (7)

[Note that an alternative derivation of Eq. (fl) is possible if one applies the energy
compensation condition of Eq. (d5) or the recursion relation of Eq. (d17) at the top
plate instead of the bottom plate.]

Now we can setup equations to determine the time interval Ar=¢ +1¢, :

' +%a_tf =d (f3)

Vmg+%mﬁ=d (f9)

where the accelerations are given by

qv. 1-7° -2’
a = c _ = —1 = flo
Y md & [1+772 & 1+7? & (f10)
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qV. 1-7° 2
a = c + — +1 = fll
- md & L+7]2 & 1+7° & (f11)
D g2 (f12)
a

Since v, =0, wehave v, =7n(a_t ) and > =2d/a_.

t_:\/gz /(1+772)(1J, (f13)
a g

By using v, =7°(2da_)=-2da, , we can solve the quadratic equation of Eq. (f9):

2
fo=Yorl fpp2dan p)_ Voo [2d (“27 j(ij:t_—, (f14)
a, Vo a, |a+| n g n

SCAt=t o+t :(Hl] (1+772(1J (f15)

n g

A 20 24V 2ml-n?
[:gz_qzzc— /) n g@_

N N N (+pA+7D)

(f16)

I A

I~y
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[A more elaborate Solution:]

One may find a general solution for an arbitrary value of V.

equations of Egs. (8) and (19), we have

2
t+:V°*|:—l+ 1+ dzai}.
a. Vo

(It is noted that one has to keep the smaller positive root.)

To simplify the notation, we introduce a few variables:

() y=- where ¥, = |28
Vi X
.. 1-n? . .
(i) z, = |———-, which is defined in Eq. (f7),
20+7n7)
(iif) wy =27.~5% and w, =2 —
1-7n 1-n")g
Interms of y, w,and z_,
V
a, =1 —g=g@y*-1)
md

a =ﬂ+g=g(2y2 +1)
md

_ _ 2 2
VO+_VS_W0\)y +Zc

By solving the quadratic

(f17)

(f18)

(f19)

(f20)

Voo =n(v +a,t,)=wyly' -z (f21)

Ny -zt -yt 42

I, =w

+

2y° —1

(f22)

t

2y% +1

w R N

(f21)
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_AQ 2 y _ N8mgdy
=2V ) =—=X—=2F 22)
At t, +t Cx th)At W, ) (
where

F(y)—y{vyz i AT R ”W‘Zf} (£23)

2y° -1 2y° +1

20 I N N [ TN T SN NN NN N TR (|
~e 15 -
3 i i

S

X ] i
°§ i i
= g5 B
0_ T T T [ T T T T [ T T T1 B
0 1 2 3
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3. Mark Distribution

No. Tg:jdl Pei)rgal Contents
(a) 1.2 0.3 Gauss law, or a formula for the capacitance of a parallel plate
0.5 Total energy of a capacitor at E'=electrical field by the other
y plate
0.4 | Force from the energy | F/'=QF'
expression
(b) 0.8 0.3 Gauss law Use of area ratio and result of (a)
0.5 Correct answer
(© 0.5 0.1 Correct lift-up condition with force balance
0.2 Use of area ratio and result of (a)
0.2 Correct answer
(d) 2.3 0.5 Energy conservation and the work done by the field
0.5 Loss of energy due to collisions
0.8 Condition for the steady state: Condition for the steady state:
energy balance equation (loss = recursion relation
gain)
0.5 Correct answer
(e) 2.2 0.2 | AQ=2g pertrip
0.5 Acceleration a, in the limit of ¢V >>mgd ; a,=a_ by
symmetry
0.3 | Kinetic equations for d, v, By using the symmetry, derive
a,and ¢, solutions for ¢,
0.4 | Expression of v,, and f, in the relation (e4)
its steady state
0.4 | Solutions of t, in
approximation
0.4 Correct answer
® 3.0 0.5 Condition for V,; Kup =0 or | Using (d8), Recursion relations
V. =0
0.3 energy balance equation
0.3 Correct answer of V,
0.7 Kinetic equations for At
0.3 Correct answer of [,
0.9 | Distinction between V, and V_,
the asymptotic behavior 7 =7V* in plots
Total 10
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Theoretical Question 2: Rising Balloon

1. Answers

a) F,=M n
(a) B AgP-i—AP

(b) y= PoZE _535

(d) a=0.110

(e) z,=11km, A,=2..
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2. Solutions

[Part A]
(a) [1.5 points]
Using the ideal gas equation of state, the volume of the helium gas of » moles at
pressure P+ AP and temperature 7 is
V =nRT /(P + AP) (al)
while the volume of #' moles of air gas at pressure P and temperature 7 is
V=n'RT/P. (a2)

Thus the balloon displaces n'=n moles of air whose weightis M n'g.

P+AP

This displaced air weight is the buoyant force, i.e.,

F,=M ,ng

) a3
P+ AP (a3)

(Partial credits for subtracting the gas weight.)

(b) [2 points]
The pressure difference arising from a height difference of z is —pgz when the air

density p is a constant. When it varies as a function of the height, we have

=l (o)
where the ideal gas law pT7'/P = constant is used. Inserting Eq. (2.1) and
T/T,=1-z/z, onboth sides of Eq. (bl), and comparing the two, one gets

y = PR _ 1.16x4.9x10* x9.8

P, 1.01x10°

=5.52. (b2)

The required numerical value is 5.5.

[Part B]
(c) [2 points]
The work needed to increase the radius from » to r+dr under the pressure
difference AP is
dW = 4> APdr , (cl)

while the increase of the elastic energy for the same change of » is
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6
dw = (d—Ujdr — 47KRT (4r — 4" )dr . (c2)
dr r
Equating the two expressions of dW , one gets
6
AP =4k RT(E Ty = HRT (l—%j. (c3)
ror r, \A 4

This is the required answer.

The graph as a function of A (>1) increases sharply initially, has a maximum at A =7

=1.38, and decreases as A for large A . The plot of AP/(4xRT/7,) is given below.

(d) [1.5 points]
From the ideal gas law,
FVy =nRT, (dl)

where V, is the unstretched volume.
At volume V =2V, containing n moles, the ideal gas law applied to the gas inside
at T =T, gives the inside pressure P, as

P, =nRT,/V =——

n,

On the other hand, the result of (c) at 7 =7, gives

5o (d2)

1

4RTy 1 1. 11
=) =U+aC 7Dk, (d3)

o

P,=B,+AP=P,+

Equating (d2) and (d3) to solve for a,
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nl(n,A)—1

Inserting n/n,=3.6 and A=1.5 here, a=0.110.

[Part C]
(e) [3 points]
The buoyant force derived in problem (a) should balance the total mass of M =1.12 kg.

Thus, from Eq. (a3), at the weight balance,
P M,

P+AP Mn

(el)

On the other hand, applying again the ideal gas law to the helium gas inside of volume

V= %727/3 = gﬂr(f = A’V , for arbitrary ambient P and T, one has

LIRS R (e2)

(P+AP)Z =
Vs T, n,

for n moles of helium. Egs. (c3), (el), and (e2) determine the three unknowns P,
AP, and A as a function of 7 and other parameters. Using Eq. (e2) in Eq. (el), one

has an alternative condition for the weight balance as
££ 3= My

=T e3
R T M n, (©)
Next using (c3) for AP in (e2), one has
P+ MR o _poy_p L1
"o T, n,
or, rearranging it,
Pl m2a-ir9, (e4)
R T ny
where the definition of @ has been used again.
Equating the right hand sides of Egs. (e3) and (e4), one has the equation for A as
AA-2°%= L(n—MT)=4.54. (e5)
an, M,

The solution for A can be obtained by
A ~4.54/(1-4.547)~4.54: A, =2.13. (e6)
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To find the height, replace (P/F,)/(T/T,) on the left hand side of Eq. (e3) as a

function of the height given in (b) as

PLy =(1-z,/z))" %, - My 590, (e7)
P T : 7 M n,

Solution of Eq. (¢7) for z, with A,=2.13 and y-1=4.51is

2, =49x(1-(3.10/2.13%)"**)=10.9 (km). (8)

The required answers are A, =2.1,and z, =11 km.
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3. Mark Distribution

No. TI()):'al Pa;)r;ial Contents

(a) 1.5 0.5 Archimedes’ principle
0.5 Ideal gas law applied correctly
0.5 Correct answer (partial credits 0.3 for subtracting He weight)

(b) 2.0 0.8 Relation of pressure difference to air density
0.5 Application of ideal gas law to convert the density into pressure
0.5 Correct formula for y
0.2 Correct number in answer

(c) 2.0 0.7 Relation of mechanical work to elastic energy change
0.3 Relation of pressure to force
0.5 Correct answer in formula
0.5 Correct sketch of the curve

(d) 1.5 0.3 Use of ideal gas law for the increased pressure inside
0.4 Expression of inside pressure in terms of a at the given conditions
0.5 Formula or correct expression for a
0.3 Correct answer

(e) 3.0 0.3 Use of force balance as one condition to determine unknowns
0.3 Ideal gas law applied to the gas as an independent condition to determine

unknowns
0.5 The condition to determine A r numerically
0.7 Correct answer for A,
0.5 The relation of z, versus A,
0.7 Correct answer for z r
Total 10
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Theoretical Question 3: Scanning Probe Microscope

1. Answers
F F
(@) A= 0 and tan¢:%. At w=w,, A=
\/mz(a)g —0’) +b’w’ m(@, — ") b,

r

and ¢=—.

¢ 2

(b) A non-vanishing dc component exists only when o = o, .
In this case the amplitude of the dc signal will be %I/I.OVR0 cos g, .

2
¢y Vi

(©

5 at the resonance frequency ®,.
@
0

(d) Am=1.7x10" kg.

' c3 1/2
(e) o=, 1-—=1 .

mao,

qQ Jl/3

e
mw,Aw,

H d, :(k

d, =41 nm.



nnnnnnnnnnnnnnnnn
P

i e Theoretical Question 3 / Solutions Page 2/6

2. Solutions

(a) [1.5 points]

d*z dz

Substituting z(z) = Asin(wt —¢) in the equation m i + bE +magz = F,sin ot
t

yields,

—mao’sin(ot — @) + baxcos(wt — @) + ma)ozsin(a)t -@)= %sina}t . (al)

Collecting terms proportional to sinw¢ and coswt, one obtains

{m(a)g —wz)cos¢+bwsin¢—%}sina}t+ {—m(a)(f —a)z)sin¢+ba)cos¢}cosa)t =0 (a2)

Zeroing the each curly square bracket produces
bw

tang = ———, a3
¢ n(@F — ) (a3)
A= Fy . (ad)
\/mz(a)g —-0’) +b’w’
At 0 =ow,,
A=Lo and p=Z. (a5)
@, 2
(b) [1 point]
The multiplied signal is
Vo sin(@,t — 4V sin(er)
(bl)

1
=2 ViV rolcosi(@, — @)=} —cos{(@, + ) =4}
A non-vanishing dc component exists only when @ = ,. In this case the amplitude of

the dc signal will be
%ViOVRO cos g, (b2)

(c) [1.5 points]
Since the lock-in amplifier measures the ac signal of the same frequency with its

reference signal, the frequency of the piezoelectric tube oscillation, the frequency of the
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cantilever, and the frequency of the photodiode detector should be same. The

magnitude of the input signal at the resonance is
F, _4% Vo

(cl)

Vi=0¢,

bw, bw,
Then, since the phase of the input signal is —%+% =0 at the resonance, ¢ =0 and

the lock-in amplifier signal is

1 cc, Vi
=V, Vo €080 =—12 20 (c2)
g 2 bo,

(d) [2 points]
The original resonance frequency o, = \/z is shifted to
m

1

B )
m+ Am m m m 2m 2m

Aw, =——w,—. (d2)

Thus

Near the resonance, by substituting ¢ —>§+ A¢ and o, »> o, +Aw, in Eq. (a3), the

change of the phase due to the small change of @, (not the change of w) is

tan(£+A¢j:— L (d3)
2 tanA¢g 2mAw,

Therefore,
A~ tan Ag :_2’"bﬂ. (d4)
From Egs. (d2) and (d4),
3 -12
am=Lpp 10T T Ty gu1070 kg (d5)
@, 10 1800 1.8

(e) [1.5 points]
In the presence of interaction, the equation of motion near the new equilibrium position
h, becomes
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d’z  dz .
m——+b—+ma,z—c,z=F,sinot (el)
dt dt

where we used f(h)= f(h,)+c,z with z=h—h, being the displacement from the

new equilibrium position 4,. Note that the constant term f(%,) is cancelled at the

new equilibrium position.

Thus the original resonance frequency @, = \/E will be shifted to
m

k—c mw? —c c
W= = —— =0, /1— . (€3)
m m mao,

Hence the resonance frequency shift is given by

2
ma,

Aa)oza){ — —1}. (e4)

(f) [2.5 points]
The maximum shift occurs when the cantilever is on top of the charge, where the

interacting force is given by

qQ

f(h):keh_z' (f1)
From this,
A (2)
dh h=d, dy
Since Aw, << ®,, we can approximate Eq. (e4) as
Awy ~——3— (3)
2maw,
From Egs. (f2) and (f3), we have
Aoy =——| ok 9L | =, 9L (4)
2ma, d, mayd,;

Here g=e=-1.6x10" Coulomb and Q=6e=-9.6x10" Coulomb. Using the

values provided,
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1/3
d, :(@LJ =4.1x10"° m=41nm. (£5)
ma,Aw,

Thus the trapped electron is 41 nm from the cantilever.
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3. Mark Distribution
Total | Partial
No. Contents
Pt. Pt.

(a) 1.5 0.7 Equations for 4 and ¢ (substitution and manipulation)
0.4 Correct answers for 4 and ¢
0.4 A4 and ¢ at o,

(b) 1.0 0.4 Equation for the multiplied signal
0.3 Condition for the non-vanishing dc output
0.3 Correct answer for the dc output

(©) 1.5 0.6 Relation between V, and
0.4 Condition for the maximum dc output
0.5 Correct answer for the magnitude of dc output

(d) 2.0 0.5 Relation between Am and Aw,
1.0 Relations between A@, (or Am)and A¢
0.5 Correct answer (Partial credit of 0.2 for the wrong sign.)

(e) 1.5 L0 Modification of the equation with f(4) and use of a proper

approximation for the equation

0.5 Correct answer

69} 2.5 0.5 Use of a correct formula of Coulomb force
0.3 Evaluation of ¢,
0.6 | Use of the result in (e) for either Aw, or @'s—w;
0.6 | Expression for d,
0.5 Correct answer

Total 10
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Solutions

PART-A Product of the mass and the position of the ball (mx/)
(4.0 points)

1. Suggest and justify, by using equations, a method allowing to obtain mx/. (2.0

points)

mxl = (M + m)xl.,

(Explanation) The lever rule is applied to the Mechanical “Black Box”, shown in Fig.

A-1, once the position of the center of mass of the whole system is found.

Fig. A-1 Experimental setup

2. Experimentally determine the value of mx/. (2.0 points)

mxl =2.96x10"kg-m
(Explanation) The measured quantities are

M+ m=(1.41120.0005)x10"kg
and
Iom = (2.120.06)x10”m  or  21+0.6 mm.
Therefore
mxl= (M + m)xley
= (1.411£0.0005)x 10"'kgx(2.1+0.06)x10*m
= (2.96+0.08)x10°kg-m
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PART-B The mass m of the ball

(10.0 points)

1. Measure v for various values of 4. Plot the data on a graph paper in a form that

is suitable to find the value of m. Identify the slow rotation region and the fast

rotation region on the graph. (4.0 points)

2. Show from your measurements that # = Cv* in the slow rotation region, and A =

AV*+B in the fast rotation region. (1.0 points)

50 -
40
=
~ 304
X
=
3 20

0

h -

e

0 200

(Explanation) The measured data are

T
400

T
600

vz( x10"* m?/s?)

Fig. B-1 Experimental data

T
800

hy (x10° 2 m) @ Af (ms) hx102m)® | vx102mis) © | v (x107* m¥s?)

1 25.540.1 269.440.05 1.840.1 8.75%£0.02 76.610.2
2 26.5+0.1 235.7%£0.05 2.8+0.1 11.12+0.02 123.7+£0.3
3 27.540.1 197.94+0.05 3.840.1 13.2440.03 175.3+0.6
4 28.540.1 176.0+0.05 4.840.1 14.89+0.03 221.710.6
5 29.540.1 161.84+0.05 5.840.1 16.194+0.03 262.1+0.7
6 30.5+0.1 151.440.05 6.840.1 17.31+0.03 299.610.7
7 31.54+0.1 141.840.05 7.840.1 18.48+0.04 342+1

8 32.540.1 142.94+0.05 8.840.1 18.33+0.04 336+1
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9 33.510.1 141.4+0.05 9.8+0.1 18.53+0.04 343+1
10 34.510.1 142.2+0.05 10.8+0.1 18.42+0.04 339+1
11 35.510.1 145.4+0.05 11.8+0.1 18.02+0.04 325+1
12 36.510.1 147.8+0.05 12.8+0.1 17.73+0.04 314+1
13 37.510.1 148.3+0.05 13.8+0.1 17.67+0.04 312+1
14 38.5+0.1 148.0£0.05 14.84+0.1 17.70£0.04 313+1
15 39.5+0.1 143.9£0.05 15.840.1 18.21+0.04 33241
16 40.510.1 141.9£0.05 16.8+0.1 18.4610.04 341+1
17 41.510.1 142.9£0.05 17.84+0.1 18.33+0.04 336t1
18 42.510.1 141.9£0.05 18.8+0.1 18.4610.04 341+1
19 43.510.1 142.8+0.05 19.8+0.1 18.35+0.04 337+1
20 44.510.1 144.3+0.05 20.8+0.1 18.16+0.04 330=1
21 45.520.1 142.2+0.05 21.840.1 18.42+0.04 339+1
22 46.510.1 139.8+0.05 22.840.1 18.74+0.04 351+l
23 47.520.1 136.7+0.05 23.8+0.1 19.17+0.04 368+1
24 48.510.1 133.0+0.05 24.8+0.1 19.70+0.04 388+1
25 49.5+0.1 129.5+0.05 25.840.1 20.23+0.04 409+1
26 50.5+0.1 125.7£0.05 26.810.1 20.84+0.04 434+1
27 51.5+0.1 124.3+0.05 27.810.1 21.08+0.04 444+1
28 52.5+0.1 123.4£0.05 28.810.1 21.234+0.04 451+1
29 53.540.1 120.9£0.05 29.810.1 21.67£0.04 4701
30 54.5+0.1 117.5£0.05 30.8+0.1 22.30£0.04 497+1
31 55.5+0.1 114.0£0.05 31.84+0.1 22.98+0.04 528+1
32 56.510.1 111.2+0.05 32.840.1 23.56+0.05 55542
33 57.510.1 110.5+0.05 33.8+0.1 23.71+0.05 56242
34 58.510.1 108.1+0.05 34.8+0.1 24.24+0.05 588+2
35 59.510.1 107.1+0.05 35.840.1 24.46x0.05 598+2
36 60.510.1 104.6+0.05 36.8+0.1 25.05+0.05 62812
37 61.510.1 102.1+0.05 37.840.1 25.6610.05 658+2
38 62.5+0.1 100.1£0.05 38.8+0.1 26.17£0.05 68512
39 63.5+0.1 99.6+0.05 39.840.1 26.31£0.05 69212
40 64.5+0.1 97.3+0.05 40.8+0.1 26.93+0.05 72512
41 65.5+0.1 95.8+0.05 41.840.1 27.354£0.05 74812
42 66.5+0.1 94.7+0.05 42.810.1 27.67£0.05 76612
43 67.5+0.1 94.0+0.05 43.810.1 27.87%+0.06 77712
44 68.510.1 92.9+0.05 44.840.1 28.20+0.06 795+2
45 69.510.1 91.11£0.05 45.840.1 28.76x0.06 82712
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where ¥ hy is the reading of the top position of the weight before it starts to fall,
® 1, is the distance of fall of the weight which is obtained by 2= h; — hy, + d/2,
h, (= (2520.05)x10 m) is the top position of the weight at the start of
blocking of the photogate,
d (= (2.62+0.005) x10? m) is the length of the weight, and

®y is obtained from v = d/At.

3. Relate the coefficient C to the parameters of the MBB. (1.0 points)

h=CV?, where C= {m, + I/R* + m(I* + 2/5 1*)/R*} 2m.g

(Explanation) The ball is at static equilibrium (x = /). When the speed of the weight is

v, the increase in kinetic energy of the whole system is given by

AK =112 mgV* + 12 I&é + 172 m(* + 2/5 1) &
=1/2 {mo + I/R* + m(I* + 2/5 ¥*)IR*}V*,

where @ (= Vv/R) is the angular velocity of the Mechanical “Black Box™ and 7 is the
effective moment of inertia of the whole system except the ball. Since the decrease in

gravitational potential energy of the weight is
AU = -mygh ,
the energy conservation (AK + AU = 0) gives

h=1/2 {me + IR* + m(I* + 2/5 ) /R*W/mog
=CVv, where C= {mo+ I/R* + m(I* + 2/5 *)/R*} 2mog

4. Relate the coefficients 4 and B to the parameters of the MBB. (1.0 points)

h=AVv+ B, where A = [mo + I/R* + m{(L/12 — 65— r)* + 2/5 r*}/R*)2m.g
and B=[—ki(L12-1-6-r)
Hlo{(L—26-2rY = (L2 + - 6—r)*}] 12meog

(Explanation) The ball stays at the end cap of the tube (x = L/2 — 6 — r). When the

speed of the weight is v, the increase in kinetic energy of the whole system is given by



IPhO
Experimental Competition / Solutions Page 5/11

K=1/2 [mo+ I/R* + m{(L/2 — 5— r)* + 2/5 *}/R*V*.

Since the increase in elastic potential energy of the springs is
AU.=12[—ki(L12-1-5-r)
tlo{(L-26-2r — (L2 +1-56-1r)*}],

the energy conservation (K + AU + AU, = 0) gives

h=1/2 [me+ IR* + m{(L/2 — 5— r)* + 2/5 P }/R* V' /mog + AUSmog
= A4V + B,
where
A=[mo+IR*+m{(L2 — 5—r)* +2/5 **}/R*]2meg
and
B=[-k(L2—-1-6-r)
tlo{(L—26-2rY = (L2 + - 6—r)}] 2meg.

5. Determine the value of m from your measurements and the results obtained in
PART-A. (3.0 points)

m=62x10%kg

(Explanation) From the results obtained in PART-B 3 and 4 we get

A-C :JT{(%J —7)? —12}.

The measured values are L = (40.0+0.05)x10”% m
mo = (100.4+0.05)x10 kg
2R = (3.9140.005)x10” m

Therefore,
(L/2 - 5-r)* = {(20.04£0.03) — 0.5 — 1.1} x10™* m? = (338.620.8)x10™* m*

and
2gmoR* = 2x980x(100.4+0.05)x(1.955+0.003)* x10°kg-m’/s*
= (75242)x10kg-m’/s>.
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The slopes of the two straight lines in the graph (Fig. B-1) of PART-B 1 are
A=5.0%0.1s/m and C=2.4+0.1s"/m,

respectively, and
A-C=2.640.15"/m.

Since we already obtained mxI = (M + m)xl.m = 2.96x10~kg-m from PART-A,

the equation

(338.620.8)m” — (75242)x10°x(0.02620.001)m — (296+8)* = 0
or
(338.6+0.8)m” — (19600+£800)m — (88000+£3000) = 0

is resulted, where m is expressed in the unit of g.
The roots of this equation are

. (9800 = 400) + /(9800 = 400)? + (338.6 +0.8)x (83000 + 3000)
- (338.6+0.8)

The physically meaningful positive root is

. (9800 + 400)+ /(126000000 + 6000000) _ (62+2)g=(6.2+0.2)x10"kg.
(338.6+0.8)

PART-C The spring constants &k, and k, (6.0 points)

1. Measure the periods 77 and 7, of small oscillation shown in Figs. 3 (1) and (2)

and write down their values, respectively. (1.0 points)

7:=1.1090s and 7,=1.0193s
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(Explanation)
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Fig. C-1 Small oscillation experimental set up

The measured periods are

Ty (s) T> (s)
1 1.1085+0.00005 1 1.0194+0.00005
2 1.109240.00005 2 1.019440.00005
3 1.1089+0.00005 3 1.0193+0.00005
4 1.1085+0.00005 4 1.0191+0.00005
5 1.1094+0.00005 5 1.01924+0.00005
6 1.1090+0.00005 6 1.019440.00005
7 1.1088+0.00005 7 1.019440.00005
8 1.1090+0.00005 8 1.0191+0.00005
9 1.109240.00005 9 1.019240.00005
10 1.109440.00005 10 1.01934+0.00005

By averaging the10 measurements for each configuration, respectively, we get

71=1.1090£0.0003s and 7> =1.0193+0.0001s.

2. Explain, by using equations, why the angular frequencies @, and @, of small
oscillation of the configurations are different. (1.0 points)
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Mg%+mg(%+l+Al)

I, +m{(]ﬁ+l+Al)2 +§r2}

Mg%+mg(%—l+Al)
I, +m{(%—l+Al)2 +§r2}

1

2

(Explanation) The moment of inertia of the Mechanical “Black Box™ with respect to
the pivot at the top of the tube is

I, =1, +m{(%+l+Al)z+%r2} or 1, =IU+m{(%—I+AI)Z+%r2}

depending on the orientation of the MBB as shown in Figs. C-1(1) and (2),
respectively.

When the MBB is slightly tilted by an angle & from vertical, the torque applied by the
gravity is

7, = Mg(%)siné? + mg(%+ I+ Al)sin 6 ~ {Mg(%)+ mg(%+ I+Al)p

or

7, = Mg(%)siné? + mg(%—l+ Az)sine ~ {Mg(%)+ mg(%—l+ AZ)}H

depending on the orientation.

Therefore, the angular frequencies of oscillation become

r%_ Mg%+mg(%+l+Al)

a)1= =

g Iu+m{(%+l+AZ)2+§r2}

and

T%_ Mg%+mg(%—l+Al)

a)2= =

L Iu+m{(%—l+Al)z+§r2}.
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3. Evaluate 4/ by eliminating /, from the previous results. (1.0 points)

Al=(72£0.9)cm=(7.2£0.9)x10>m

(Explanation) By rewriting the two expressions for the angular frequencies @ and @,
as

Mg%+mg(%+l+Al): I,0; +ma)12{(%+l+Al)2 +§r2}

and

Mg%+mg(%—l+Al)=Iua)22 +ma)22{(Lé—l+Al)2 +%r2}

one can eliminate the unknown moment of inertia /, of the MBB without the ball.

By eliminating the /, one gets the equation for A/
M L
(a)z2 -] ){% + mgAl} + (a)l2 +; )mgl = o wlm(L+2Al)(21).
From the measured or given values we get,

(02 -~ 0?)= 22 (22 :( 6.2832 JZ_( 6.2832 JZ
P T, T, 1.0193 +0.0001 1.1090 £ 0.0003

=5.90+0.01s>

(M +m)gL (141.1£0.05)x980x(40.0£0.05)
2 - 2

=(27.66+0.04)x107 kg-m®/s’

(07 + 02 Ingl = {(ZT—”JZ + (ZT—”I }(M +m)l,g

1 2

2 2
_ ( 6.2832 ) +( 6.2832 j < (296 + 8)x 980
1.1090 + 0.0003 1.0193 +0.0001
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=(203+5)x10kg:m®/s*

1.1090 = 0.0003 1.0193 £0.0001

2 2
:( 6.2832 J( 6.2832 )x(29618)

=(3.6+0.1)kgm/s*.

Therefore, the equation we obtained in PART-C 3 becomes
(5.90 +0.01){(27.66 = 0.04)x10° + (62 + 2)x 980 x Al |+ (203 + 5)x 10°
=(7.240.2)x10° x {(40.0 + 0.05) + 2Al},

where A/ is expressed in the unit of cm. By solving the equation we get

Al=(72£0.9)cm=(7.2£0.9)x102m

4. Write down the value of the effective total spring constant k of the two-spring

system. (2.0 points)

k=9 N/m
(Explanation) The effective total spring constant is

mg (62 +2)x980

k =
Al 7.2%£0.9

=9000 £1000 dyne/cm  or  9+1N/m.

5. Obtain the respective values of k; and k,. Write down their values. (1.0 point)

ki1 =5.7N/m
kz =3 N/m



IPhO
zz=209% Experimental Competition / Solutions Page 11/11

(Explanation) When the MBB 1is in equilibrium on a horizontal plane the force

balance condition for the ball is that

L/ _j_s_
/é [-6-r N, K

%4‘1—5—7" Nz kl .
Since k =k, +k,, we get

L _5—
k _é+l§rk

k, =
L/ _1_5—»r L-25-2r
—A +1

Ly+i-6-r

and

Ll 1-5-r
=

From the measured or given values

296 +8
§é+1—5—r Q00i00n+[62+2j—05—11
= — = 0.63 +0.005.
L-25-2r (40.0+0.05)-1.0-2.2

Therefore,

k, = (0.63 £0.005)x (9000 +1000) = 5700 + 600 dyne/cm  or  5.7+0.6N/m,

and

k, = (9000 £1000)— (5700 + 600) = 3000 1000 dyne/cm  or  3+IN/m.
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