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THE EXAMINATION 
XXV INTERNATIONAL PHYSICS OLYMPIAD 

BEIJING, P ERPLE’S REPUBLIC CHINA 
THEORETICAL COMPETITION 

July 13, 1994 
Time available: 5 hours 
READ THIS FIRST! 

 
INSTRUCTIONS: 
1. Use only the ball pen provided. 
2. Your graphs should be drawn on the answer sheets attached to the problem. 
3. Your solutions should be written on the sheets of paper attached to the problems. 
4. Write at the top of the first page of each problem: 

● The total number of pages in your solution to the problem 
● Your name and code number 
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Theoretical Problem 1 

RELATIVISTIC PARTICLE 

In the theory of special relativity the relation between energy E and momentum P 
or a free particle with rest mass m0 is 

242
0

22 mccmcpE =+=  

When such a particle is subject to a conservative force, the total energy of the 

particle, which is the sum of 42
0

22 cmcp +  and the potential energy, is conserved. If 

the energy of the particle is very high, the rest energy of the particle can be ignored 
(such a particle is called an ultra relativistic particle). 

1) consider the one dimensional motion of a very high energy particle (in which 
rest energy can be neglected) subject to an attractive central force of constant 
magnitude f. Suppose the particle is located at the centre of force with initial 
momentum p0 at time t=0. Describe the motion of the particle by separately 
plotting, for at least one period of the motion: x against time t, and momentum 
p against space coordinate x. Specify the coordinates of the “turning points” in 
terms of given parameters p0 and f. Indicate, with arrows, the direction of the 
progress of the mothon in the (p, x) diagram. There may be short intervals of 
time during which the particle is not ultrarelativistic. However, these should be 
neglected. 
Use Answer Sheet 1. 

2) A meson is a particle made up of two quarks. The rest mass M of the meson is 
equal to the total energy of the two-quark system divided by c2. 

Consider a one--dimensional model for a meson at rest, in which the two 
quarks are assumed to move along the x-axis and attract each other with a force 
of constant magnitude f It is assumed they can pass through each other freely. 
For analysis of the high energy motion of the quarks the rest mass of the quarks 
can be neglected. At time t=0 the two quarks are both at x=0. Show separately 
the motion of the two quarks graphically by a (x, t) diagram and a (p, x) 
diagram, specify the coordinates of the “turning points” in terms of M and f, 
indicate the direction of the process in your (p, x)  diagram, and determine the 
maximum distance between the two quarks. 
Use Answer Sheet 2. 

3) The reference frame used in part 2 will be referred to as frame S, the Lab frame, 
referred to as S, moves in the negative x-direction with a constant velocity 
v=0.6c. the coordinates in the two reference frames are so chosen that the point 
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x=0 in S coincides with the point 0=′x  in S ′′  at time 0=′= tt . Plot the 
motion of the two quarks graphically in a ( x′ , t ′ ) diagram. Specify the 
coordinates of the turning points in terms of M, f and c, and determine the 
maximum distance between the two quarks observed in Lab frame S ′ . 

 Use Answer Sheet 3. 
 The coordinates of particle observed in reference frames S and S ′′  are related 

by the Lorentz transformation 







+=′

+=′

)(

)(

c
xtt

ctxx

βγ

βγ
 

 where cv /=β , 21/1 βγ −=  and v is the velocity of frame S moving 

relative to the frame S ′′ . 
4) For a meson with rest energy Mc2=140 MeV and velocity 0.60c relative to the 

Lab frame S ′′ , determine its energy E ′  in the Lab Frame S ′′ . 
 
ANSWER SHEET 1      ANSWER SHEET 2 
1)           2) 
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x1 

p1 
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x2 

p2 

Quark1 Quark2 

The maximum distance between 
the two quarks is d= 
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ANSWER SHEET 3 
3)  
 
 
 

 

 

 

 
Theoretical Problem 1—Solution 
1) 1a. Taking the force center as the origin of the space coordinate x and the zero 
potential point, the potential energy of the particle is 

||)( xfxU =         (1) 

The total energy is 

||42
0

22 xfcmcpW ++= . 

1b. Neglecting the rest energy, we get 

|||| xfcpW += ,       (2) 

Since W is conserved throughout the motion, so we have 

cpxfcpW 0|||| =+= ,       (3) 

Let the x axis be in the direction of the initial momentum of the particle, 

    

cpfxpc
cpfxpc

cpfxpc
cpfxpc

0

0

0

0

=−−
=−
=+−

=+

     











<<
><
<>
>>

.0,0
;0,0
;0,0
;0,0

px
px
px
px

    (4) 

The maximum distance of the particle from the origin, let it be L, corresponds to p=0. 
It is 

fcpL /0= . 

 1c. From Eq. 3 and Newton’s law 





<
>−

==
;0,
;0,

xf
xf

F
dt
dp        (5) 

we can get the speed of the particle as 

c
dt
dp

f
c

dt
dx

== ,       (6) 

t 

x1′, x2′ 

O 

The maximum distance between the 
two quarks observed in S′frame is  
d′= 

when 
when 
when 
when 
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i.e. the particle with very high energy always moves with the speed of light except that 
it is in the region extremely close to the points Lx ±= . The time for the particle to 
move from origin to the point Lx = , let it be denoted by τ , is 

fpcL // 0==τ . 

So the particle moves to and for between Lx =  and Lx −=  with speed c and period 

fp /44 0=τ . The relation between x  and t  is 











≤≤−=
≤≤−=
≤≤−=
≤≤=

,43,4
,32,2

,2,2
0,

ττ
ττ
ττ

τ

tLctx
tctLx

tctLx
tctx

      (7) 

 The required answer is thus as given in Fig. 1 and Fig. 2. 
 
 
 
 
 
 
 

Fig. 1         Fig. 2 
 2) The total energy of the two-quark system can be expressed as 

|||||| 2121
2 xxfcpcpMc −++= ,     (8) 

where 1x , 2x  are the position coordinates and 1p , 2p  are the momenta of quark 1 

and quark 2 respectively. For the rest meson, the total momentum of the two quarks is 
zero and the two quarks move symmetrically in opposite directions, we have 

021 =+= ppp ,  21 pp −= , 21 xx −= .     (9) 

Let p0 denote the momentum of the quark 1 when it is at x=0, then we have 

cpMc 0
2 2=   or   2/0 Mcp =       (10) 

From Eq. 8, 9 and 10, the half of the total energy can be expressed in terms of 1p  and 

1x  of quark 1: 

|||| 110 xfcpcp += ,        (11) 

just as though it is a one particle problem as in part 1 (Eq. 3) with initial momentum 

L 
A 

B D t 

x 

O 
-L C 

τ τ 2 3 τ 4 τ 

τ= p0/f 
L= p0/f 

L 
x 

-L 

p0 

-p0 

O 

p 

L=p0c/f 
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2/0 Mcp = . From the answer in part 1 we get the (x, t) diagram and (p, x) diagram of 

the motion of quark 1 as shown in Figs. 3 and 4. For quark 2 the situation is similar 
except that the signs are reversed for both x and p; its (x, t) and (p, x) diagrams are 
shown in Figs. 3 and 4. 
 The maximum distance between the two quarks as seen from Fig. 3 is 

fMcfcpLd //22 2
0 === .       (12) 

 
 
 
 
 
 
 
 

Fig. 3 
 
 
 
 
 
 
 
 

Fig. 4a     Quark1 
Fig. 4b     Quark2 

 
 3) The reference frame S moves with a constant velocity V=0.6c relative to the Lab 
frame S ′′  in the x′  axis direction, and the origins of the two frames are coincident at 
the beginning ( 0=′= tt ). The Lorentz transformation between these two frames is 
given by: 

),/(
),(
cxtt

ctxx
βγ
βγ

+=′
+=′

        (13) 

where cV /=β , and 21/1 βγ −= . With cV 6.0= , we have 5/3=β , and 

4/5=γ . Since the Lorenta transformation is linear, a straight line in the (x, t) diagram 

L 
x1 

-L 

p0 

-p0 

O 

p1 

L=Mc2/2f 
P0=Mc/2 

L 
x2 

-L 

p0 

-p0 

O 

p2 

L 
A 

B F t 

x1、x2 

O 
-L D 

τ τ 2 3 τ 4 τ 

τ= Mc/2f 
L=Mc2/2f 

B 

E 

x1: solid line 
x2: dash line 
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transforms into a straight line the ( x′ , t ′ ) diagram, thus we need only to calculate the 
coordinates of the turning points in the frame S ′ . 
 For quark 1, the coordinates of the turning points in the frames S and S ′  are as 
follows: 

Frame  S        Frame S ′  

1x   1t    )( 111 ctxx βγ +=′    )/( 111 extt βγ +=′  

11 4
3

4
5 ctx +=       cxt /

4
3

4
5

11 +=  

0  0   0       0 

L  τ    LL 2)1( =+ βγ     ττβγ 2)1( =+  

0  τ2     LL
2
32 =γβ      τγτ

2
52 =  

L−   τ3    LL =− )13( βγ     ττβγ 3)3( =−  

0  τ4    LL 34 =γβ      τγτ 54 =  

where fMcfcpL 2// 2
0 == , fMcfp 2//0 ==τ . 

 For quark 2, we have 
Frame  S        Frame S ′  

2x   2t    )( 222 ctxx βγ +=′    )/( 222 cxtt βγ +=′  

22 4
3

4
5 ctx +=       cxt /

4
3

4
5

22 +=  

0  0   0       0 

L−   τ    LL
2
1)1( −=−− βγ    ττβγ

2
1)1( =−  

0  τ2     LL
2
32 =γβ      τγτ

2
52 =  

L  τ3    LL
2
7)13( =+βγ    ττβγ

2
9)3( =+  

0  τ4    LL 34 =γβ      τγτ 54 =  

With the above results, the ( x′ , t ′ ) diagrams of the two quarks are shown in Fig. 5. 
 The equations of the straight lines OA and OB are: 

tctx ′=′′ )(1 ;   ττβγ 2)1(0 =+≤′≤ t ;    (14a) 

tctx ′−=′′ )(2 ;  ττβγ
2
1)1(0 =−≤′≤ t     (14b) 
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The distance between the two quarks attains its maximum d ′  when τ
2
1

=′t , thus we 

have maximum distance 

f
McLcd
2

)1(2)1(2
2

=−=−=′ βγτβγ .      (15) 

 
Fig. 5 

4) It is given the meson moves with velocity V=0.6 crelative to the Lab frame, its 
energy measured in the Lab frame is 

175140
8.0

1
1 2

2

=×=
−

=′
β

McE MeV. 

 Grading Scheme 
Part 1 2 points, distributed as follows: 
 0.4 point for the shape of x(t) in Fig. 1; 

0.3 point for 4 equal intervals in Fig. 1; 
(0.3 for correct derivation of the formula only) 
0.1 each for the coordinates of the turning points A and C, 0.4 point in total; 
0.4 point for the shape of p(x) in fig. 2; (0.2 for correct derivation only) 

0.1 each for specification of 0p , fcpL /0= , 0p− , L−  and arrows, 0.5 point 

in total. 
(0.05 each for correct calculations of coordinate of turning points only). 

Part 2 4 points, distributed as follows: 

 0.6 each for the shape of )(1 tx  and )(2 tx , 1.2 points in total; 

0.1 each for the coordinates of the turning points A, B, D and E in Fig. 3, 0.8 point 
in total; 
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 0.3 each for the shape of )( 11 xp  and )( 22 xp , 0.6 point in total;  

0.1 each for 2/0 Mcp = , fMcL 2/2= , 0p− , L−  and arrows in Fig. 4a and 

Fig. 4b, 1 point in total; 

0.4 point for fMcd /2=  

Part 3 3 point, distributed as follows: 

 0.8 each for the shape of )(1 tx ′′  and )(2 tx ′′ , 1.6 points in total; 

0.1 each for the coordinates of the turning points A, B, D and E in Fig. 5, 0.8 point 
in total; (0.05 each for correct calculations of coordinate of turning points 
only). 

 0.6 point for fMcd 2/2=′ . 

Part 4 1 point (0.5 point for the calculation formula; 0.5 point for the numerical value 
and units) 
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Theoretical Problem 2 
SUPERCONDUCTING MAGNET 

 
 Super conducting magnets are widely used in laboratories. The most common 
form of super conducting magnets is a solenoid made of super conducting wire. The 
wonderful thing about a superconducting magnet is that it produces high magnetic 
fields without any energy dissipation due to Joule heating, since the electrical 
resistance of the superconducting wire becomes zero when the magnet is immersed in 
liquid helium at a temperature of 4.2 K. Usually, the magnet is provided with a 
specially designed superconducting switch, as shown in Fig. 1. The resistance r of the 

switch can be controlled: either r=0 in the superconducting state, or nrr =  in the 

normal state. When the persistent mode, with a current circulating through the magnet 
and superconducting switch indefinitely. The persistent mode allows a steady magnetic 
field to be maintained for long periods with the external source cut off. 
 The details of the superconducting switch are not given in Fig. 1. It is usually a 
small length of superconducting wire wrapped with a heater wire and suitably 
thermally insulated from the liquid helium bath. On being heated, the temperature of 
the superconducting wire increases and it reverts to the resistive normal state. The 

typical value of nr  is a few ohms. Here we assume it to be 5Ω . The inductance of a 

superconducting magnet depends on its size; assume it be 10 H for the magnet in Fig. 1. 
The total current I can be changed by adjusting the resistance R. 
 This problem will be graded by the plots only! 
 The arrows denote the positive direction of I, I1 and I2. 

 
Fig. 1 

1) If the total current I and the resistance r of the superconducting switch are controlled 
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to vary with time in the way shown in Figs, 2a and 2b respectively, and assuming 
the currents I1 and I2 flowing through the magnet and the switch respectively are 
equal at the beginning (Fig. 2c and Fig. 2d), how do they vary with time from t1 to 
t4? Plot your answer in Fig. 2c and Fig. 2d 

 
2) Suppose the power switch K is turned on at time t=0 when r=0, I1=0 and R=7.5Ω, 

and the total current I is 0.5A. With K kept closed, the resistance r of the 
superconducting switch is varied in he way shown in Fig. 3b. Plot the 
corresponding time dependences of I, I1 and I2 in Figs. 3a, 3c and 3d respectively. 

 

 

3) Only small currents, less than 0.5A, are allowed to flow through the 

Fig.2a 
 
 
 

2b 
 
 
 

2c 
 
 
 

2d 

Fig. 3a 
 
 
 

3b 
 
 
 

3c 
 
 
 

3d 
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superconducting switch when it is in the normal state, with larger currents the 
switch will be burnt out. Suppose the superconducting magnet is operated in a 
persistent mode, i. e. I=0, and I1=i1(e. g. 20A), I2=-i1, as shown in Fig. 4, from t=0 
to t=3min. If the experiment is to be stopped by reducting the current through the 
magnet to zero, how would you do it? This has to be done in several operation steps. 
Plot the corresponding changes of I, r, I1 and I2 in Fig. 4 

 

 

4) Suppose the magnet is operated in a persistent mode with a persistent current of 20A 
(t=0 to t=3min. See Fig. 5). How would you change it to a persistent mode with a 
current of 30a? plot your answer in Fig. 5. 

 

Fig. 4a 
 
 
 
 

4b 
 
 
 

4c 
 
 
 
 

4d 

Fig. 5a 
 
 
 

5b 
 
 
 

5c 
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 Theoretical Problem 2—Solution 
 1) For t=t1 to t3 

 Since 0=r , the voltage across the magnet dtLdIVM /1= =0, therefore, 

0111 2
1)( ItII == ; 

012 2
1 IIIII −=−= . 

 For t=t3 to t4 

 Since I2=0 at t=t3, and I is kept at 02
1 I  after 

 3tt = , 02 == nM rIV , therefore, 1I  and 2I  will not change. 

01 2
1 II = ; 

02 =I  

 These results are shown in Fig. 6. 

 
 

5d 

Fig. 6a 
 
 
 

6b 
 
 
 
 

6c 
 
 
 

6d 
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 2) For 0=t  to 1=t min: 

 Since 0=r , 0/1 == dtLdIVM  

0)0(11 == II  

         5.012 =−= III A. 

 At 1=t min, r  suddenly jumps from O to nr , I will drop from RE /  to 

)/( nrRE +  instantaneously, because 1I  can not change abruptly due to the 

inductance of the magnet coil. For RE / =0.5A, Ω= 5.7R  and Ω= 5nR . I will drop 

to 0.3A. 
 For 1=t  min to 2 min: 

 I , 1I  and 2I  gradually approach their steady values: 

5.0==
R
EI A, 

5.01 == II A 

02 =I . 

The time constant 
 

n

n

Rr
rRL )( +

=τ . 

 When 10=L H, Ω= 5.7R  and Ω= 5nr , 3=τ sec. 

 For 2=t min to 3 min: 

 Since 0=r , 1I  and 2I  will not change, that is 

5.01 =I A and 02 =I  

 
 

Fig. 7a 
 
 

7b 
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 3) The operation steps are: 
 First step 

 Turn on power switch K, and increase the total current I to 20 A, i. e. equal to 1I . 

Since the superconducting switch is in the state 0=r , so that LVM =  0/1 =dtdI , 

that is, 1I  can not change and 2I  increases by 20A, in other words, 2I  changes 

from 20− A to zero. 
 Second step 

 Switch r  from 0 to nr . 

 Third step 

 Gradually reduce I to zero while keeping 5.02 <I A: since nM rVI /2 =  and 

dtdILVm /1= , when 10=L H, Ω= 5nr , the requirement 5.02 <I A corresponds to 

25.0/1 <dtdI A/sec, that is, a drop of <15A in 1 min. In Fig. 8 dtdI / ～0.1A/sec and 

dtdI /1  is around this value too, so the requirement has been fulfilled. 

 Final step 

 Switch r  to zero when 0=MV  and turn off the power switch K. These results 

are shown in Fig. 8. 

 

7c 
 
 
 
7d 

Fig. 8a 
 
 
 

8b 
 
 

8c 
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4) First step and second step are the same as that in part 3, resulting in 02 =I . 

 Third step Increase I by 10 A to 30 A with a rate subject to the requirement 

5.02 <I A. 

 Fourth step Switch r  to zero when 0=MV . 

 Fifth step Reduce I to zero, 301 =I  A will not change because MV  is zero. 

12 III −=  will change to 30−  A. The current flowing through the magnet is thus 

closed by the superconducting switch. 
 Final step Turn off the power switch K. The magnet is operating in the persistent 
mode. 
 These results are shown in Fig. 9. 

 
 Grading Scheme 
Part 1,   2 points: 

 0.5 point for each of 1I , 2I  from 1tt =  to 3t  and 1I , 2I  from 3tt =  to 4t . 

Part 2,   3 points: 

 0.3 point for each of 1I , 2I  from 0=t  to 1 min, I , 1I , 2I  at 1=t  min, 

8d 

Fig. 9a 
 
 
 

9b 
 
 
 

9c 
 
 
 

9d 
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and 0I , 1I , 2I  from 1=t  to 2 min; 

0.2 point for each of I , 1I , and 2I  from 2=t  to 3 min. 

Part 3,    2 points: 
0.25 point for each section in Fig. 8 from 3=t  to 9 min, 8 sections in total. 

Part 4,    3 points: 
 0.25 point for each section in Fig. 9 from 3=t  to 12 min, 12 sections in total. 
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 Theoretical Problem 3 
COLLISION OF DISCS WITH SURFACE FRICTION 

 
 A homogeneous disc A of mass m and radius RA moves translationally on a smooth 
horizontal x-y plane in the x direction with a velocity V (see the figure on the next 
page). The center of the disk is at a distance b from the x-axis. It collides with a 
stationary homogeneous disc B whose center is initially located at the origin of the 
coordinate system. The disc B has the same mass and the same thickness as A, but its 
radius is RB. It is assumed that the velocities of the discs at their point of contact, in the 
direction perpendicular to the line joining their centers, are equal after the collision. It 
is also assumed that the magnitudes of the relative velocities of the discs along the line 
joining their centers are the same before and after the collision. 
1) For such a collision determine the X and Y components of the velocities of the two 

discs after the collision, i. e. AXV ′ , AYV ′ , BXV ′  and BYV ′  in terms of m , AR , BR , 

V  and b . 

2) Determine the kinetic energies AE ′  for disc A and BE ′  for disc B after the collision 

in terms of m , AR , BR , V  and b . 

 

 
Theoretical Problem 3—Solution 

 1) When disc A collides with disc B, let n be the unit vector along the normal to 
the surfaces at the point of contact and t be the tangential unit vector as shown in the 

figure. Let ϕ  be the angle between n and the x axis. Then we have 

ϕsin)( BA RRb +=  

The momentum components of A and B along n and t before collision are: 

0,cos == BnAn mVmVmV ϕ , 
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0,sin == BtAt mVmVmV ϕ . 

 Denote the corresponding momentum components of A and B after collision by 

AnVm ′ , BnVm ′ , AtVm ′ , and BtVm ′ . Let Aω  and Bω  be the angular velocities of A and 

B about the axes through their centers after collision, and AI  and BI  be their 

corresponding moments of intertia. Then, 
2

2
1

AA mRI = ,     2

2
1

BB mRI =  

 The conservation of momentum gives 

BnAn VmVmmV ′+′=ϕcos ,       (1) 

tnAt VmVmmV ′+′=ϕsin ,        (2) 

 The conservation of angular momentum about the axis through O gives 

BBAABAAt IIRRVmmVb ωω +++′= )(       (3) 

 The impulse of the friction force exerted on B during collision will cause a 

momentum change of AtVm ′  along t and produces an angular momentum BBI ω  

simultaneously. They are related by. 

BBbBt IRVm ω=′          (4) 

 
 During the collision at the point of contact A and B acquires the same tangential 
velocities, so we have 

BBBtAAAt RVRV ωω −′=−′         (5) 

It is given that the magnitudes of the relative velocities along the normal direction 
of the two discs before and after collision are equal, i. e. 

AnBn VVV ′−′=ϕcos .         (6) 

From Eqs.   1 and 6 we get 
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0=′AnV , 

ϕcosVVBn =′ . 

 From Eqs. 2 to 5, we get 

      ϕsin
6
5VVAt =′ , 

      ϕsin
6
1VVBt =′ , 

      
A

A R
V

3
sinϕω = , 

      
B

B R
V

3
sinϕω = . 

 The x and y components of the velocities after collision are: 

 ,
)(6

5sincos 2

2

BA
AtAnAx RR

VbVVV
+

=′+′=′ ϕϕ       (7) 

2

22

)(6
)(5

cossin
BA

BA
AtAnAy RR

bRRVb
VVV

+

−+
=′+′−=′ ϕϕ ,   (8) 









+

−=′+′=′
2

2

)(6
51sincos

BA
BtBnBx RR

bVVV ϕϕ ,     (9) 

 

    2

22

)(6
)(5

cossin
BA

BA
BtBnBy RR

bRRVb
VVV

+
−+

−=′+′−=′ ϕϕ ,  (10) 

 2) After the collision, the kinetic energy of disc A is 

2

22
222

)(8
3

2
1)(

2
1

BA
AAAyAxA RR

bmVIVVmE
+

=+′+′=′ ω     (11) 

 while the kinetic energy of disc B is 

 







+

−=+′+′=′ 2

2
2222

)(12
111

2
1

2
1)(

2
1

BA
BBByBxB RR

bmVIVVmE ω   (12) 

Grading Scheme 
 1. After the collision, the velocity components of discs A and B are shown in Eq. 7, 
8, 9 and 10 of the solution respectively. The total points of this part is 8. 0. If the result 
in which all four velocity components are correct has not been obtained, the point is 
marked according to the following rules. 
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 0.8 point for each correct velocity component; 
 0.8 point for the correct description of that the magnitudes of the relative velocities 
of the discs along the line joining their centers are the same before and after the 
collision. 
 0.8 point for the correct description of the conservation for angular momentum; 
 0.8 point for the correct description of the equal tangential velocity at the touching 
point; 
 0.8 point for the correct description of the relation between the impulse and the 
moment of the impulse. 
 2. After the collision, the kinetic energies of disc A and disc B are shown in Eqs. 
11 and 12 of the solution respectively. 
 1.0 point for the correct kinetic energies of disc A; 
 1.0 point for the correct kinetic energies of disc B; 
 The total points of this part is 2.0 
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XXV INTERNATIONAL PHYSICS OLYMPIAD 
BEIJING, P EOPLE’S REPUBLIC OF CHINA 

PRACTICAL COMPETITION 
July 15, 1994 

Time available: 2.5 hours 
READ THIS FIRST! 

 
INSTRUCTIONS: 
1. Use only the ball pen provided. 
2. Your graphs should be drawn on the answer sheets attached to the problem. 
3. Write your solution on the marked side of the paper only. 
4. The draft papers are provided for doing numerical calculations and draft drawings. 
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EXPERIMENTAL PROBLEM 1 
Determination of light reflectivity of a transparent dielectric surface.  

 
Experimental Apparatus 

1. He-Ne Laser(～1.5mW).The light from this laser is not linearly polarized. 
2. Two polarizers (P1, P2) with degree scale disk (Fig. 1), one (P1) has been 

mounted in front of the laser output window as a polarizer, and another one can be 
fixed in a proper place of the drawing board by push-pins when it is necessary. 

3. Two light intensity detectors (D1, D2) which consisted of a photocell and a 
microammeter (Fig. 2). 

4. Glass beam splitter(B). 
5. Transparent dielectric plate, whose reflectivity and refractive index are to be 

determined. 
6. Sample table mounted on a semicircular degree scale plate with a coaxial swivel 

arm(Fig. 3). 
7. Several push-.pins for fixing the sample table on the drawing board and as its 

rotation axis. 
8. Slit aperture and viewing screen for adjusting the laser beam in the horizontal 

direction and for alignment of optical elements. 
9. Lute for adhere of optical elements in a fixed place. 
10. Wooden drawing board. 
11. Plotting papers 

 
Experiment Requirement 
1. Determine the reflectivity of the p-component as a function of the incident angle 

(the electric field component, parallel to the plane of incidence is called the 
p-component). 

(a) Specify the transmission axis of the polarizer (A) by the position of the marked 
line on the degree scale disk in the p-componet measurement(the transmission 
axis is the direction of vibration of the electric field vector of the transmitted 
light). 

(b) Choose any one of the light intensity detector and set its micro-ammeter at the 
range of "×5". Verify the linear relation ship between  the light  intensity and 
the micro-ammeter reading. Draw the optical schematic diagram. Show your 
measured data and  calculated  results(including  the calculation formula)in 
the farm of a table. Plot the linear relationship curve. 
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(c) Determine the reflectivity of the p-component as a function of the incident 
angle. Draw the optical schematic diagram. Show your measured data and 
calculated reflectivity(including the calculation formula)in the form of a table. 
Plot the reflectivity as a function of the incident angle. 

 
2. Determine the refractive index of the sample as accurate as possible. 
Explanation and Suggestion 

1. Laser radiation avoid direct eye exposure. 
2. Since the output power of the laser beam may fluctuate from time to time, the 

fluctuation of light output has to be monitored during the performance of the 
experiment and a correction of the experimental results has to be made. 

3. The laser should be lighting all the time, even when you finish your experiment 
and leave the examination hall, the laser should be keeping in work. 

4. The reflected light is totally plane polarized at an incident angle Bθ  while 

tg Bθ n=  (refractive index). 

 

Fig. 1 polarizers with degree scale disk 

 
Fig. 2  Light intensity detector 
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(1) Insert the plug of photocell into the “INPUT” socket of microammeter 
(2) Switching on the microammeter. 
(3) Blocd off the light entrance hole in front of the photocell and adjust the scale 

reading of micro ammeter to “0”. 
(4) Set the “Multiple” knob to a proper range. 

 

Fig.3 Sample table mounted on a semicircular degree scale plate 
 
Experimental Problem 1——Solution 

1. (a) Determine the transmission axis of the polarizer and the Brewster angle Bθ  of 

the sample by using the fact that the rerlectivity of the p-component 0=pR  at 

the Brewster angle. 

Change the orientation of the transmission axis of 1P , specified by the position of 

the marked line on the degree scale disk (ψ ) and the incident angle ( iθ ) successively 

until the related intensity 0=rI . 

 

Now the incident light consists of p-component only and the incident angle is Bθ , the 
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corresponding values 1ψ  and Bθ  are shown below: 

1ψ  140.0° 322.0° 141.0° 322.5° 

θ  56.4° 56.4° 56.2° 56.2° 

°±°= 5.05.1401ψ   or  322.3°±0.1° 

 The Brewster angle Bθ  is 56.3°±0.1° 

1. (b) Verification of the linear relationship between the light intensity and the 
microammenter reading. 

 

 The intensity the transmitted light passing through two polarized 1P  and 2P  

obeys Malus’ law 

θθ 2
0 cos)( II =  

where 0I  is the intensity of the light polarized by 1p  and incident, I  is the 

intensity of the transmitted light, and θ  is the angle between the transmission axes of 

1P  and 2p . Thus we can obtain light with various intensities for the verification by 

using two polarizers. 
 The experimental arrangement is shown in the figure. 

 The light intensity detector 1D  serves to monitor the intensity fluctuation of the 

incident beam (the ratio of 1I  to 2I  remain unchanged), and 2D  measures 2I . Let 

)(1 θi  and )(2 θi  be the readings of 1D  and 2D  respectively, and )(2 θψ  be the 

reading of the marked line position. 02 =i  when 90=θ °, the corresponding 2ψ  

is 2ψ (90°), and the value of θ  corresponding to 2ψ  is 

|90)90(| 22 °±°−= ψψθ  

Data and results; 
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°=° 4)90(2ψ  

2ψ  94.0° 64.0° 49.0° 34.0° 4.0° 

θ  0.0° 30.0° 45.0° 60.0° 90.0° 

Ai µθ )(1  6.3×1 5.7×1 5.7×1 5.7×1 5.7×1 

Ai µθ )(2  18.7×5 12.7×5 8.2×5 4.0×5 0.0×5 

 From the above data we can obtain the values of )(/)( 2 θθ II  from the formula 

)0(
)0(

)(
)()(

2

1

1

2

0 i
i

i
i

I
I

⋅=
θ
θθ  

and compare them with θ2cos  for examining the linear relationship. The results 

obtained are: 

θ  0.0° 30.0° 45.0° 60.0° 90.0° 

θ2cos  1.00 0.75 0.50 0.25 0.00 

0/)( II θ  1.00 0.75 0.49 0.24 0.00 

 
1. (c) Reflectivity measurement 

 The experimental arrangement shown below is used to determine the ratio of 0I  

to 1I  which is proportional to the ratio of the reading )( 20i  of 2D  to the 

corresponding reading )( 10i  of 1D . 
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 Then used the experimental arrangement shown below to measure the relativity 

pR  of the sample at various incident angle )(θ  while the incident light consists of 

p-component only. Let )(1 θi  and )(2 θi  be the readings of 1D  and 2D  

respectively. 

 
 Then the reflectivity is 

20

10

1

2

0 )(
)()()(

i
i

i
i

I
IRp ⋅==

θ
θθθ  

Data and results: 

Ai
Ai

µ
µ

ψ

3.13
58.19

5.140

10

20

1

=
×=
°=

 

θ (°) )(2 θi  )(1 Ai µ  )(θpR  

5 
10 
20 
30 
40 
50 
53 
55 

56.3（dark） 
58 
60 
64 
66 
68 

15.1×0.2 
14.9×0.2 
13.3×0.2 
11.4×0.2 
7.8×0.2 
2.3×0.2 
0.7×0.2 
0.3×0.2 
～0 

0.3×0.2 
1.1×0.2 
6.5×0.2 
7.8×0.2 
16.3×0.2 

11.1 
11.2 
11.1 
12.2 
14.7 
16.9 
11.3 
11.3 
11.5 
11.5 
13.5 
16.7 
11.8 
15.0 

0.037 
0.036 
0.032 
0.025 
0.014 
0.0037 
0.0017 
0.00059 
～0 

0.0007 
0.0024 
0.011 
0.018 
0.029 
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72 
76 
80 
84 

5.3×0.1 
13.1×1 
4.4×5 
9.1×5 

11.7 
14.0 
11.7 
14.5 

0.061 
0.13 
0.25 
0.42 

The curve of reflectivity of p-component as a function of incident in plexiglass 

 
2. The Brewster angle Bθ  can be found from the above date as 

°±°= 2.03.56Bθ  

The index of refraction can be calculated as 

01.050.1tan ±== Bn θ  

The sources of errors are: 
1. Detector sensitivity is low. 
2. The incident light does not consist of p-component only. 
3. The degree scales are not uniform. 

 
EXPERIMENTAL PROBLEM 1: Grading Scheme(10 points) 
Part 1. Reflectivity of the p-component. 7 points, distributed as follows. 

a. Determination of the transmission axis of the polarizer (A) in p-component 
measurement, 1 point. 

(Error less than ±2°,    1.0point; 
error less than ±3°,    0.7point; 
 error less than ±4°,   0.3point; 
 error less than ±5°，  0.1 point.) 

b. Verification of the linearity of the light intensity detector(2 points). Draws the 
optical schematic diagram correctly, 1.0 point; (Without the correction of the 
fluctuation of the light intensity, 0.4 point only); 
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Uses 0/ II ～ θ2cos  figure to show the “linearity”, 0.5 point; 

Tabulate the measured data(with 5 points at least)correctly, 0.5 point. 
c. Determination of the reflectivity of the p-component of the light as a function of 

incident angle, 4 points, distributed as follows. 
Draws the optical schematic diagram correctly and tabulate the measured data 
perfectly, 2.0 points; 
Plot the reflectivity as the function of incident angle with indication of errors, 2 
points. 

Part 2. Determination of the refractive index of sample, 3 point. 
Brewster angle of sample, 1 point; 

   (Error less than ±1°,     1.0point; 
 error less than ±2°,     0.5point; 
 error less than ±3°,     0.2point; 
 error larger than ±3°,      0 point.) 

The refractive index of sample, 0.5 point. 
Discussion and determination of errors, 1.5 points. 

EXPERIMENTAL PROBLEM 2 
Black Box 
Given a black box with two similar terminals. There are no more than three passive 
elements inside the black box. Find the values of elements in the equivalent circuit 
between the terminals. This box is not allowed to be opened. 
Experimental Apparatus 

1. Double channel oscilloscope with a panel illustration, showing the name and 
function of each knob 

2. Audio frequency signal generator with a panel illustration, showing the name 
and function of each knob 

3. Resistance box with a fixed value of l00 ohm(< ±0.5%) 
4. Several connecting wires 
5. For the coaxial cables,  the wire in black color at the terminal is grounded. 
6. Log-log paper, semi-log paper, and millimeter paper are provided for use if 

necessary 
Note: The knobs, which were not shown on the panel illustration of the “signal 

generator” and “oscilloscope”, have been set to the correct positions. It should 
not be touched by the student. 

Experimental Requirements 
1. Draw the circuit diagram in your experiment. 
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2. Show your measured data and the calculated results in the form of tables. Plot 
the experimental curves with the obtained results on the coordinate charts 
provided(indicate the title of the diagram and the titles and scale units of the 
coordinate axes) 

3. Given the equivalent circuit of the black box and the names of the elements with 
their values in the equivalent circuit(write down the calculation formulas). 

Instructions 
1. Do your experiment in the frequency range between 100 Hz and 50kHz. 
2. The output voltage of the signal generator should be less than 1.0V 

(peak-to-peak). Set the “Out Attenuation” switch to “20” db position and it 
should not be changed. 

3. On connecting the wires, be careful to manage the wiring so as to minimize the 
50Hz interference from the electric mains. 

Instruction for Using XD2 Type Frequency Generator 
1. Set the “Out Attenuation” to “20” db position and it should not be changed. 
2. Set the “Damping Switch” to “Fast” position. 
3. The indication of the voltmeter of the signal generator is the relative value, but 

not the true value of the output. 
4. Neglect the error of the frequency readings. 

Note: For XD22 Type Audio Frequency generator, there is no “Damping Switch”, and 
the “output” switch should be set to the sine “~” position. 
 
Instruction for Using SS-5702 Type Oscilloscope 

1. Keep the “V mode” switch in “Dual” position. 
2. The “Volts/div” (black) and the “variable control” (red) vary the gain of the 

vertical amplifier, and when the “variable control” (red) is ill the fully 
clockwise position, the black setting are calibrated. 

3. The “Times/div” (Black) varies the horizontal sweep rate from 0.5μs/div to 
0.2s/div, and they are calibrated when the “variable control” (red) is in the fully 
clockwise CAL position. 

4. The “Trigging Source” (Trigging sweep signal) is used to select the trigging 
signal channel and the" level" control is used to adjust the amplitude of the 
trigging signal. 

5. Measuring accuracy: ±4%. 
Instruction for Using “Resistance Box” 

The resistance of the “Resistance Box” has been set to a value of 100ohm, and it 
should not be changed.  
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Experimental problem 2......  Solution 
1. The circuit diagram is shown in Fig. 1 

 

Fig. 1 
We have the relation: 

R
VI R= ; 

R
V

V
I

VRZ
R

RZRZ ++ ==+  

2. Measure the values of RZV +  and RV  at various frequencies (f), the measured data 

and calculated value of Z+R are shown in table l. “The Z+R-f curve is plotted in Fig. 2 

 
Table l. The magnitude of impedance verus frequency 

310(×f Hz) )( ppRZ VU +  RU mVpp Ω×+ 310(RZ ) 

0.100 
0.200 
0.400 
0.700 
0.900 

0.600 
0.600 
0.600 
0.300 
0.300 

22.0 
45.0 
94.0 
92.0 
121 

2.73 
1.33 
0.638 
0.326 
0.248 
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1.00 
1.10 
1.16 
1.25 
1.50 
2.00 
4.00 
8.00 
15.0 
30.0 
50.0 

0.300 
0.300 
0.300 
0.300 
0.300 
0.300 
0.300 
0.600 
0.600 
0.600 
0.600 

136 
140 
141 
140 
120 
88.0 
78.0 
38.0 
20.0 
10.0 
6.0 

0.220 
0.214 
0.213 
0.214 
0.250 
0.341 
0.769 
1.58 
3.00 
6.00 
10.0 

From table 1 and Fig. 2, we got the conclusions: 

(1) Current resonance (minimum of Z)  occurs at 3
0 1016.1 ×≅f Hz. 

(2) 0ff 〈〈 , fZ ∝ , 2/πϕ −≈∆ . The impedance of the “black box” at low 

frequency is dominated by a inductance. 

(3) 0ff 〉〉 , fZ ∝ , 2/πϕ ≈∆ . The impedance of the “black box” at high 

frequency is dominated by a inductance. 
(4) Equivalent circuit of the “black box”; r, L and C connected in series shown in 

Fig. 3. 

 
Fig. 3 

3. Determination of the values of r , L  and C . 
 (a) r  

 At resonance frequency 0f  
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LC VV −=  

 Then 

RrR
V

V
I

VRZ
R

RZRZ +===+ ++  

 From table 1, Ω=+ 213Rr , it is given Ω= 100R , so the equivalent resistance 
r  in Fig. 3 is equal 113Ω . 
 (b) C  

 At low frequency, 0≈Lz  in Fig. 3. So the circuit could be considered as a series 

RC circuit. 
 From phasor diagram, Fig. 4, 

I
VV

I
V

Z
C

rRRZC
C

221 ++ −
===

ω
 

 Since 322 106/ −
++ ×≈RZrR VV  at 100=f Hz, 2

rRV +  can beneglected with respect to 

2
RZV + , so 

Ω×=+≈≈ + 31073.21 RZ
I

V
C

RZ

ω
 

f
RZ

C µ
ω

58.0
)(

1
=

+
≈ . 

fC µ58.0≅ .                         Fig. 4 

 (c) L 

 At high frequency, 0≈LZ  in Fig. 3. So the circuit could be considered as a series 

RL circuit. 
 From phasor diagram, Fig. 5,  

22|| RrRZL VVV ++ −= , 

 Since 422 105.4/ −
++ ×≈RZRr VV  at 50=f kHz, 2

RrV +  can be 

neglected with respect to 2
RZV + , so                              Fig. 5 

Ω=+≈=== + 410|| RZ
I

V
I

VZL RZL
Lω     (3) 
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     8.31=
+

=
ω

RZL mH. 

 Error estimation: 
 It is given, precision of the resistance box reading %5.0/ ≈∆ RR  
    precision of the voltmeter reading %4/ ≈∆ VV  

 (1) Resistance r : at resonance frequency 0f  

R
V

VRr
R

RZ+=+  

%4)(
≈

∆
+

∆
+

∆
=

+
+∆

+

+

R
R

V
V

V
V

Rr
Rr

R

R

RZ

RZ +4%+0.5%=8.5% 

Ω=∆ 16r  
 (2) Capacitance C: (Neglect the error of the frequency reading) 

R
V

VZ
C R

RZ
C

+=≅
ω
1  

%8.8≈
∆

+
∆

+
∆

=
∆

+

+

R
R

V
V

V
V

C
C

R

R

RZ

RZ  

 The approximation RZC VV +≈  will introduce apercentageerror 0.3% 

 (3) Inductance L: Similar to the results of capacitance C, but the percentage error 

introduced by the approximation RZL VV +≈  is much small (0.003%) and thus 

negligible. 

%5.8≈
∆
L
L . 

 
Experimental Problem 2: Grading Scheme (10 points maximum) 
1. Measuring circuit is correct as shown in Fig.(a) 

……2.0point 

 

Fig. a 
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2. Correct data table and figure to show the characteristic of the black box 
……2.0 points 

3. The equivalent circuit of the black box, and the names of the elements with their 
values in the equivalent circuit are correct 

total 6.0 points 
(a)  R, L and C are connected in series 

……1.5 point 
(L and C are connected in series 

……1.0 point) 
(b)  Correct value (error less than 15% ) for each element 

……0.5 point (×3) 
(error between 15% and 30% 0.3) 
(error between 30% and 50% 0.1) 

(c)  Correct calculation formula for each element 
……0.5 point (×3) 

(d)  Error estimate is reasonable for each element 
……0.5 points (×3) 

���������



Theoretical Question 1

This is essentially a question in special relativity. The core of the question is part (b) which involves a
simulated experiment. It requires students to combine the concepts of gravitational red shifts, resonance
absorption, Doppler shifts and the graphical interpretation of data.

Overall the question appears to have met its objective of allowing nearly all students to gain a few marks
from part (a). A suprisingly large number of students were able to obtain essentially the correct solution
to part (b) using the appropriate straight-line graph. Part (c) also produced many basically correct
solutions with some of the best students simplifying their soloution to the logical limit. One student
managed to obtain the correct answer making use of the 4-momentum. The very best answers to this
question were almost flawless and demonstrated a very high level of conceptual understanding and the
ability to synthesise ideas from a number of different areas.

Theoretical Question 2

This question is concerned with the propagation of waves in a medium with a varying refractive index
and the different modes of propagation which occur. The responses to this question mirrored the marks
distribution shown in Figure 1 for the overall theory results. A number of students gained near-perfect
marks while an equivalent number gained very few. The most interesting part of the marking arose in
connection with part (a), where the arc radius R specified in the question needs to be established. The
marking team encountered four distinguishable and valid approaches to establishing the result for R.

Part (c) proved to be a useful discriminator between those students who either did, or did not, realise that
a seris of paths, or modes, exists from the source to the receiver. The numerical estimates in part (d),
and intended to assist the markers, required some care in marking according to the way in which students
treated the issue of significant figures during the calculation. Part (e), which led to the conclusion that
the ray with the smallest calue of initial angle will arrive first, was a useful discriminator.

Theoretical Question 3

This question is essentially a problem in mechanics with elements of hydrostatics. It involves the concepts
of Archimedes’ Principle, small oscillations and rotational dynamics applied to an interesting geometry.

One common mistake of interpretation noted by the examiners was to set the length of the rod equal
to the radius rather than to the diameter of the cylinder. In line with the policy on marking, students
were only penalised once for this mistake provided that the rest of their analysis was consistent with this
assumption. The clever aspect of the problem was in part (d) where some students attempted to estimate
the solution to the transcendental equation α− sinα cos α = 1.61 sin α, rather than simply checking that
α ' 1.57(π/2) gave a reasonable result. Students from two teams used numerical methods to obtain a
more precise value for α. One student who correctly applied Newton’s method to solve the equation for
α received the special prize for mathematics.

Experimental Question 1

This question was concerned with the motion of small objects (cylinders) in a viscous medium, and was
designed to test as wide a range of experimental skills as possible. In particular the question aimed to
test:

• understanding of the concept of terminal velocity.

• experimental technique; the experiment required careful hand-eye coordination to reduce systematic
effects (for example by dropping the cylinders each time with the same orientation and using multiple
timings to reduce the scatter in the results).

• the ability to graph and interpret data including the use of logarithmic and linear plots and the
interpretation of slopes and intercepts.

• estimation of uncertainties in the results.

1



The experiment generally worked as expected. Experimental techniques were uniformly good, and
the students demonstrated excellent manipulative skills. Their main weakness was in the handling of the
determination of the density of the glycerine from the graph of fall time as a function of the density of
the cylinders. Students in general did not measure the intercept on the density axis but calculated the
density from the intercept on the fall time axis and the slope of the graph.

Experimental Question 2

This question made use of a laser pointer to carry out several experiments in optics. The first task
concerned the use of a metal ruler as a diffraction grating. In this experiment the diffraction pattern was
formed by reflection with the incident laser beam at nearly normal incidence to the ruler. (This geometry
is rather different from the more common demonstration where the incident beam is at close to grazing
incidence.) A number of students had difficulty with this geometry and failed to obtain a convincing
pattern.

The second experiment investigated the reflection and transmission of light through transparent media.
The main difficulty with the measurements was that changes in intensity had to be estimated by eye
using a set of calibrated transmission discs. This was much more demanding than using, for example,
a photodiode and multimeter as it required the exercise of considerable experimental judgement. It
therefore provided an excellent test of a student’s experimental technique.

The final experiment was concerned with the scattering of light from a translucent material formed by
adding a few drops of milk to water. The amount of scattering and the reduction in the transmitted
intensity were measured as a function of the concentration of milk. Students had considerable difficulty
with this experiment with some not recognising the phenomena they were meant to be observing. However
the best students were still able to obtain convincing results. The exercise therefore provided good
discrimination between the most able students.
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Theoretical Question 1

Gravitational Red Shift and the Measurement of Stellar Mass

(a) (3 marks)
A photon of frequency f possesses an effective inertial mass m determined by its energy. Assume
that it has a gravitational mass equal to this inertial mass. Accordingly, a photon emitted at the
surface of a star will lose energy when it escapes from the star’s gravitational field. Show that the
frequency shift ∆f of the photon when it escapes from the surface of the star to infinity is given by

∆f

f
' −

GM

Rc2

for ∆f ¿ f where:

• G = gravitational constant

• R = radius of the star

• c = velocity of light

• M = mass of the star.

Thus, the red-shift of a known spectral line measured a long way from the star can be used to
measure the ratio M/R. Knowledge of R will allow the mass of the star to be determined.

(b) (12 marks)
An unmanned spacecraft is launched in an experiment to measure both the mass M and radius
R of a star in our galaxy. Photons are emitted from He+ ions on the surface of the star. These
photons can be monitored through resonant absorption by He+ ions contained in a test chamber
in the spacecraft. Resonant absorption accors only if the He+ ions are given a velocity towards the
star to allow exactly for the red shifts.

As the spacecraft approaches the star radially, the velocity relative to the star (v = βc) of the He+

ions in the test chamber at absorption resonance is measured as a function of the distance d from
the (nearest) surface of the star. The experimental data are displayed in the accompanying table.

Fully utilize the data to determine graphically the mass M and radius R of the star. There is no
need to estimate the uncertainties in your answer.

Data for Resonance Condition

Velocity parameter β = v/c (×10−5) 3.352 3.279 3.195 3.077 2.955
Distance from surface of star d (×108m) 38.90 19.98 13.32 8.99 6.67

(c) (5 marks)
In order to determine R and M in such an experiment, it is usual to consider the frequency
correction due to the recoil of the emitting atom. [Thermal motion causes emission lines to be
broadened without displacing emission maxima, and we may therefore assume that all thermal
effects have been taken into account.]

(i) (4 marks)
Assume that the atom decays at rest, producing a photon and a recoiling atom. Obtain the
relativistic expression for the energy hf of a photon emitted in terms of ∆E (the difference in
rest energy between the two atomic levels) and the initial rest mass m0 of the atom.

(ii) (1 mark)

Hence make a numerical estimate of the relativistic frequency shift

(

∆f

f

)

recoil

for the case of

He+ ions.

Your answer should turn out to be much smaller than the gravitational red shift obtained in
part (b).

Data:



Velocity of light c = 3.0 × 108ms−1

Rest energy of He m0c
2 = 4 × 938(MeV)

Bohr energy En = −

13.6Z2

n2
(eV)

Gravitational constant G = 6.7 × 10−11Nm2kg−2



Theoretical Question 2

Sound Propagation

Introduction

The speed of propagation of sound in the ocean varies with depth, temperature and salinity. Figure
1(a) below shows the variation of sound speed c with depth z for a case where a minimum speed value
c0 occurs midway betweeen the ocean surface and the sea bed. Note that for convenience z = 0 at the
depth of this sound speed minimum, z = zS at the surface and z = −zb at the sea bed. Above z = 0, c
is given by

c = c0 + bz .

Below z = 0, c is given by
c = c0 − bz .

In each case b =

∣

∣

∣

∣

dc

dz

∣

∣

∣

∣

, that is, b is the magnitude of the sound speed gradient with depth; b is assumed

constant.

c0

z

z S

b

0

−z

c

0

0

+c=c     bz

− c=c     bz

Figure 1 (a)

θ0

z

x
S H

θ

X

z S

b

0

−z

Figure 1 (b)

Figure 1(b) shows a section of the z–x plane through the ocean, where x is a horizontal direction.
The variation of c with respect to z is shown in figure 1(a). At the position z = 0, x = 0, a sound source
S is located. A ‘sound ray’ is emitted from S at an angle θ0 as shown. Because of the variation of c with
z, the ray will be refracted.

(a) (6 marks)
Show that the trajectory of the ray, leaving the source S and constrained to the z–x plane forms
an arc of a circle with radius R where

R =
c0

b sin θ0

for 0 ≤ θ0 <
π

2
.

(b) (3 marks)
Derive an expression involving zS , c0 and b to give the smallest value of the angle θ0 for upwardly
directed rays which can be transmitted without the sound wave reflecting from the sea surface.

(c) (4 marks)
Figure 1(b) shows the position of a sound receiver H which is located at the position z = 0, x = X.
Derive an expression involving b, X and c0 to give the series of angles θ0 required for the sound ray
emerging from S to reach the receiver H. Assume that zS and zb are sufficiently large to remove
the possibility of reflection from sea surface or sea bed.



(d) (2 marks)
Calculate the smallest four values of θ0 for refracted rays from S to reach H when

• X = 10000 m

• c0 = 1500 ms−1

• b = 0.02000 s−1

(e) (5 marks)
Derive an expression to give the time taken for sound to travel from S to H following the ray path
associated with the smallest value of angle θ0, as determined in part (c). Calculate the value of
this transit time for the conditions given in part (d). The following result may be of assistance:

∫

dx

sinx
= ln tan

(x

2

)

Calculate the time taken for the direct ray to travel from S to H along z = 0. Which of the two rys
will arrive first, the ray for which θ0 = π/2, or the ray with the smallest value of θ0 as calculated
for part (d)?



Theoretical Question 3

Cylindrical Buoy

(a) (3 marks)
A buoy consists of a solid cylinder, radius a, length l, made of lightweight material of uniform
density d with a uniform rigid rod protruding directly outwards from the bottom halfway along the
length. The mass of the rod is equal to that of the cylinder, its length is the same as the diameter
of the cylinder and the density of the rod is greater than that of seawater. This buoy is floating in
sea-water of density ρ.

In equilibrium derive an expression relating the floating angle α, as drawn, to d/ρ. Neglect the
volume of the rod.

α α
a a

(b) (4 marks)
If the buoy, due to some perturbation, is depressed vertically by a small amount z, it will experience
a nett force, which will cause it to begin oscillating vertically about the equilibtium floating position.
Determine the frequencty of this vertical mode of vibration in terms of α, g and a, where g is the
acceleration due to gravity. Assume the influence of water motion on the dynamics of the buoy is
such as to increase the effective mass of the buoy by a factor of one third. You may assume that α
is not small.

z

(c) (8 marks)
In the approximation that the cylinder swings about its horizontal central axis, determine the
frequency of swing again in terms of g and a. Neglect the dynamics and viscosity of the water in
this case. The angle of swing is assumed to be small.

θ



(d) (5 marks)
The buoy contains sensitive acelerometers which can measure the vertical and swinging motions
and can relay this information by radio to shore. In relatively calm waters it is recorded that the
vertical oscillation period is about 1 second and the swinging oscillation period is about 1.5 seconds.
From this information, show that the floating angle α is about 90◦ and thereby estimate the radius
of the buoy and its total mass, given that the cylinder length l equals a.

[You may take it that ρ ' 1000 kgm−3 and g ' 9.8 ms−2.]



Original Theoretical Question 3

The following question was not used in the XXVI IPhO examination.

Laser and Mirror

(a)

Light of frequency fi and speed c is directed at an angle of incidence θi to the normal of a mirror,
which is receding at speed u in the direction of the normal. Assuming the photons in the light beam
undergo an elastic collision in the rest frame of the mirror, determine in terms of θi and u/c the
angle of reflection θr of the light and the reflected frequency fr, with respect to the original frame.

u

f f

θθi r

i r

[You may assume the following Lorentz transformation rules apply to a particle with energy E and
momentum p:

p⊥ = p⊥ , p‖ =
p‖ − vE/c2

√

1 − v2/c2
, E =

E − vp‖
√

1 − v2/c2
,

where v is the relative velocity between the two inertial frames; p stands for the component of
momentum perpendicular to v and p represents the component of momentum parallel to v.]

(b)
A thin rectangular light mirror, perfectly reflecting on each side, of width 2a and mass m, is mounted
in a vacuum (to eliminate air resistance), on essentially frictionless needle bearings, so that it can
rotate about a vertical axis. A narrow laser beam operating continuously with power P is incident
on the mirror, at a distance b from the axis, as drawn.

b

b

a

a

elevation plan

Suppose the mirror is originally at rest. The impact of the light causes the mirror to acquire a
very small but not constant angular acceleration. To analyse the siuation approximately, assume
that at any given stage in the acceleration process the angular velocity ω of the mirror is constant
throughout any one complete revolution, but takes on a slightly larger value in the next revolution
due to the angular momentum imparted to the mirror by the light during the preceding revolution.
Ignoring second order terms in the ratio (mirror velocity / c), calculate this increment of angular
momentum per revolution at any given value of ω. [HINT: You may find it useful to know that
∫

sec2θ dθ = tan θ.]

(c)
Using the fact that the velocity of recoil of the mirror remains small compared with c, derive an
approximate expression for ω as a function of time.



(d)
As the mirror rotates, there will be instants when the light is reflected from its edge, giving the
reflected ray an angle of somewhat more than 90◦ with respect to the incident beam.. A screen 10
km away, with its normal perpendicular to the incident beam, intercepts the beam reflected from
near the mirror’s edge. Find the deviation ξ of that extreme spot from its initial position (as shown
by the dashed line, when the mirror was almost at rest), after the laser has operated for 24 hours.
You may suppose the laser power is P = 100 W, that the mirror has mass m = 1 gram and that
the geometry of the apparatus corresponds to a = b

√

2. Neglect diffraction effects at the edge.

ξ
mirror

laser

screen



Experimental Question 1

Terminal velocity in a viscous liquid

An object falling in a liquid will eventually reach a constant velocity, called the terminal velocity. The
aim of this experiment is to measure the terminal velocities of objects falling through glycerine.

For a sphere of radius r falling at velocity v through a viscous liquid, the viscous force F is given by
F = 6πηrv. Here η is a property of the liquid called the viscosity. In this experiment you will measure
the terminal velocity of metal cylinders (because cylinders are easier to make than spheres). The diameter
of each cylinder is equal to its length, and we will assume the viscous force on such a cylinder is similar
to the viscous force on a sphere of the same diameter, 2r:

Fcyl = 6πκηrmv (1)

where κ = 1, m = 1 for a sphere.

Preliminary

Calculation of terminal velocity (2 marks)

If ρ is the density of the culinder and ρ′ is the density of the liquid, show that the terminal velocity vT

of the cylinder is given by
vT = Cr3−m(ρ − ρ′) (2)

where C is a constant and derive a expression for C.

Experiment

Use the equipment available to determine the numerical value of the exponent m (10 marks) and the
density of glycerine (8 marks).

Notes

• For consistency, try to ensure that the cylinders fall in the same orientation, with the axis of the
cylinder horizontal.

• The tolerances on the diameter and the length of the cylinders are 0.05 mm (you need not measure
them yourself).

• There is a brass sieve inside the container that you should use to retrieve the metal cylinders.
Important: make sure the sieve is in place before dropping objects into the glycerine, otherwise you
will not be able to retrieve them for repeat measurements.

• When glycerine absorbs water from the atmosphere, it becomes less viscous. Ensure that the
cylinder of glycerine is covered with the plastic film provided when not in use.

• Do not mix cylinders of different size and different material after the experiment.

Material Density (kgm−3)

Aluminium 2.70 × 103

Titanium 4.54 × 103

Stainless steel 7.87 × 103

Copper 8.96 × 103

1



Experimental Question 2

Diffraction and Scattering of Laser Light

The aim of this experiment is to demonstrate and quantify to some extent the reflection, diffraction, and
scattering of light, using visible radiation from a Laser Diode source. A metal ruler is employed as a
diffraction grating, and a perspex tank, containing water and diluted milk, is used to determine reflection
and scattering phenomena.

Section 1 (6 marks)

Place the 150 mm length metal ruler provided so that it is nearly normal to the incident laser beam, and
so that the laserr beam illuminates several rulings on it. Observe a number of “spots” of light on the
white paper screen provided, caused by the phenomenon of diffraction.

Draw the overall geometry you have employed and measure the position and separation of these spots
with the screen at a distance of approximately 1.5 metres from the ruler.

Using the relation
Nλ = h sin β

where N is the order of diffraction
λ is the radiation wavelength
h is the grating period
β is the angle of diffraction

and the information obtained from your measurements, determine the wavelength of the laser radiation.

Section 2 (4 marks)

Now insert the empty perspex tank provided into the space between the laser and the white paper screen.
Set the tank at approximately normal incidence to the laser beam.

(i) Observe a reduction in the emergent beam intensity, and estimate the percentage value of this re-
duction. Some calibrated transmission discs are provided to assist with this estimation. Remember
that the human eye has a logarithmic response.

This intensity reduction is caused primarily by reflection losses at the aid/perspex boundaries, of
which there are four in this case. THe reflection coefficient for normal incidence at each boundary, R,
which is the ratio of the reflectied to incident intensities, is given by

R = {(n1 − n2)/(n1 + n2)}
2

where n1 and n2 are the refractive indices before and after the boundary. The corresponding transmission
coefficient, assuming zero absorption in the perspex, is fiven by

T = 1 − R .

(ii) Assuming a refractive index of 1.59 for the perspex and neglecting the effect of multiple reflections
and cogerence, calculate the intensity transmission coefficient of the empty perspex tank. Compare
this result with the estimate you made in Part (i) of this Section.

Section 3 (1 mark)

Without moving the perspex tank, repeat the observations and calculations in Section 2 with the 50 mL
of water provided in a beaker now added to the tank. Assume the refractive index of water to be 1.33.

Section 4 (10 marks)

1



(i) Add 0.5 mL (12 drops) of milk (the scattering material) to the 50 mL of water in the perspex tank,
and stir well. Measure as accurately as possible the total angle through which the laser light is
scattered, and the diameter of the emerging light patch at the exit face of the tank, noting that these
quantities are related. Also estimate the reduction in transmitted intensity, as in earlier sections.

(ii) Add a further 0.5 mL of milk to the tank, and repeat the measurements requested in part (i).

(iii) Repeat the process in part (ii) until very little or no transmitted laser light can be observed.

(iv) Determine the relationship between scattering angle and milk concentration in the tank.

(v) Use your results, and the relationship

I = I0e
−µz = Tmilk × I0

where I0 is the input intensity
I is the emerging intensity
z is the distance in the tank
µ is the attenuation coefficient and equals a constant times the concentration of the scatterer

Tmilk is the transmission coefficient for the milk

to obtain an estimate for the value of µ for a scatterer concentration of 10%.

2



Solutions to Theoretical Question 1

Gravitational Red Shift and the Measurement of Stellar Mass

(a)

If a photon has an effective inertial mass m determined by its energy then mc2 = hf or m =
hf

c2
.

Now, assume that gravitational mass = inertial mass, and consider a photon of energy hf (mass

m =
hf

c2
) emitted upwards at a distance r from the centre of the star. It will lose energy on escape

from the gravitational field of the star.

Apply the principle of conservation of energy:

Change in photon energy (hfi − hff ) = change in gravitational energy, where subscript i →

initial state and subscript f → final state.

hfi − hff = −

GMmf

∞

−

[

−

GMmi

r

]

hff = hfi −

GMmi

r

hff = hfi −

GM hfi

c2

r

hff = hfi

[

1 −

GM

rc2

]

ff

fi

=

[

1 −

GM

rc2

]

∆f

f
=

ff − fi

fi

= −

GM

rc2

The negative sign shows red-shift, i.e. a decrease in f , and an increase in wavelength.
Thus, for a photon emitted from the surface of a star of radius R, we have

∆f

f
=

GM

Rc2

Since the change in photon energy is small, (δf ¿ f),

mf ' mi =
hfi

c2
.

(b)
The change in photon energy in ascending from ri to rf is given by

hfi − hff = −

GMmf

rf

+
GMmi

ri

'

GMhfi

c2

[

1

ri

−

1

rf

]

∴

ff

fi

= 1 −

GM

c2

[

1

ri

−

1

rf

]

In the experiment, R is the radius of the star, d is the distance from the surface of the star to the
spacecraft and the above equation becomes:

ff

fi

= 1 −

GM

c2

[

1

R
−

1

R + d

]

(1)

The frequency of the photon must be doppler shifted back from ff to fi in order to cause resonance
excitation of the He+ ions in the spacecraft.
Thus apply the relativistic Doppler principle to obtain:

f ′

ff

=

√

1 + β

1 − β



where f ′ is the frequency as received by He+ ions in the spacecraft, and β = v/c.
That is, the gravitationally reduced frequency ff has been increased to f ′ because of the velocity
of the ions on the spacecraft towards the star. Since β ¿ 1,

ff

f ′
= (1 − β)

1

2 (1 + β)−
1

2 ' 1 − β

Alternatively, since β ¿ 1, use the classical Doppler effect directly.
Thus

f ′ =
ff

1 − β

or
ff

f ′
= 1 − β

Since f ′ must be equal to fi for resonance absorption, we have

ff

fi

= 1 − β (2)

Substitution of 2 into 1 gives

β =
GM

c2

(

1

R
−

1

R + d

)

(3)

Given the experimental data, we look for an effective graphical solution. That is, we require a linear
equation linking the experimental data in β and d.
Rewrite equation 3:

β =
GM

c2

[

R\ + d − R\

(R + d)R

]

Inverting the equation gives:
1

β
=

(

Rc2

GM

)[

R

d
+ 1

]

or

1

β
=

(

R2c2

GM

)

1

d
+

Rc2

GM

Graph of
1

β
vs.

1

d

1

1

intercept =          =αRc
GM

GM
R cslope =         = R α

2 2

2

β

d

The slope is

(

Rc2

GM

)

R = αR (A)

The
1

β
-intercept is

(

Rc2

GM

)

= α (B)

and the
1

d
-intercept is −

1

R
(C)



R and M can be conveniently determined from (A) and (B). Equation (C) is redundant. However,
it may be used as an (inaccurate) check if needed.
From the given data:

R = 1.11 × 108 m

M = 5.2 × 1030 kg

From the graph, the slope αR = 3.2 × 1012 m (A)

The
1

β
-intercept α =

Rc2

GM
= 0.29 × 105 (B)

Dividing (A) by (B)

R =
3.2 × 1012 m

0.29 × 105
' 1.104 × 108 m

Substituting this value of R back into (B) gives:

M =
Rc2

gα
=

(1.104 × 108) × (3.0 × 108)2

(6.7 × 10−11) × (0.29 ×
1 05)

or M = 5.11 × 1030 kg

(c)

(i)

Atom before the decay Atom and photon after the decay

+ hf

m m0 0
’

For the photon, photon momentum is p =
hf

c
and photon energy is E = hf .

Use the mass-energy equivalence, E = mc2, to relate the internal energy change of the atom
to the rest-mass change. Thus:

∆E = (m0 = m′
0) c2 (1)

In the laboratory frame of reference the energy before emission is

E = m0c
2 (2)

Recalling the relativistic relation
E2 = p2c2 + m2

0c
4

The energy after emission of a photon is

E =
√

p2c2 + m′
0
2c4 + hf (3)

where also p = hf/c by conservation of momentum.
Conservation of energy requires that (2) = (3), so that:

(

m0c
2
− hf

)2
= (hf)2 + m2

0c
4

(

m0c
2
)2

− 2hfm0c
2 = m2

0c
4

Carrying out the algebra and using equation (1):

hf(2m0c
2) = (m2

0 − m′
0
2)c4

= (m0 − m′
0)c

2(m0 + m′
0)c

2

= ∆E[2m0 − (m0 − m′
0)]c

2

= ∆E[2m0c
2
− ∆E]



hf = ∆E

[

1 −

∆E

2m0c2

]

(ii)
For the emitted photon,

hf = ∆E

[

1 −

∆E

2m0c2

]

.

If relativistic effects are ignored, then

hf0 = ∆E .

Hence the relativistic frequency shift
∆f

f0

is given by

∆f

f0

=
∆E

2m0c2

For He+ transition (n = 2 → 1), applying Bohr theory to the hydrogen-like helium ion gives:

∆E = 13.6 × 22
×

[

1

12
−

1

22

]

= 40.8 ev

Also, m0c
2 = 3.752 × 106 eV. Therefore the frequency shift due to the recoil gives

∆f

f0

' 5.44 × 10−12

This is very small compared to the gravitational red-shift of
∆f

f
∼ 10−5, and may be ignored

in the gravitational red-shift experiment.



Solutions to Theoretical Question 2

(a)
Snell’s Law may be expressed as

sin θ

sin θ0

=
c

c0

, (1)

where c is the speed of sound.
Consider some element of ray path ds and treat this as, locally, an arc of a circle of radius R.
Note that R may take up any value between 0 and ∞. Consider a ray component which is initially
directed upward from S.

dz

dθR

Rds

θ

In the diagram, ds = Rdθ, or
ds

dθ
= R.

From equation (1), for a small change in speed dc,

cos θdθ =
sin θ0

c0

dc

For the upwardly directed ray c = c0 + bz so dc = bdz and

sin θ0

c0

b dz = cos θdθ , hence dz =
c0

sin θ0

1

b
cos θ dθ .

We may also write (here treating ds as straight) dz = ds cos θ. So

ds =
c0

sin θ0

1

b
dθ

Hence
ds

dθ
= R =

c0

sin θ0

1

b
.

This result strictly applies to the small arc segments ds. Note that from equation (1), however, it
also applies for all θ, i.e. for all points along the trajectory, which therefore forms an arc of a circle
with radius R until the ray enters the region z < 0.

(b)

0θ
0θ

z= 0

z    z=

0θ

R sinR

S



Here

zs = R − R sin θ0

= R(1 − sin θ0)

=
c0

b sin θ0

(1 − sin θ0) ,

from which

θ0 = sin−1

[

c0

bzs + c0

]

.

(c)

0θ

x= 0

x=
R

S

R

H
X

The simplest pathway between S and H is a single arc of a circle passing through S and H. For
this pathway:

X = 2R cos θ0 =
2c0 cos θ0

b sin θ0

=
2c0

b
cot θ0 .

Hence

cot θ0 =
bX

2c0

.

The next possibility consists of two circular arcs linked as shown.

x= 0 x= X
S H

For this pathway:
X

2
= 2R cos θ0 =

2c0

b
cot θ0 .

i.e.

cot θ0 =
bX

4c0

.

In general, for values of θ0 < π

2
, rays emerging from S will reach H in n arcs for launch angles given

by

θ0 = cot−1

[

bX

2nc0

]

= tan−1

[

2nc0

bX

]

where n = 1, 2, 3, 4, . . .
Note that when n = ∞, θ0 = π

2
as expected for the axial ray.

(d)
With the values cited, the four smallest values of launch angle are

n θ0 (degrees)

1 86.19
2 88.09
3 88.73
4 89.04



(e)
The ray path associated with the smallest launch angle consists of a single arc as shown:

1
2

3

S H

We seek
∫ 3

1

dt =

∫ 3

1

ds

c

Try first:

t12 =

∫ 2

1

ds

c
=

∫ π/2

θ0

Rdθ

c

Using

R =
c

b sin θ

gives

t12 =
1

b

∫ π/2

θ0

dθ

sin θ

so that

t12 =
1

b

[

ln tan
θ

2

]π/2

θ0

= −

1

b
ln tan

θ0

2

Noting that t13 = 2t12 gives

t13 = −

2

b
ln tan

θ0

2
.

For the specified b, this gives a transit time for the smallest value of launch angle cited in the answer
to part (d), of

t13 = 6.6546 s

The axial ray will have travel time given by

t =
X

c0

For the conditions given,
t13 = 6.6666 s

thus this axial ray travels slower than the example cited for n = 1, thus the n = 1 ray will arrive
first.



Solutions to Theoretical Question 3

(a)
The mass of the rod is given equal to the mass of the cylinder M which itself is πa2ld. Thus the
total mass equals 2M = 2πa2ld. The mass of the displaced water is surely less than πa2lρ (when
the buoy is on the verge of sinking). Using Archimedes’ principle, we may at the very least expect
that

2πa2ld < πa2lρ or d < ρ/2

In fact, with the floating angle α (< π) as drawn, the volume of displaced water is obtained by
geometry:

α α
a a

2a

V = la2α − la2 sin α cos α .

By Archimedes’ principle, the mass of the buoy equals the mass of displaced water. Therefore,
2πa2ld = la2ρ(α − sin α cos α), i.e. α is determined by the relation

α − sin α cosα = 2dπ/ρ .

(b)
If the cylinder is depressed a small distance z vertically from equilibrium, the nett upward restoring
force is the weight of the extra water displaced or gρ.2a sin α.lz, directed oppositely to z. This is
characteristic of simple harmonic motion and hence the Newtonian equation of motion of the buoy
is (upon taking account of the extra factor 1/3)

z

a 2   sin α

8Mz̈/3 = −2ρglza sin α or z̈ +
3ρg sin α

4πda
z = 0 ,

and this is the standard sinusoidal oscillator equation (like a simple pendulum). The solution is of
the type z = sin(ωzt), with the angular frequency

ωz =

√

3ρg sin α

4πda
=

√

3g sin α

2a(α − cosα sin α)
,

where we have used the relation worked out at the end of the first part.



(c)

Without regard to the torque and only paying heed to vertical forces, if the buoy is swung by some
angle so that its weight is supported by the nett pressure of the water outside, the volume of water
displaced is the same as in equilibrium. Thus the centre of buoyancy remains at the same distance
from the centre of the cylinder. Consequently we deduce that the buoyancy arc is an arc of a circle
centred at the middle of the cylinder. In other words, the metacentre M of the swinging motion is

just the centre of the cylinder. In fact the question assumes this.

We should also notice that the centre of mass G of the buoy is at the point where the rod touches the
cylinder, since the masses of rod and cylinder each equal M . Of course the cylinder will experience
a nett torque when the rod is inclined to the vertical. To find the period of swing, we first need to
determine the moment of inertia of the solid cylinder about the central axis; this is just like a disc
about the centre. Thus if M is the cylinder mass

2Mg

2Mg
θ

G

M

I0 = Ma2/2

(

=

∫ a

0

r2 dm =

∫ a

0

r2.2Mr dr/a

)

The next step is to find the moment of inertia of the rod about its middle,

Irod =

∫ a

−a

(Mdx/2a).x2 = [Mx3/6a]a−a = Ma2/3 .

Finally, use the parallel axis theorem to find the moment of inertia of the buoy (cylinder + rod)
about the metacentre M ,

IM = Ma2/2 + [Ma2/3 + M(2a)2] = 29Ma2/6 .

(In this part we are neglecting the small horizontal motion of the bentre of mass; the water is the
only agent which can supply this force!) When the buoy swings by an angle θ about equilibrium the
restoring torque is 2Mga sin θ ' 2Mgaθ for small angles, which represents simple harmonic motion
(like simple pendulum). Therefore the Newtonian rotational equation of motion is

IM θ̈ ' −2Mgaθ , or θ̈ +
12g

29a
= 0 .

The solution is a sinusoidal function, θ ∝ sin(ωθt), with angular frequency

ωθ =
√

12g/29a .

(d)

The accelerometer measurements give

Tθ/Tz ' 1.5 or (ωz/ωθ)
2
' 9/4 ' 2.25 . Hence



2.25 =
3g sin α

2a(α − sinα cos α)

29a

12g
,

producing the (transcendental) equation

α − sin α cos α ' 1.61 sin α .

Since 1.61 is not far from 1.57 we have discovered that a physically acceptable solution is α ' π/2,
which was to be shown. (In fact a more accurate solution to the above transcendental equation
can be found numerically to be α = 1.591.) Setting alpha = π/2 hereafter, to simplify the algebra,
ω2

z = 3g/πa and 4d/ρ = 1 to a good approximation. Since the vertical period is 1.0 sec,

1.0 = (2π/ωz)
2 = 4π3a/3g ,

giving the radius a = 3 × 9.8/4π3 = .237 m.

We can now work out the mass of the buoy (in SI units),

2M = 2πa2ld = 2πa2.a.ρ/4 = πa3ρ/2 = π × 500 × (.237)3 ' 20.9 kg .



Solutions to Original Theoretical Question 3

(a)
Choose a frame where z is along the normal to the mirror and the light rays define the x–z plane.
For convenience, recording the energy-momentum in the four-vector form, (px, py, pz, E/c), the
initial photon has

Pi = (p sin θi, 0, p cos θi, p)

where p = Ei/c = hfi/c.

u

f f

θθi r

i r

By the given Lorentz transformation rules, in the moving mirror frame the energy-momentum of
the incident photon reads

Pmirror =

(

p sin θi, 0,
p cos θi − up/c
√

1 − u2/c2
,
p − up cos θi/c
√

1 − u2/c2

)

.

Assuming the collision is elastic in that frame, the reflected photon has energy-momentum,

P ′
mirror =

(

p sin θi, 0,
−p cos θi + up/c
√

1 − u2/c2
,
p − up cos θi/c
√

1 − u2/c2

)

.

Tansforming back to the original frame, we find that the reflected photon has

pxr = p sin θi , pyr = 0

pzr =
(−p cos θi + up/c) + u(p − up cos θi/c)/c

1 − u2/c2

Er/c =
(p − up cos θi/c) + u(−p cos θi + up/c)/c

1 − u2/c2

Simplifying these expressions, the energy-momentum of the reflected photon in the original frame
is

Pr =

(

p sin θi, 0,
p(− cos θi + 2u/c − u2 cos θi/c

2)

1 − u2/c2
,
p(1 − 2u cos θi/c + u2/c2)

1 − u2/c2

)

.

Hence the angle of reflection θr is given by

tan θr = −

pxr

pzr
=

sin θi(1 − u2/c2)

cos θi − 2u/c + u2 cos θi/c2
=

tan θi(1 − u2/c2)

1 + u2/c2
− 2u sec θi/c2

,

while the ratio of reflected frequency fr to incident frequency fi is simply the energy ratio,

fr

fi

=
Er

Ei

=
1 − 2u cos θi/c + u2/c2

1 − u2/c2
.

[For future use we may record the changes to first order in u/c:

tan θr ' tan θi(1 + 2u sec θi/c) so

tan(θr − θi) =
tan θr − tan θi

1 + tan θr tan θi

'

2u tan θi sec θi/c

1 + tan2 θi

'

2u sin θi

c

Thus, θr ' θi + 2u sin θi/c and fr = fi(1 − 2u cos θi/c).]



(b)

a

b

b secθ

θ
θ

Hereafter define θi = θ. Provided that b/ cos θ < a the laser light will reflect off the mirror, so
cos θ > b/a is needed for photon energy-momentum to be imparted to the mirror. Let us then
define a critical angle α via cos α = b/a.

The change in the normal component ∆p‖ of the momentum of a single photon is

∆L =
∆p‖b

cos θ
=

b

cos θ

[

p cos θ −

p(− cos θ + 2u/c − u2 cos θ/c2)

1 + u2/c2

]

,

∆L =
bp(2 cos θ − 2u/c)

cos θ(1 + u2/c2)
=

2bp(1 − u sec θ/c)

(1 + u2/c2)
' 2bp(1 − u sec θ/c) .

Since u cos θ = ωb, ∆L ' 2bp(1 − ωb sec2 θ/c) per photon. Suppose N photons strike every second
(and |θ| is less than the critical angle α). Then in time dt we have Ndt photons. But dt = dθ/ω,
so in this time we have,

dL = N
dθ

ω
× 2bp

(

ωb

c
sec2 θ

)

Thus the change in ∆L per revolution is

dL

dn
= 2 ×

2bpN

ω

∫ a

−a

(1 − ωb sec2 θ/c) dθ

where n refers to the number of revolutions. So

dL

dn
'

8bpN

ω

(

α −

ωb

c
tan α

)

=
8bP

ωc

(

α −

ωb

c
tan α

)

,

since each photon has energy pc and laser power equals P = Npc.
Clearly ωb ¿ c always, so dL/dn ' 8bPα/ωc; thus

dL

dt
=

dL

dn

dn

dt
=

ω

2π

dL

dn
=

4bPα

πc
.

(c)

Therefore if I is the moment of inertia of the mirror about its axis of rotation,

I
dω

dt
'

4bPα

πc
, or ω(t) '

4bPαt

πcI
.

[Some students may derive the rate of change of angular velocity using energy conservation, rather
than considering the increase of angular momentum of the mirror: To first order in v/c, Er =
E(1 − 2u cos θ/c), therefore the energy imparted to the mirror is

∆E = E − Er '

2uE cos θ

c
=

2ωbE

c



In one revolution, the number of photons intersected is

4α

2π
× n

2π

ω
=

4αn

ω
.

Therefore the rate of increase of rotational energy (Erot = Iω2/2) is

dErot

dt
=

4αN

ω

2ωbE

c

dn

dt
=

8αbP

c

ω

2π
=

4αbPω

πc

Thus Iω.dω/dt = 4αbP/πc, leading to ω(t) ' 4αbPt/πcI, again.]

(d)

To estimate the deflection of the beam, one first needs to work out the moment of inertia of a
rectangle of mass m and side 2a about the central axis. This is just like a rod. From basic
principles,

I =

∫ a

−a

mdx

2a
x2 =

[

mx3

6a

]a

−a

=
ma2

3
=

mb2 sec2 α

3
.

With the stated geometry, a = b
√

2, or α = 45◦, so

ω '

12αPt cos2 α

πmcb
→

3Pt

mca
√

2
.

At the edge, u = ωa = 3Pt/mc
√

2, and the angle of deviation is

δ =
2u sin α

c
=

3Pt

mc2

[Interestingly, it is determined by the ratio of the energy produced by the laser to the rest-mass
energy of the mirror.]

Using the given numbers, and in SI units, the deviation is

ξ ' 104δ =
104

× 3 × 100 × 24 × 3600

10−3
× (3 × 108)2

' 2.9 mm .

ξ
mirror

laser

screen δ
4

π/4
10  m



Solution to Experimental Question 1

Preliminary: Calculation of Terminal Velocity

When the cylinder is moving at its terminal velocity, the resultant of the three forces acting on the
cylinder, gravity, viscous drag and buoyant force, is zero.

V ρg − 6πκηrmvT − V ρ′g = 0

where V = 2πr3 is the volume of a cylinder (whose height is 2r).
This gives

vr = Cr3−m(ρ − ρ′)

where
C =

g

3κη

Experiment

Determination of the exponent m

Aluminium cylinders of different diameters are dropped into the glycerine. Fall times between specified
marks on the measuring cylinder containing the glycerine are recorded for each cylinder. A preliminary
experiment should establish that the cylinders have reached their terminal velocity before detailed results
are obtained. The measurements are repeated several times for each cylinder and an average fall time
is calculated. Table 1 shows a typical set of data. To find the value of m a graph of log(fall time) as a
function of log(diameter) is plotted as in figure 1. The slope of the resulting straight line graph is 3−m
from which a value of m can be determined. A reasonable value for m is 1.33 with an uncertainty of order
±0.1. The uncertainty is estimated by the deviation from the line of best fit through the data points
obtained by drawing other possible lines.

Determination of the density of glycerine

Cylinders with the same geometry but different densities are dropped into the glycerine and timed as in
the first part of the experiment. Table 2 shows a typical set of results. From equation (2) a linear plot of
1/t as a function of density should yield a straight line with an intercept on the density axis corresponding
to the density of glycerine. Figure 2 shows a typical plot. Alternatively the terminal velocities could be
calculated and plotted against density which would again lead to the same intercept on the density axis.
The uncertainty in the measurement can be estimated by drawing other possible straight lines through
the data points and noting the change in the value of the intercept.

Diameter (mm) Individual readings (s) Mean (s)
10 1.44 1.56 1.44 1.37 1.44 1.41 1.44
4 6.22 6.06 6.16 6.13 6.13 6.22 6.15
8 1.80 1.82 1.78 1.84 1.82 1.81 1.82
5 4.06 4.34 4.09 4.12 4.25 4.13 4.13

Table 1: Sample data set
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Figure 1: Sample plot

Slope = −

58.2

66.2
÷

48.5

93
= −1.67 ∴ m = 3 − 1.67 = 1.33

Material Individual readings (s) Mean (s)
Ti 3.00 2.91 2.97 2.91 2.84 2.75 2.91
Cu 1.25 1.25 1.28 1.25 1.22 1.22 1.25

S.Steel 1.31 1.32 1.38 1.44 1.31 1.34 1.33
Al 6.03 6.09 6.09 6.16 6.06 6.06 6.08

Table 2: Sample data set
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Figure 2: Sample plot

ρ′ = (1.1 ± 0.2) × 103 kg.m−3



Detailed mark allocation

Section I

Reasonable range of data points with a scatter of ∼ 0.1 s [2]
Check that the cylinders have reached their terminal velocity

Visual check, or check referred to [1]
Specific data presented [1]

Labelled log-log graph [2]
Data points for all samples, with a reasonable scatter about a
straight line on the log-log graph [1]
Calculation of (3 − m) from graph [1]

including estimate of error in determining m [1]
Reasonable value of m, ∼ 1.33 [1]
Subtotal [10]
Section 2

Reasonable range of data points [1]
Check that the cylinders have reached their terminal velocity [1]
Labelled graph of (falltime)−1 vs. density of cylinder [1]
Data points for all samples, with a reasonable scatter about a
straight line on the (falltime)−1 vs. density of cylinder graph [1]
Calculation of the density of glycerine (ρ′) from this graph [1]
Estimate of uncertainty in ρ′ [1]
Reasonable value of ρ′. “Correct” value is 1.260 kg.m−3 [1]
Subtotal [8]
TOTAL 20



Solution to Experimental Question 2

Section 1

i. A typical geometric layout is as shown below.

(a) Maximum distance from ruler to screen is advised to increase the spread of the diffraction
pattern.

(b) Note that the grating (ruler) lines are horizontal, so that diffraction is in the vertical direction.

SCREEN

LASER70 mm

βRULER

FRINGES

1400 mm

ii. Vis a vis the diffraction phenomenon, β =
(

y

1400 mm

)

The angle β is measured using either a protractor (not recommended) or by measuring the value
of the fringe separation on the screen, y, for a given order N .

If the separation between 20 orders is measured, then N = ±10 (N = 0 is central zero order).

The values of y should be tabulated for N = 10. If students choose other orders, this is also
acceptable.

N ±10 ±10 ±10 ±10 ±10 ±10 ±10 ±10 ±10 ±10
2y mm 39.0 38.5 39.5 41.0 37.5 38.0 39.0 38.0 37.0 37.5
y mm 19.5 19.25 19.75 20.5 18.75 19.0 19.5 19.0 18.5 18.75

Mean Value = (19.25 ± 1.25) mm

i.e. Mean “spot” distance = 19.25 mm for order N = 10.

From observation of the ruler itself, the grating period, h = (0.50 ± 0.02) mm.

Thus in the relation

Nλ = ±h sin β

N = 10

h = 0.5 mm

sinβ ' β =
y

1400 mm
= 0.01375

10λ = 0.006875 mm

λ = 0.0006875 mm

Since β is small,
δλ

λ
'

δh

h
+

δy

y
' 10%

i.e. measured λ = (690 ± 70) nm

The accepted value is 680 nm so that the departure from accepted value equals 1.5%.



Section 2

This section tests the student’s ability to make semi-quantitative measurements and the use of judgement
in making observations.

i. Using the T = 50% transmission disc, students should note that the transmission through the tank
is greater than this value. Using a linear approximation, 75% could well be estimated. Using the
hint about the eye’s logarithmic response, the transmission through the tank could be estimated to
be as high as 85%.

Any figure for transmission between 75% and 85% is acceptable.

ii. Calculation of the transmission through the tank, using

T = 1 − R = 1 −

(

n1 − n2

n1 + n2

)2

for each of the four surfaces of the tank, and assuming n = 1.59 for the perspex, results in a total
transmission

Ttotal = 80.80%

Section 3

With water in the tank, surfaces 2 and 3 become perspex/water interfaces instead of perspex/air interfacs,
as in (ii).

The resultant value is
Ttotal = 88.5%

Section 4

TRANSMISSION
FILTER
IN/OUT

LASER

TANK SCREEN

xy

~30 mm

~550 mm

Possible configuration for section 4 (and sections 2 and 3)

With pure water in the tank only, we see from Section 3 that the transmission T is

TWater ' 88%

The aim here is to determine the beam divergence (scatter) and transmission as a function of milk
concentration. Looking down on the tank, one sees

BEAM DIAMETER
2x = 2.00 mm

LASER

~30 mm 25 mm

35 mm

2x’
2  ’θ



i. The entrance beam diameter is 2.00 mm. The following is an example of the calculations expected:

With 0.5 mL milk added to the 50 mL water, we find

Scatterer concentration =
0.5

50
= 1% = 0.01

Scattering angle

2x′ = 2.2 mm ; 2θ′ =
2x′

30
= 0.073

Transmission estimated with the assistance of the neutral density filters

Ttotal = 0.7 .

Hence

Tmilk =
0.7

0.88
= 0.79

Note that

Tmilk =
Ttotal

Twater

and Twater = 0.88 (1)

If students miss the relationship (1), deduct one mark.

ii. & iii. One thus obtains the following table of results. 2θ′ can be determined as shown above, OR by
looking down onto the tank and using the protractor to measure the value of 2θ′. It is important
to note that even in the presence of scattering, there is still a direct beam being transmitted. It is
much stronger than the scattered radiation intensity, and some skill will be required in measuring
the scattering angle 2θ′ using either method. Making the correct observations requires observational
judgement on the part of the student.

Typical results are as follows:

Milk volume (mL) 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
% Concentration 0 1 2 3 4 5 6 7 8
2x′ 2.00 2.2 6.2 9.4 12 Protractor
2θ′ (Degrees) ∼ 0 4 12 18 23 28 36 41 48
Tmilk 1.0 0.79 0.45 0.22 0.15 0.12 0.08 0.06 0.05

iii. From the graphed results in Figure 1, one obtains an approximately linear relationship between
milk concentration, C, and scattering angle, 2θ′ (= φ) of the form

φ = 6C .

iv. Assuming the given relation
I = I0e

−µz = TmilkI0

where z is the distance into the tank containing milk/water.

We have
Tmilk = e−µz

Thus
lnTmilk = −µz , and µ = constant × C

Hence ln Tmilk = −αzC.

Since z is a constant in this experiment, a plot of ln Tmilk as a function of C should yield a straight
line. Typical data for such a plot are as follows:

% Concentration 0 1 2 3 4 5 6 7 8
Tmilk 1.0 0.79 0.45 0.22 0.15 0.12 0.08 0.06 0.05
ln Tmilk 0 -0.24 -0.8 -1.51 -1.90 -2.12 -2.53 -2.81 -3.00

An approximately linear relationship is obtained, as shown in Figure 2, between ln Tmilk and C, the
concentration viz.

ln Tmilk ' −0.4C = −µz

Thus we can write
Tmilk = e−0.4C = e−µz

For the tank used, z = 25 mm and thus

0.4C = 25µ or µ = 0.016C whence α = 0.016 mm−1%−1

By extrapolation of the graph of ln Tmilk versus concentration C, one finds that for a scatterer
concentration of 10%

µ = 0.160 mm−1 .
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Detailed Mark Allocation

Section 1

A clear diagram illustrating geometry used with appropriate allocations [1]
Optimal geometry used - as per model solution (laser close to ruler) [1]
Multiple measurements made to ascertain errors involved [1]
Correctly tabulated results [1]
Sources of error including suggestion of ruler variation
(suggested by non-ideal diffraction pattern) [1]
Calculation of uncertainty [1]
Final result [2]

Allocated as per:
±10% (612, 748 nm) [2]
±20% (544, 816 nm) [1]
± anything worse [0]

Section 2

For evidence of practical determination of transmission rather than
simply “back calculating”. Practical range 70 − 90% [1]
For correct calculation of transmission
(no more than 3 significant figures stated) [1]
Section 3

Correct calculation with no more than 3 significant figures stated
and an indication that the measurement was performed [1]
Section 4

Illustrative diagram including viewing geometry used, i.e. horizontal/vertical [1]
For recognizing the difference between scattered light and the straight-through beam [1]
For taking the Twater into account when calculating Tmilk [1]
Correctly calculated and tabulated results of Tmilk with results within 20% of model solution [1]
Using a graphical technique for determining the relationship between
scatter angle and milk concentration [1]
Using a graphical technique to extrapolate Tmilk to 10% concentration [1]
Final result for µ [2]

Allocated as ±40% [2], ±60% [1], anything worse [0]
A reasonable attempt to consider uncertainties [1]
TOTAL 20
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27th INTERNATIONAL PHYSICS OLYMPIAD
OSLO, NORWAY

THEORETICAL COMPETITION
JULY 2 1996

Time available: 5 hours

READ  THIS  FIRST :
1.  Use only the pen provided
2.  Use only the marked side of the paper
3.  Each problem should be answered on separate sheets
4.  In your answers please use primarily equations and numbers,
     and as little text as possible
5. Write at the top of every sheet in your report:

• Your candidate number (IPhO identification number)
• The problem number and section identification, e.g. 2/a
• Number each sheet consecutively

6. Write on the front page the total number of sheets in your report

This set of problems consists of 7 pages.
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PROBLEM 1

(The five parts of this problem are unrelated)

a)  Five 1Ω resistances are connected as shown in the figure. The resistance in
the conducting wires (fully drawn lines) is negligible.

Determine the resulting resistance R between A and B. (1 point)
___________________________________________________________________________

b)

A skier starts from rest at point A and slides down the hill, without turning or
braking. The friction coefficient is  µ. When he stops at point B, his horizontal
displacement is s. What is the height difference h between points A and B?
(The velocity of the skier is small so that the additional pressure on the snow
due to the curvature can be neglected. Neglect also the friction of air and the
dependence of µ on the velocity of the skier.) (1.5 points)

___________________________________________________________________________

c)  A thermally insulated piece of metal is heated under atmospheric pressure
by an electric current so that it receives electric energy at a constant power P.
This leads to an increase of the absolute temperature T of the metal with time t
as follows:

[ ]T t T a t t( ) ( ) .= + −0 0
1 41

Here a, t0 and T0 are constants. Determine the heat capacity C Tp ( ) of the metal
(temperature dependent in the temperature range of the experiment).  (2 points)
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d)  A black plane surface at a constant high temperature Th  is parallel to an-
other black plane surface at a constant lower temperature Tl . Between the
plates is vacuum.

In order to reduce the heat flow due to radiation, a heat shield consisting of two
thin black plates, thermally isolated from each other, is placed between the
warm and the cold surfaces and parallel to these. After some time stationary
conditions are obtained.

By what factor ξ is the stationary heat flow reduced due to the presence of the
heat shield?   Neglect end effects due to the finite size of the surfaces.  (1.5
points)
___________________________________________________________________________

e)  Two straight and very long nonmagnetic conductors C +  and C − , insulated
from each other, carry a current I in the positive and the negative z direction,
respectively. The cross sections of the conductors (hatched in the figure) are
limited by circles of diameter D in the x-y plane, with a distance D/2 between
the centres. Thereby the resulting cross sections each have an area
( )1

12
1
8π + 3 D2.The current in each conductor is uniformly distributed over

the cross section.

Determine the magnetic field B(x,y) in the space between the conductors.
(4 points)
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PROBLEM 2

The space between a pair of coaxial cylindrical conductors is evacuated. The
radius of the inner cylinder is a, and the inner radius of the outer cylinder is b,
as shown in the figure below. The outer cylinder, called the anode, may be
given  a positive potential V relative to the inner cylinder. A static homogene-
ous magnetic field 

r
B  parallel to the cylinder axis, directed out of the plane of

the figure, is also  present. Induced charges in the conductors are neglected.

We study the dynamics of electrons with rest mass m and charge _ e. The elec-
trons  are released at the surface of the inner cylinder.

a)  First the potential V is turned on, but 
r
B  = 0.  An electron is set free with

negligible velocity at the surface of the inner cylinder. Determine its speed v
when it hits the anode. Give the answer both when a non-relativistic treatment
is sufficient, and when it is not. (1 point)

For the remaining parts of this problem a non-relativistic treatment suffices.

b)  Now V = 0, but the homogeneous magnetic field 
r
B  is present. An electron

starts out with an initial velocity 
r
v 0  in the radial direction.  For magnetic fields

larger than a critical value Bc , the electron will not reach the anode. Make a
sketch of the trajectory of the electron when B is slightly more than Bc . Deter-
mine Bc . (2 points)

From now on both the potential V and the homogeneous magnetic field 
r
B  are

present.
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c) The magnetic field will give the electron a non-zero angular momentum  L
with respect to the cylinder axis. Write down an equation for the rate of change
dL/dt of the angular momentum. Show that this equation implies that

L keBr− 2

is constant during the motion, where k is a definite pure number. Here r is the
distance from the cylinder axis. Determine the value of k. (3 points)

d)  Consider an electron, released from the inner cylinder with negligible ve-
locity,  that does not reach the anode, but has a maximal distance from the cyl-
inder axis equal to rm . Determine the speed v  at the point where the radial dis-
tance is maximal, in terms of rm .  (1 point)

e)  We are interested in using the magnetic field to regulate the electron current
to the anode. For B larger than a critical magnetic field Bc , an electron, re-
leased with negligible velocity, will not reach the anode. Determine Bc .
(1 point)

f)  If the electrons are set free by heating the inner cylinder an electron will in
general have an initial nonzero velocity at the surface of the inner cylinder. The
component of the initial velocity parallel to 

r
B  is v B , the components

orthogonal to 
r
B  are vr  (in the radial direction) and vϕ (in the azimuthal direc-

tion, i.e. orthogonal to the radial direction).

Determine for this situation the critical magnetic field Bc  for reaching the an-
ode. (2 points)



104

PROBLEM 3

In this problem we consider some gross features of the magnitude of mid-ocean
tides on earth. We simplify the problem by making the  following assumptions:

   (i) The earth and the moon are considered to be an isolated system,
   (ii) the distance between the moon and the earth is assumed to be constant,
   (iii) the earth is assumed to be completely covered by an ocean,
   (iv) the dynamic effects of the rotation of the earth around its axis are

neglected, and
   (v) the gravitational attraction of the earth can be determined as if all mass

were concentrated at the centre of the earth.

The following data are given:
Mass of the earth: M = 5.98 . 1024 kg
Mass of the moon: Mm  = 7.3 . 1022 kg
Radius of the earth: R = 6.37 . 106 m
Distance between centre of the earth and centre of the moon:
L = 3.84 . 108 m
The gravitational constant:  G = 6.67 . 10 -11 m3 kg-1 s-2.

a) The moon and the earth rotate with angular velocity ω about their common
centre of mass, C. How far is C from the centre of the earth? (Denote this dis-
tance by l.)

Determine the numerical value of ω.  (2 points)

We now use a frame of reference that is co-rotating with the moon and the
center of the earth around C. In this frame of reference the shape of the liquid
surface of the earth is static.
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In the plane P through C and orthogonal to the axis of rotation the position of a
point mass on the liquid surface of the earth can be described by polar coordi-
nates r, ϕ as shown in the figure. Here r is the distance from the centre of the
earth.

We will study the shape
r (ϕ) = R + h (ϕ)

of the liquid surface of the earth in the plane P.

b)  Consider a mass point (mass m) on the liquid surface of the earth (in the
plane P). In our frame of reference it is acted upon by a centrifugal force and
by gravitational forces from the moon and the earth. Write down an expression
for the potential energy corresponding to these three forces.

Note: Any force F(r),  radially directed with respect to some origin, is the nega-
tive derivative of a spherically symmetric potential energy V(r):
F r V r( ) ( ).= − ′  (3 points)

c)  Find, in terms of the given quantities M, Mm  , etc, the approximate form h(ϕ) of
the tidal bulge. What is the difference in meters between high tide and low tide in this
model?

You may use the approximate expression

valid for a much less than unity.

In this analysis make simplifying approximations whenever they are reasonable. (5
points)

1
1 2

1 3 1
2

1
2

2 2

+ −
≈ + + −

a a
a a

cos
cos ( cos ),
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Solution Problem 1

a)  The system of resistances can be redrawn as shown in the figure:

The equivalent drawing of the circuit shows that the resistance between point c
and point A is 0.5Ω, and the same between point d and point B. The resistance
between points A and B thus consists of two connections in parallel: the direct
1Ω connection and a connection consisting of two 0.5Ω  resistances in series,
in other words two parallel 1Ω  connections. This yields

R = 0.5 Ω .
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b)  For a sufficiently short horizontal displacement ∆s the path can be con-
sidered straight. If the corresponding length of the path element is ∆L, the
friction force is given by

and the work done by the friction force equals  force times displacement:

Adding up, we find that along the whole path the total work done by friction
forces i   µ   mg s . By energy conservation this must equal the decrease mg h in
potential energy of the skier. Hence

h =  µs.

___________________________________________________________________________

c)  Let the temperature increase in a small time interval dt be dT.  During this time
interval the metal receives an energy  P dt.

The heat capacity is the ratio between the energy supplied and the temperature increase:

The experimental results correspond to

Hence

(Comment: At low, but not extremely low, temperatures heat capacities of met-
als follow such a T 3 law.)

dT
dt

T a a t t T a T
T

= + − = 



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3 4
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T .p 4
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∆
∆
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L

L mg s∆
∆
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d)

Under stationary conditions the net heat flow is the same everywhere:

Adding these three equations we get

where J0  is the heat flow in the absence of the heat shield. Thus  ξ = J/J0 takes the
value

ξ = 1/3.

___________________________________________________________________________

e)  The magnetic field can be determined as the superposition of the fields of
two cylindrical conductors, since the effects of the currents in the area of inter-
section cancel.  Each of the cylindrical conductors must carry a larger current
I′, determined so that the fraction I of it is carried by the actual cross section
(the moon-shaped area). The ratio between the currents I and I′ equals the ratio
between the cross section areas:

Inside one cylindrical conductor carrying a current I′ Ampère’s law yields at a
distance r from the axis an azimuthal field
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The cartesian components of this are

For the superposed fields, the currents are      I′ and the corresponding cylinder
axes are located  at x = m D/4.

The two x-components add up to zero, while the y-components yield

i.e., a constant field. The direction is along the positive y-axis.

Solution Problem 2

a)  The potential energy gain eV is converted into kinetic energy. Thus

                                                       (non-relativistically)

                                                (relativistically).

Hence

                                                                                                                         (1)

 b)  When V = 0 the electron moves in a homogeneous static magnetic field. The
magnetic Lorentz force acts orthogonal to the velocity and the electron will move in a
circle.  The initial velocity is tangential to the circle.

The radius R of the orbit (the “cyclotron radius”) is determined by equating the
centripetal force and the Lorentz force:

B B y
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i.e.

                                                                                                                          (2)

From the figure we see that in the critical case the radius R of the circle satisfies

By squaring we obtain
                                    ,

i.e.
                                                                              .

Insertion of this value for the radius into the expression (2) gives the critical field

c)  The change in angular momentum with time is produced by a torque. Here
the azimuthal component Fφ  of the Lorentz force                            provides a
torque  Fφ r. It is only the radial component vr = dr/dt of the velocity that pro-
vides an azimuthal Lorentz force. Hence

which can be rewritten as

dL
dt

eBr dr
dt

= ,

d
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Hence
                                                                                                                          (3)

is constant during the motion. The dimensionless number k in the problem text is
thus k = 1/2.

d)  We evaluate the constant C, equation (3), at the surface of the inner cylinder
and at the maximal distance  rm :

which gives

                                                                          (4)

Alternative solution: One may first determine the electric potential V(r) as
function of the radial distance. In cylindrical geometry the field falls off inversely
proportional to r, which requires a logarithmic potential, V(s) = c1 ln r + c2.
When the two constants are determined to yield V(a) = 0 and V(b) = V we have

The gain in potential energy,  sV(rm), is converted into kinetic energy:

Thus

                                                                                                                         (5)

(4) and (5) seem to be different answers. This is only apparent since rm is not an in-
dependent parameter, but determined by B and V so that the two answers are
identical.

e)  For the critical magnetic field the maximal distance  rm  equals b, the radius of the
outer cylinder, and the speed at the turning point is then
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Since the Lorentz force does no work, the corresponding kinetic energy
equals eV (question a):

.

The last two equations are consistent when

The critical magnetic field for current cut-off is therefore

f)  The Lorentz force has no component parallel to the magnetic field, and conse-
quently the velocity component  vB  is constant under the motion. The corresponding
displacement parallel to the cylinder axis has no relevance for the question of reach-
ing the anode.

Let v  denote the final azimuthal speed of an electron that barely reaches the anode.
Conservation of energy implies that

giving
                                                                                                                        (6)

Evaluating the constant C  in (3) at both cylinder surfaces for the critical situation we
have

Insertion of the value (6) for the velocity  v   yields the critical field
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Solution Problem 3

a)  With the centre of the earth as origin, let the centre of mass C be located
at     . The distance l is determined by

M l = Mm (L - l),
which gives

                                                                                                                        (1)

less than R, and thus inside the earth.

The centrifugal force must balance the gravitational attraction between the moon
and the earth:

which gives

                                                                                                                        (2)

 (This corresponds to a period  2π/ω = 27.2 days.) We have used (1) to elimi-
nate l.

b)  The potential energy of the mass point m consists of three contributions:

(1) Potential energy because of rotation (in the rotating frame of reference, see
the problem text),

where      is the distance from C. This corresponds to the centrifugal force
mω 2r1, directed outwards from C.

 (2) Gravitational attraction to the earth,

(3) Gravitational attraction to the moon,

l
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where       is the distance from the moon.

Describing the position of m by polar coordinates r, φ  in the plane orthogonal to the
axis of rotation (see figure), we have

Adding the three potential energy contributions, we obtain

                                                                                                                          (3)

Here l is given by (1) and

c)  Since the ratio r/L = a is very small, we may use the expansion

Insertion into the expression (3) for the potential energy gives

                                                                                                                          (4)

apart from a constant. We have used that

when the value of  ω2 , equation (2), is inserted.
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The form of the liquid surface is such that a mass point has the same energy V every-
where on the surface. (This is equivalent to requiring no net force tangential to the
surface.) Putting

r = R + h,

where the tide h is much smaller than R, we have approximately

as well as

Inserting this, and the value (2) of ω into (4), we have

                                                                                                                         (5)

again apart from a constant.

The magnitude of the first term on the right-hand side of (5) is a factor

smaller than the second term, thus negligible. If the remaining two terms in equation
(5) compensate each other, i.e.,

then the mass point m has the same energy everywhere on the surface. Here   r2  can
safely be approximated by  R2 , giving the tidal bulge

The largest value                                 occurs for φ = 0 or π, in the direction of
the moon or in the opposite direction, while the smallest value
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corresponds to  φ = π/2 or 3π/2.

The difference between high tide and low tide is therefore

(The values for high and low tide are determined up to an additive constant, but the
difference is of course independent of this.)

Here we see the Exam Officer, Michael Peachey (in the middle), with his helper
Rod Jory (at the left), both from Australia, as well as the Chief examiner, Per

Chr. Hemmer. The picture was taken in a silent moment during the theory
examination. Michael and Rod had a lot of experience from the 1995 IPhO in

Canberra, so their help was very effective and highly appreciated!
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27th INTERNATIONAL PHYSICS OLYMPIAD
OSLO, NORWAY

EXPERIMENTAL COMPETITION
JULY 4 1996

Time available: 5 hours

READ  THIS  FIRST :
1. Use only the pen provided.
2. Use only the marked side of the paper.
3.  No points will be given for error estimates except in 2c. However, it is ex-

pected that the correct number of significant figures are given.
4. When answering problems, use as little text as possible. You get full credit

for an answer in the form of a numerical value, a drawing, or a graph with
the proper definition of axes, etc.

5. Write on top of every sheet in your report:
• Your candidate number (IPhO ID number)
• The section number
• The number of the sheet

6. Write on the front page the total number of sheets in your report, including
graphs, drawings etc.

7. Ensure to include in your report the last page in this set used for answering
section 2a and 3b, as well as all graphs requested.

SAFETY HAZARD: Be careful with the two vertical blades on the large
stand. The blades are sharp!

This set of problems consists of 10 pages.
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SUMMARY

The set of problems will cover a number of topics in physics. First, some me-
chanical properties of a physical pendulum will be explored, and you should be
able to determine the acceleration of gravity. Then, magnetic forces are added
to the pendulum. In this part the magnetic field from a permanent magnet is
measured using an electronic sensor. The magnetic moment of a small perma-
nent magnet will be determined. In addition, a question in optics in relation to
the experimental setup will be asked.

INSTRUMENTATION

The following equipment is available (see Figure 1):

A Large aluminium stand
B Threaded brass rod with a tiny magnet in one end (painted

white) (iron in the other).
C 2 Nuts with a reflecting surface on one side
D Oscillation period timer (clock) with digital display
E Magnetic field (Hall) probe, attached to the large stand
F 9 V  battery
G Multimeter, Fluke model 75
H 2 Leads
I Battery connector
J Cylindrical stand made of PVC (grey plastic material)
K Threaded rod with a piece of PVC and a magnet on the top
L Small PVC cylinder of length 25.0 mm (to be used as a spacer)
M Ruler

If you find that the large stand wiggles, try to move it to a different posistion on
your table, or use a piece of paper to compensate for the non-flat surface.

The pendulum should be mounted as illustrated in Figure 1. The long threaded
rod serves as a physical pendulum, hanging in the large stand by one of the
nuts. The groove in the nut should rest on the two vertical blades on the large
stand, thus forming a horizontal axis of rotation. The reflecting side of the nut
is used in the oscillation period measurement, and should always face toward
the timer.

The timer displays the period of the pendulum in seconds with an uncertainty
of ±1 ms. The timer has a small infrared light source on the right-hand side of
the display (when viewed from the front), and an infrared detector mounted
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close to the emitter. Infrared light from the emitter is reflected by the mirror
side of the nut. The decimal point lights up when the reflected light hits the de-
tector. For proper detection the timer can be adjusted vertically by a screw (see
N in Figure 1). Depending on the adjustment, the decimal point will blink ei-
ther once or twice each oscillation period. When it blinks twice, the display
shows the period of oscillation, T. When it blinks once, the displayed number is
2T. Another red dot appearing after the last digit indicates low battery. If bat-
tery needs to be replaced, ask for assistance.

The multimeter should be used as follows:
Use the “VΩ” and the “COM” inlets. Turn the switch to the DC voltage setting.
The display then shows the DC voltage in volts. The uncertainty in the instru-
ment for this setting is ±(0.4%+1 digit).

Figure 1. The instrumentation used.

SAFETY HAZARD: Be careful with the two vertical blades on the large
stand. The blades are sharp!
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THE  PHYSICAL  PENDULUM

A physical pendulum is an extended physical object of arbitrary shape that can
rotate about a fixed axis. For a physical pendulum of mass M oscillating about
a horizontal axis a distance, l, from the centre of mass, the period, T, for small
angle oscillations is

 T
g

I
M l

l= +2π
(1)

Here g is the acceleration of gravity, and I is the moment of inertia of the pen-
dulum about an axis parallel to the rotation axis but through the centre of mass.

Figure 2 shows a schematic drawing of the physical pendulum you will be us-
ing. The pendulum consists of a cylindrical metal rod, actually a long screw,
having length L, average radius R, and at least one nut. The values of various
dimensions and masses are summarised in Table 1. By turning the nut you can
place it at any position along the rod. Figure 2 defines two distances, x and l,
that describe the position of the rotation axis relative to the end of the rod and
the centre of mass, respectively.

Figure 2: Schematic drawing of the pendulum
with definition of important quantities.
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Rod
Length L (400.0 ± 0.4) mm
Average radius R (4.4 ± 0.1) mm
Mass MROD (210.2 ± 0.2) 10-3 kg
Distance between screw threads (1.5000 ± 0.0008) mm

Nut
Height h (9.50 ± 0.05) mm
Depth of groove d (0.55 ± 0.05) mm
Mass MNUT (4.89 ± 0.03) 10-3  kg

Table 1: Dimensions and weights of the pendulum

A reminder from the front page: No points will be given for error estimates ex-
cept in 2c. However, it is expected that the  correct number of significant fig-
ures are given.

Section 1 : Period of oscillation versus rotation axis position
(4 marks)

a)  Measure the oscillation period, T, as a function of the position x, and present
the results in a table.

b)  Plot T as a function of x in a graph. Let 1 mm in the graph correspond to
1 mm in x and 1 ms in T. How many positions give an oscillation period equal
to T = 950 ms, T = 1000 ms and T  = 1100 ms, respectively?

c)  Determine the x and l value that correspond to the minimum value in T.

Section 2 : Determination of g (5 marks)

For a physical pendulum with a fixed moment of inertia, I, a given period, T,
may in some cases be obtained for two different positions of the rotation axis.
Let the corresponding distances between the rotation axis and the centre of
mass be l1  and l2 . Then the following equation is valid:

                          l l I
M1 2 = (2)
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a)  Figure 6 on the last page in this set illustrates a physical pendulum with an
axis of rotation displaced a distance l1  from the centre of mass. Use the infor-
mation given in the figure caption to indicate all positions where a rotation axis
parallel to the drawn axis can be placed without changing the oscillation period.

b)  Obtain the local Oslo value for the acceleration of gravity g as accurately as
possible. Hint: There are more than one way of doing this. New measurements
might be necessary. Indicate clearly by equations, drawings, calculations etc.
the method you used.

c)  Estimate the uncertainty in your measurements and give the value of g with
error margins.

Section 3 : Geometry of the optical timer (3 marks)

a) Use direct observation and reasoning to characterise, qualitatively as well as
quantitatively, the shape of the reflecting surface of the nut (the mirror). (You
may use the light from the light bulb in front of you).

Options (several may apply):
1. Plane mirror
2. Spherical mirror
3. Cylindrical mirror
4. Cocave mirror
5. Convex mirror

In case of 2-5: Determine the radius of curvature.

b) Consider the light source to be a point source, and the detector a simple pho-
toelectric device. Make an illustration of how the light from the emitter is re-
flected by the mirror on the nut in the experimantal setup (side view and top
view). Figure 7 on the last page in this set shows a vertical plane through the
timer display (front view). Indicate in this figure the whole region where the
reflected light hits this plane when the pendulum is vertical.

Section 4 : Measurement of magnetic field (4 marks)

You will now use an electronic sensor (Hall-effect sensor) to measure magnetic
field. The device gives a voltage which depends linearly on the vertical field
through the sensor. The field-voltage coefficient is ∆V / ∆B  = 22.6 V/T (Volt/
Tesla). As a consequence of its design the sensor gives a non-zero voltage
(zero-offset voltage) in zero magnetic field. Neglect the earth’s magnetic field.
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Figure 3: Schematics of the magnetic field detector system

a)  Connect the sensor to the battery and voltmeter as shown above. Measure
the zero-offset voltage, V0 .

A  permanent magnet shaped as a circular disk is mounted on a separate stand.
The permanent magnet can be displaced vertically by rotating the mount screw,
which is threaded identically to the pendulum rod. The dimensions of the per-
manent magnet are; thickness t = 2.7 mm, radius r = 12.5 mm.

b)  Use the Hall sensor to measure the vertical magnetic field, B, from the per-
manent magnet along the cylinder axis, see Figure 4. Let the measurements
cover the distance from y = 26 mm (use the spacer) to y = 3.5 mm, where
y = 1 mm corresponds to the sensor and permanent magnet being in direct
contact. Make a graph of your data for B versus y.

Figure 4: Definition of the distance y between top of magnet and the active part
of the sensor.
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c)  It can be shown that the field along the axis of a cylindrical magnet is given
by the formula

B y B y t
y t r

y
y r

( )
( )

= +
+ +

−
+













0 2 2 2 2 (3)

where t is the cylinder thickness and r is the radius. The parameter B0  charac-
terizes the strength of the magnet.  Find the value of B0 for your permanent
magnet.§  Base your determination on two measured B-values obtained at dif-
ferent  y.

Section 5 : Determination of magnetic dipole moment (4 marks)

A tiny magnet is attached to the white end of the pendulum rod. Mount the pen-
dulum on the stand with its magnetic end down and with x = 100 mm. Place
the permanent magnet mount under the pendulum so that both the permanent
magnet and the pendulum have common cylinder axis. The alignment should
be done with the permanent magnet in its lowest position in the mount. (Al-
ways avoid close contact between the permanent magnet and the magnetic end
of the pendulum.)

a) Let z denote the air gap spacing between the permanent magnet and the
lower end of the pendulum. Measure the oscillation period, T, as function of the
distance, z. The measurement series should cover the interval from z = 25 mm
to z = 5.5 mm while you use as small oscillation amplitude as possible. Be
aware of the possibility that the period timer might display 2T (see remark re-
garding the timer under Instrumentation above). Plot the observed  T versus z.

b) With the additional magnetic interaction the pendulum has a period of oscil-
lation, T, which varies with z according to the relation

1 12
0

T
B

Mgl
f z∝ +

µ
( ) (4)

Here ∝  stand for “proportional to”, and µ is the magnetic dipole moment of
the tiny magnet attached to the pendulum, and  is the parameter determined
in section 4c. The function f(z) includes the variation in magnetic field with
distance. In Figure 5 on the next page you find the particular f(z) for our experi-
ment, presented as a graph.
Select an appropirate point on the graph to determine the unknown magnetic
moment µ.

§ 2 0B  is a material property called remanent magnetic induction, Br .
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Figure 5. Graph of the dimension-less function f(z) used in section 5b.



152

Figure 6. For use in section 2a. Mark all positions where a rotation axis
(orthogonal to the plane of the paper) can be placed without changing the
oscillation period. Assume for this pendulum (drawn on scale, 1:1) that
I/M = 2100 mm2. (Note: In this booklet the size of this figure is about 75% of
the size in the original examination paper.)

Figure 7. For use in section 3b. Indicate the whole area where the reflected
light hits when the pendulum is vertical.

Include this page in your report!
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The men behind the equipment

The equipment for the practical competition was constructed and manufactured
at the Mechanics Workshop at the Department of Physics, University of Oslo
(see picture below, from left to right: Tor Enger (head of the Mechanics Workshop),
Pål Sundbye, Helge Michaelsen, Steinar Skaug Nilsen, and Arvid Andreassen).

The electronic timer was designed and manufactured by Efim Brondz,
Department of Physics, University of Oslo (see picture below). About 40.000
soldering points were completed manually, enabling the time-recording during
the exam to be smooth and accurate.
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27th INTERNATIONAL PHYSICS OLYMPIAD
OSLO, NORWAY

Model Answer
for the

EXPERIMENTAL COMPETITION
JULY 4  1996

These model answers indicate what is required from the candidates to get the maximum score
of 20 marks. Some times we have used slightly more text than required; paragraphs written in
italic give additional comments. This practical exam will reward students with creativity,
intuition and a thorough understanding of the physics involved.

Alternative solutions regarded as less elegant or more time consuming are printed in
frames like this with white background.

Anticipated INCORRECT answers are printed on grey background and are included to
point out places where the students may make mistakes or approximations without being
aware of them.

Section 1:
1a)  Threads are 1.50 mm/turn. Counted turns to measure position x.

Turn no. 0 10 20 30 40 50 60 70 80 90 100

x [mm] 10.0 25.0 40.0 55.0 70.0 85.0 100.0 115.0 130.0 145.0 160.0
T [ms] 1023 1005 989 976 967 964 969 987 1024 1094 1227

Turn no. 110 120 46 48 52 54

x [mm] 175.0 190.0 79.0 82.0 88.0 91.0
T [ms] 1490 2303 964 964 964 965
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1b)  Graph: T(x), shown above.

T =  950 ms: NO positions
T =1000 ms: 2   positions
T =1100 ms: 1   position

If the answer is given as corresponding x-values, and these reflect the number of
positions asked for, this answer will also be accepted.
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1c)  Minimum on graph: x = 84 mm,  (estimated uncertainty 1 mm)

By balancing the pendulum horizontally: l = 112.3 mm + 0.55 mm = 113 mm

ALTERNATIVE 1c-1:

   x
M L M h

M
M

M
xCM

ROD NUT NUT=
−

+
2

 = 197.3 mm for x = 84 mm

gives l = 197.3 mm - 84 mm = 113 mm
M = MROD + MNUT,  h = 8.40 mm = height of nut minus two grooves.

INCORRECT 1c-1: Assuming that the centre of mass for the pendulum coincides with the
midpoint, L/2, of the rod gives  l = L/2 - x = 116 mm.

(The exact position of the minimum on the graph is x = 84.4 mm. with l = 112.8 mm)

Section 2:

2a)  l
I

Ml2
1

22100
60

35= = =
mm

mm
mm

        See also Figure 6 on the next page
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Figure 6. For use in section 2a. Mark all positions where a rotation axis (orthogonal to the
plane of the paper) can be placed without changing the oscillation period. Assume for this
pendulum (drawn on scale, 1:1) that  I/M = 2100 mm2. (Note: In this booklet the size of this
figure is about 75% of the size in the original examination paper.)

Figure 7. For use in section 3b. Indicate the whole area where the reflected light hits when
the pendulum is vertical.

Include this page in your report!
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2b)  Simple method with small uncertainty: Inverted pendulum.

Equation (1) + (2) ⇒ = = + ⇔ = +T T
g

l l g
T

l l1 2 1 2

2

1
2 1 2

2 4π π
( )

NOTE: Independent of I/M !
Used both nuts with one nut at the end to maximise l1 + l2.  Alternately adjusted nut

positions until equal periods T1 = T2 :

T1 = T2 = 1024 ms.
Adding the depth of the two grooves to the measured distance between nuts:
l1 + l2  = (259.6 + 2 . 0.55) mm = 0.2607 m

      g
T

l l= + =
⋅ ⋅

=
4 4 31416 0 2607

9 815
2

1
2 1 2

2π
( )

. .
.

m
(1.024s)

m / s2
2

 ALTERNATIVE 2b-1: Finding I(x). Correct but time consuming.
It is possible to derive an expression for I as a function of x. By making sensible
approximations, this gives:

I x
M

L M
M

L h
x

M
M

NUT ROD( )
= +

+
−

















2 2

12 2

which is accurate to within 0.03 %. Using the correct expression for l as a function of x:

l x x x
M L M h

M
M

M
xCM

ROD NUT ROD( ) = − =
−

−
2

 = 195.3 mm - 0.9773x,

equation (1) can be used on any point (x, T) to find g.  Choosing the point
(85 mm, 964 ms) gives:

g
T

I x
M l x

l x=
⋅

+








 =

⋅ ⋅
=

4 4 31416 0 2311
9 818

2

2

2π ( )
( )

( )
. .

.
m

(0.964s)
m / s2

2
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Using the minimum point on the graph in the way shown below is wrong, since the

curve in 1b) , T x
g

I x
M l x

l x( ) ( )
( )

( )=
⋅

+
2π

 with I(x)/M and l(x) given above, describes a

continuum of different pendulums with changing I(x) and moving  centre of mass.

Equation (1): T
g

I
Ml

l= +2π
 describes one pendulum with fixed I, and does not apply

to the curve in 1b).

INCORRECT 2b-1: At the minimum point we have from Equation (2) and 1c):

l l l I
M1 2 113 1= = = = ±( ) mm  Equation (1) becomes

T
g

l
l

l
g

lmin = + =
2 2

2
2π π

  and

g
l

T
= =

⋅ ⋅
=

8 8 31416 0113
9 60

2

2

2π

min

. .
.

m
(0.964s)

m / s2
2

Another source of error which may accidentally give a reasonable value is using the
wrong value l = (116 ± 1)mm from  «INCORRECT 1c-1»:

INCORRECT 2b-2:  g l
T

= =
⋅ ⋅

=8 8 31416 0116
0 964

9 86
2

2

2

2
π

min

. .
( . )

.
m

s
m / s2

Totally neglecting the mass of the nut but remembering the expression for the moment of
inertia for a thin rod about a perpendicular axis through the centre of mass,  I = ML2/12,
gives from equation (2) for the minimum point: l2 = I/M = L2/12 = 0.01333 m2.  This
value is accidentally only 0.15% smaller than the correct value for I(x)/M  at the mini-
mum point on the curve in 1b):

I x
M

L M
M

L h x
M

M
NUT ROD( . )

.
=

= + + −

















=
84 43

12 2
0 01335

2 2mm
m 2

.
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Neglecting the term 
M

M
L hNUT +

−



2

84 43
2

. mm  = 0.00033 m2  is nearly compensated by

omitting the factor 
M

M
ROD =0.977.  However, each of these approximations are of the

order of 2.5 %, well above the accuracy that can be achieved.

INCORRECT 2b-3: At the minimum point equation (2) gives l
I
M

L2
2

12
= = . Then

T
g

l
g

L
g

L
min = = =

2 2 2 2
12

2
3

π π π
   and

( )
g

L
T

= =
⋅ ⋅

⋅
=

4
3

4 31416 0 4000

17321 0964
981

2

2

2

2
π

min

. .

. .
.

m

s
m / s2

2c) Estimating uncertainty in the logarithmic expression for g:

Let S l l g S
T

≡ + ⇒ =1 2

2

2
4π

∆ ∆S T= =0 3 1. mm ms

∆ ∆ ∆g
g

S
S

T
T

= 





+ −





=








 + ⋅











2 2 2 2

2
0 3

260 7
2

1
1024

.
.
mm

mm
ms

ms

     = + = =( . ) ( . ) . .0 0012 0 0020 0 0023 0 23%2 2

∆g = ⋅ =0 0023 9 815 0 022. . .m / s m / s2 2

g = ±( . . )982 0 02 m / s2

The incorrect methods INCORRECT 2b-1, 2b-2 and 2b-3 have a similar expressions for g
as above. With ∆l = 1 mm in INCORRECT 2b-1 and 2b-2 we get ∆g = 0.09 m/s2.

INCORRECT 2b-3 should have ∆l = 0.3 mm and ∆g = 0.02 m/s2.
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ALTERNATIVE 3 has a very complicated x dependence in g. Instead of differentiating
g(x) it is easier to insert the two values x+∆x and x-∆x in the expression in brackets [ ],
thus finding an estimate for ∆[ ] and then using the same formula as above.

(The official local value for g, measured in the basement of the adjacent building to where the
practical exam was held  is g = 9.8190178 m/s2 with uncertainty in the last digit.)

Section 3.
3a) 3. Cylindrical mirror

4. Concave mirror

Radius of curvature of cylinder, r = 145 mm.  (Uncertainty  approx.  ± 5 mm, not asked for.)

(In this set-up the emitter and detector are placed at the cylinder axis. The radius of curvature
is then the distance between the emitter/detector and the mirror. )

3b) Three drawings, see Figure 7 on page 4 in this Model Answers.

(The key to understanding this set-up is that for a concave cylindrical mirror with a point
source at the cylinder axis, the reflected light will be focused back onto the cylinder axis as a
line segment of length twice the width of the mirror.)

Section 4.
4a)  Vo = 2.464 V    (This value may be different for each set-up.)

4b)  Threads are 1.50 mm /turn. Measured V(y) for each turn. Calculated

[ ] [ ]B y V y V
B
V

V y V
V
B

( ) ( ) ( ) /= − = −0 0
∆
∆

∆
∆

.        (Table not requested)

         See graph on next page.
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4c)

B B y y t

y t r

y

y r
0 2 2 2 2

1

= +

+ +
−

+















−

( )
( )

The point (11 mm, 48.5 mT) gives B0 = 0.621 T and (20 mm, 16,8 mT) gives B0 = 0.601 T.
Mean value: B0 = 0.61 T (This value may vary for different magnets.)

Section 5:

5a) Used the spacer and measured T(z) from z = 25 mm to 5.5 mm. (Table is not requested.)

See plot on next page.

  Candidate: IPhO ID Question:   4 + 5 Page 9 of 11
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5b)  l(x = 100 mm) = 97.6 mm (by balancing the pendulum or by calculation as in 1c).

M = MROD + MNUT

Proportionality means: 
1 12

0

T
a

B
Mgl

f z= +










µ
( ) where a is a proportionality constant. Setting

B0 = 0 corresponds to having an infinitely weak magnet or no magnet at all. Removing the

large magnet gives:  T0 = 968 ms and 
1

1 0
0

2T
a

Mgl
f z= + ⋅











µ
( )  or  a

T
=

1

0
2  .

Selecting the point where f(z), see Fig. 5, changes the least with z, i.e., at the maximum, one
has  fmax = 56.3. This point must correspond to the minimum oscillation period, which is
measured to be Tmin = 576 ms.

We will often need the factor

Mgl
B0

0 215 9 82 0 0976
0 61

0 338=
⋅ ⋅

=
. . .

.
. .

kg m / s m
T

Am
2

2

 .
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The magnetic moment then becomes

µ = 





−












= 





−












= ⋅ −Mgl
B f

T
Tmax0

0
2 2

21 1
0338

56 3
968
576

1 11 10
.

.
.

Am
Am

2
2

ALTERNATIVE 5b-1: Not what is asked for: Using two points to eliminate the

proportionality constant a:  Equation (4) or 
1 12

0

T
a

B
Mgl

f z= +










µ
( )  gives:

aT
B

Mgl
f z aT

B
Mgl

f z1
2 0

1 2
2 0

21 1+








 = +











µ µ
( ) ( )

T T
B

Mgl
f z T T

B
Mgl

f z1
2

1
2 0

1 2
2

2
2 0

2+ = +
µ µ

( ) ( )

[ ]µB
Mgl

T f z T f z T T0
1

2
1 2

2
2 2

2
1

2( ) ( )− = −

µ = ⋅
−
−

Mgl
B

T T
T f z T f z0

2
2

1
2

1
2

1 2
2

2( ) ( )

Choosing two points (z1 = 7 mm, T1 = 580.5 ms) and (z2 = 22 mm, T2 = 841ms). Reading
from the graph f(z1) = 56.0 and f(z2)  = 12.0 we get

µ = ⋅
−

⋅ − ⋅
= ⋅ −0 338

841 580
580 56 0 841 12 0

12 10
2 2

2 2
2.

. .
.Am Am2 2
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  Candidate: Total score:     +     +     +     +     =
  Country: Marker’s name:
  Language: Comment:

Marking Form
for the Experimental Competition at the
27th International Physics Olympiad

Oslo, Norway
July 4, 1996

To the marker: Carefully read through the candidate’s exam papers and compare with
the model answer. You may use the transparencies (handed out) when checking the
graph in 1b) and the drawing in 2a). When encountering words or sentences that
require translation, postpone marking of this part until you have consulted the inter-
preter.

Use the table below and mark a circle around the point values to be subtracted. Add
vertically the points for each subsection and calculate the score.
NB: Give score 0 if the value comes out negative for any subsection.
Add the scores for each subsection and write the sum in the ‘Total score’- box at the
upper right. Keep decimals all the way.

If you have questions, consult the marking leader. Good luck, and remember that you
will have to defend your marking in front of the team leaders.

(Note: The terms “INCORRECT 2b-1” found in the table for subsection 2c) and similar terms
elsewhere, refer to the Model Answer, in which anticipated incorrect answers were included
and numbered for easy reference.)
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Subsection 1a) Deficiency
No answer

x lacks unit
Other than 0 or 1 decimal in x

x does not cover the interval 10 mm - 160 mm
T lacks unit

T given with other than 1 or 0.5 millisecond accuracy
Fewer than 11 measuring points (15 mm sep.). Subtr. up to

Systematic error in x (e.g. if measured from the top of the nut so that the
first x = 0 mm)

If not aware of doubling of the timer period
 Other (specify):

                                                     Score for subsection 1a:   1.0 -

Subtract
1.0
0.1
0.1
0.1
0.1
0.1
0.2

0.2
0.2

=

Subsection 1b) Deficiency
No answer

 Lacks “x [(m)m]” on horizontal axis
1 mm on paper does not correspond to 1 mm in x

 Fewer than 3 numbers on horizontal axis
Lacks “T [(m)s]” on vertical axis

1 mm on paper does not correspond to 1 ms in T
Fewer than 3 numbers on vertical axis

Measuring points not clearly shown (as circles or crosses)
More than 5 ms deviation in more than 2 measuring points on the graph

Wrong answer to the questions (x-values give full score if correct number
of values: 0, 2, 1)

 Other (specify):
Score for subsection 1b):   1.0 -

Subtract
1.0
0.1
0.1
0.1
0.1
0.1
0.1
0.2
0.2

0.2

=

Subsection 1c) Deficiency
No answer

x outside the interval 81 - 87 mm. Subtract up to
x lacks unit

x given more (or less) accurately than in whole millimeters
l lacks unit

l given more (or less) accurately than the nearest mm
Wrong formula (e.g. l = 200.0 mm - x ) or something other than l = xCM - x

If it is not possible to see which method was used to find the center of mass
 Other (specify):

Score for subsection 1c):   2.0 -

Subtract
2.0
0.4
0.1
0.3
0.1
0.3
0.6
0.2

=
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Subsection 2a) Deficiency
No answer

If drawn straight (vertical) lines
If points are drawn

Other than 4 regions are drawn
Inaccurate drawing (> ±  2 mm )

Lacks the values l1 = 60 mm, l2 = 35 mm on figure or text
 Other (specify):

Score for subsection 2a):   1.5 -

Subtract
1.5
0.4
0.5
0.5
0.3
0.3

=

Subsection 2b) Deficiency
No answer

Lacks (derivation of) formula for g
For INVERTED PENDULUM: Lacks figure

Values from possible new measurements not given
Incomplete calculations

If hard to see which method was used
Used the formula for INVERTED PENDULUM but read l1 and l2 from

graph in 1b) by a horizontal line for a certain T
Used one of the other incorrect methods

Other than 3 (or 4) significant figures in the answer
g lacks unit m/s2

 Other (specify):
Score for subsection 2b):   2.5 -

Subtract
2.5
0.3
0.2
0.3
0.3
0.4

1.5
2.0
0.3
0.1

=

Subsection 2c) Deficiency
No answer

Wrong expression for ∆g/g or ∆g. Subtract up to
For INVERTED PENDULUM: If 0.3 mm >∆(l1+l2)  > 0.5 mm

For ALTERNATIVE 2c-1: If ∆[]  > 0.1 mm
For INCORRECT 2c-1 and 2c-2: If 1 mm > ∆l  > 2 mm

For INCORRECT 2c-3: If 0.3 mm > ∆L  > 0.4 mm
For all methods: If ∆T ≠  1 (or 0.5) ms

Error in the calculation of ∆g
Lacks answer including g ± ∆g with 2 decimals

g ± ∆g  lacks unit
 Other (specify):

Score for subsection 2c):   2.5 -

Subtract
2.5
0.5
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.1

=
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Subsection 3a) Deficiency
No answer

Lacks point 3. cylindrical mirror
Lacks point 4. concave mirror

Includes other points (1, 2 or 5), subtract per wrong point:
Lacks value for radius of curvature

If r < 130 mm or r > 160 mm, subtract up to
If r is given more accurately than hole millimeters

 Other (specify):
Score for subsection 3a):   1.0 -

Subtract
1.0
0.3
0.3
0.3
0.4
0.2
0.2

=

Subsection 3b) Deficiency
No answer

Lacks side view figure
Errors or deficiencies in the side view figure. Subtract up to

Lacks top view figure
Errors or deficiencies in the top view figure. Subtract up to

Drawing shows light focused to a point
Drawing shows light spread out over an ill defined or wrongly shaped

surface
Line/surface is not horizontal

Line/point/surface not centered symmetrically on detector
Line/point/surface has length different from twice the width of the nut

(i.e. outside the interval 10 - 30 mm)
 Other (specify):

Score for subsection 3b):   2.0 -

Subtract
2.0
0.6
0.4
0.6
0.4
0.3

0.3
0.2
0.2

0.1

=
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Subsection 4a) Deficiency
No answer

Vo lacks unit V
Less than 3 decimals in Vo

Incorrect couplings (would give Vo < 2.3 V or Vo > 2.9 V)
 Other (specify):

Score for subsection 4a):   1.0 -

Subtract
1.0
0.1
0.1
0.8

=

Subsection 4b) Deficiency
No answer

Forgotten Vo or other errors in formula for B
Lacks “y [(m)m]” on horizontal axis

Fewer than 3 numbers on horizontal axis
Lacks “B [(m)T]” on vertical axis

Fewer than 3 numbers on vertical axis
Fewer than 9 measuring points. Subtract up to

Measuring points do not cover the interval 3.5 mm - 26 mm
Measuring points not clearly shown (as circles or crosses)

Error in data or unreasonably large spread in measuring points. Subtract
up to

 Other (specify):
Score for subsection 4b):   1.5 -

Subtract
1.5
0.2
0.1
0.1
0.1
0.1
0.2
0.2
0.1

0.5

=

Subsection 4c) Deficiency
No answer

Incorrect formula for Bo
If used only one measuring point

If used untypical points on the graph
Errors in calculation of mean value for Bo

Bo  lacks unit T
Other than two significant figures in (the mean value of) Bo

Bo < 0.4 T or Bo > 0.7 T. Subtract up to
 Other (specify):

Score for subsection 4c):   1.5 -

Subtract
1.5
0.3
0.4
0.3
0.2
0.1
0.2
0.2

=
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Subsection 5a) Deficiency
No answer

Lacks “z [(m)m]” on horizontal axis
Fewer than 3 numbers on horizontal axis

Lacks “T [(m)s]” on vertical axis
Fewer than 3 numbers on vertical axis

Fewer than 8 measuring points. Subtract up to
Measuring points not clearly shown (as circles or crosses)

Measuring points do not cover the interval 5.5 mm - 25 mm
Error in data (e.g. plotted 2T instead of T) or unreasonably large spread

in measuring points. Subtr. up to
 Other (specify):

Score for subsection 5a):   1.0 -

Subtract
1.0
0.1
0.1
0.1
0.1
0.2
0.1
0.2

0.5

=

Subsection 5b) Deficiency
No answer

Forgotten center of mass displacement in l (used l = 100 mm)
Used ALTERNATIVE 5b-1

Lacks method for finding the proportionality factor a
Not found correct proportionality factor a

Used another point than the maximum of f(z)
Incorrect reading of f(z)

Used MROD or another incorrect value for M
Incorrect calculation of µ
µ  lacks unit (Am2 or J/T)

More than 2 significant figures in µ
 Other (specify):

Score for subsection 5b):   3.0 -

Subtract
3.0
0.3
1.0
2.5
0.3
0.1
0.1
0.2
0.3
0.2
0.3

=

Total points:

Total for section 1 (max. 4 points):
Total for section 2 (max. 5 points):
Total for section 3 (max. 3 points):
Total for section 4 (max. 4 points):
Total for section 5 (max. 4 points):
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The last preparations

The problem for the experimental competition was discussed by the leaders and
the organizers the evening before the exam. At this meeting the equipment was
demonstrated for the first time (picture).

After the meeting had agreed on the final text (in English), the problems had to
be translated into the remaining 36 languages. One PC was available for each
nation for the translation process (see picture below). The last nation finished
their translation at about 4:30 a.m. in the morning, and the competition started
at 0830. Busy time for the organizers! Examples of the different translations
are given on the following pages.

Photo: Børge Holme

Photo: Børge Holme



28th International Physics Olympiad 
Sudbury, Canada 

 
 

THEORETICAL COMPETITION 
 
 

Thursday, July 17th, 1997 
 
 

Time Available: 5 hours 
 
 

Read This First: 
 
1.  Use only the pen provided. 
2.  Use only the front side of the answer sheets and paper. 
3.  In your answers please use as little text as possible; express yourself primarily in 

equations, numbers and figures. Summarize your results on the answer sheet. 
4.  Please indicate on the first page the total number of pages you used. 
5.  At the end of the exam please put your answer sheets, pages and graphs in order. 
 
 
 

This set of problems consists of 11 pages. 
 
 
 
Examination prepared at:  University of British Columbia 

         Department of Physics and Astronomy 
    Committee Chair: Chris Waltham 
 
Hosted by:    Laurentian University 
  

 1



Theory Question No.1 
 
Scaling 
 
(a) A small mass hangs on the end of a massless ideal spring and oscillates up and down 
at its natural frequency f. If the spring is cut in half and the mass reattached at the end, 
what is the new frequency ?  (1.5 marks) ′f
 
(b) The radius of a hydrogen atom in its ground state is a0 = 0.0529 nm (the “Bohr 
radius”). What is the radius of a “muonic-hydrogen” atom in which the electron is 
replaced by an identically charged muon, with mass 207 times that of the electron? 

′a

Assume the proton mass is much larger than that of the muon and electron.    (2 marks) 
 
(c) The mean temperature of the earth is T = 287 K. What would the new mean 
temperature ′T be if the mean distance between the earth and the sun was reduced by 
1%? 
(2 marks) 
 
(d) On a given day, the air is dry and has a density ρ = 1.2500 kg/m3. The next day the              
humidity has increased and the air is 2% by mass water vapour. The pressure and 
temperature are the same as the day before. What is the air density ′ρ now?    (2 
marks) 
 
Mean molecular weight of dry air: 28.8 (g/mol)  
Molecular weight of water: 18 (g/mol)  
 
Assume ideal-gas behaviour. 
 
(e)  A type of helicopter can hover if the mechanical power output of its engine is P. If 
another helicopter is made which is an exact ½-scale replica (in all linear dimensions) of 
the first, what mechanical power ′P is required for it to hover? (2.5  marks) 
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Theory Question 1: Answer Sheet  STUDENT CODE: 
 
 
(a)  Frequency : ′f
 
 
 
 
 
 
(b)  Radius  : ′a
 
 
 
 
 
 
 
(c) Temperature  ′T : 
 
 
 
 
 
 
(d) Density ′ρ : 
 
 
 
 
 
 
(e)  Power : ′P
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 Theory Question No.2     
 
Nuclear Masses and Stability 
 
All energies in this question are expressed in MeV - millions of electron volts.  
One MeV = 1.6 × 10-13 J, but it is not necessary to know this to solve the problem. 
 
The mass M of an atomic nucleus with Z protons and N neutrons (i.e. the mass number  
A = N + Z) is the sum of masses of the free constituent nucleons (protons and neutrons) 
minus the binding energy B/c2. 
 

M c Zm c Nm c Bp n
2 2 2= + −  

 
The graph shown below plots the maximum value of B/A for a given value of A, vs. A.  
The greater the value of B/A, in general, the more stable is the nucleus. 
 

Binding Energy per Nucleon 
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(a) Above a certain mass number Aα , nuclei have binding energies which are always 
small enough to allow the emission of alpha-particles (A=4). Use a linear approximation 
to this curve above A = 100 to estimate Aα .  (3 marks) 
 
 
For this model, assume the following: 
 
• Both initial and final nuclei are represented on this curve. 
• The total binding energy of the alpha-particle is given by B4 = 25.0 MeV (this cannot 

be read off the graph!). 
 
 
 
(b) The binding energy of an atomic nucleus with Z protons and N neutrons (A=N+Z) is 
given by a semi-empirical formula: 
 

B a A a A a Z A a
N Z

Av s c a= − − −
−

−−2
3 2 1

3
2( )

δ  

 
The value of δ is given by: 
 

+ apA-3/4 for odd-N/odd-Z nuclei 

 
0 for even-N/odd-Z or odd-N/even-Z nuclei 

 
- apA-3/4 for even-N/even-Z nuclei 

 
The values of the coefficients are:  
 
av = 15.8 MeV; as = 16.8 MeV; ac = 0.72 MeV; aa = 23.5 MeV; ap = 33.5 MeV. 
 
 
(i) Derive an expression for the proton number Zmax of the nucleus with the largest 
binding energy for a given mass number A . Ignore the δ-term for this part only. (2 
marks) 
 
(ii) What is the value of Z for the A = 200 nucleus with the largest B/A? Include the effect 
of the δ-term.       (2 marks) 
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(iii) Consider the three nuclei with A = 128 listed in the table on the answer sheet. 
Determine which ones are energetically stable and which ones have sufficient energy to 
decay by the processes listed below. Determine Zmax as defined in part (i) and fill out the 
table on your answer sheet. 
 
In filling out the table, please:      
 
• Mark processes which are energetically allowed thus: √ 
• Mark processes which are NOT energetically allowed thus: 0 
• Consider only transitions between these three nuclei.  
 
Decay processes: 
 
(1) β -- decay; emission from the nucleus of an electron  
(2) β +- decay; emission from the nucleus of a positron 
(3) β -β - - decay; emission from the nucleus of two electrons simultaneously 
(4) Electron capture; capture of an atomic electron by the nucleus. 
 
The rest mass energy of an electron (and positron) is mec2 = 0.51 MeV; that of a proton is 
mpc2 = 938.27 MeV; that of a neutron is mnc2 = 939.57 MeV. 
 
(3 marks) 
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Question 2: Answer Sheet   STUDENT CODE: 
 
 
(a)  Numerical value for : Aα

 
 
 
(b)  (i) Expression for Zmax :  
 
 
 
 
(b)  (ii) Numerical value of Z :  
 
  
 
(b) (iii) 
 
Nucleus/Process β − - decay β + - decay Electron-capture β β− − - decay 

53
128 I     

54
128 Xe     

55
128 Cs     

 
Notation :   Z

A X
 
 X = Chemical Symbol 
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Theory Question No.3     
 
Solar-Powered Aircraft 
 
We wish to design an aircraft which will stay aloft using solar power alone. The most 
efficient type of layout is one with a wing whose top surface is completely covered in 
solar cells. The cells supply electrical power with which the motor drives the propeller. 
 
Consider a wing of rectangular plan-form with span l, chord (width) c; the wing area is     
S = cl, and the wing aspect ratio A = l / c. We can get an approximate idea of the wing’s 
performance by considering a slice of air of height  x and length l  being deflected 
downward at a small angle ε  with only a very small change in speed. Control surfaces 
can be used to select an optimal value of ε  for flight. This simple model corresponds 
closely to reality if x = π l /4, and we can assume this to be the case. The total mass of the 
aircraft is M and it flies horizontally with velocity rv  relative to the surrounding air. In 
the following calculations consider only the air flow around the wing. 
 
Top view of aircraft (in its own frame of reference): 
 
             incident air 

 c

l
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Side view of wing (in a frame of reference moving with the aircraft): 

 x
 ε

c
rv

 L

 D=D1+D2

  
 incident air     wing section      air leaving wing  vertical(up) 
 

Ignore the modification of the airflow due to the propeller. 
 
(a) Consider the change in momentum of the air moving past the wing, with no change in 
speed while it does so. Derive expressions for the vertical lift force L and the horizontal 
drag force D1 on the wing in terms of wing dimensions, v, ε, and the air density ρ. 
Assume the direction of air flow is always parallel to the plane of the side-view diagram.   
 (3 marks) 
 
(b)  There is an additional horizontal drag force D2 caused by the friction of air flowing 

over the surface of the wing. The air slows slightly, with a change of speed 
      ∆v (<< 1% of v) given by: 
  

∆v
v

f
A

=  

 
The value of f is independent of ε.  
 
Find an expression (in terms of M, f , A, S, ρ and g- the acceleration due to gravity) for 
the flight speed v0 corresponding to a minimum power being needed to maintain this 
aircraft in flight at constant altitude and velocity.  Neglect terms of order (ε 2 f ) or higher. 
  (3 marks) 
 
You may find the following small angle approximation useful: 
 

1
2

2

− ≈cos
sin

ε
ε

 

 
(c) On the answer sheet, sketch a graph of power P versus flight speed v . Show the 
separate contributions to the power needed from the two sources of drag.  Find an 
expression (in terms of M, f, A, S, ρ and g) for the minimum power, Pmin .       (2 marks) 
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(d) If the solar cells can supply sufficient energy so that the electric motors and propellers 
generate mechanical power of I = 10 watts per square metre of wing area, calculate the 
maximum wing loading Mg/S  (N/m2) for this power and flight speed v0 (m/s). Assume     
ρ = 1.25 kg/m3, f = 0.004, A = 10.        (2 marks) 
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Question 3: Answer Sheet   STUDENT CODE: 
 
(a)  Expression for L : 
 
 
 
 
 
 
(a)  Expression for D1 : 
 
 
 
 
 
 
(b) Expression for D2 : 
 
 
 
 
 
 
 
(b) Expression for v0 : 
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(c)
P

v

Pmin

v0
 

(c)  Expression for Pmin : 
 
 
 
 
 
 
(d)  Maximum value of Mg/S : 
  
  
  
  
  
  
(d) Numerical value of v0 : 
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Instrumentation provided: 
A  Platform with 6 banana jacks 

B  Pickup coil embedded into the 
platform 

C  Ferrite U-core with two coils 
marked ``A'' and ``B'' 

D  Ferrite U-core without coils 

E  Aluminium foils of thicknesses: 
50 µm, 100 µm and 200 µm 

F  Function generator with output 
leads 

G  Two multimeters 

H  Six leads with banana plugs 

I  Two rubber bands and two 
plastic spacers  

 
 
 
Multimeters 
The multimeters are two-terminal devices that in this experiment are used for measuring AC voltages, AC 
currents, frequency and resistance. In all cases one of the terminals is the one marked COM. For the 
voltage, frequency and resistance measurements the other terminal is the red one marked V-Ω. For current 
measurements the other terminal is the yellow one marked mA. With the central dial you select the meter 
function (V~ for AC voltage, A~ for AC current, Hz for frequency and Ω for resistance) and the 
measurement range. For the AC modes the measurement uncertainty is ± (4% of reading + 10 units of the 
last digit). To get accurate current measurements a change of range is recommended if the reading is 
less than 10% of full scale.  
Function generator 
To turn on the generator you press in the red button marked PWR. Select the 10 kHz range by pressing the 
button marked 10k, and select the sine waveform by pressing the second button from the right marked with 
a wave symbol. No other buttons should be selected. You can safely turn the amplitude knob fully 
clockwise. The frequency is selected with the large dial on the left. The dial reading multiplied by the range 
selection gives the output frequency. The frequency can be verified at any time with one of the multimeters. 
Use the output marked MAIN, which has 50 Ω internal resistance.  
Ferrite cores 
Handle the ferrite cores gently, they are brittle!! Ferrite is a ceramic magnetic material, with low electrical 
conductivity. Eddy current losses in the cores are therefore low.  
Banana jacks 
To connect a coil lead to a banana jack, you loosen the colored plastic nut, place the tinned end between the 
metal nut and plastic nut, and tighten it again.  



 
Figure 1: Experimental arrangement for part I. 

 
Part I. Magnetic shielding with eddy currents 
Time-dependent magnetic fields induce eddy currents in conductors. The eddy currents in turn produce a 
counteracting magnetic field. In superconductors the induced eddy currents will expel the magnetic field 
completely from the interior of the conductor. Due to the finite conductivity of normal metals they are not 
as effective in shielding magnetic fields.  
To describe the shielding effect of aluminium foils we will apply a phenomenological model  
 
  B B e d= −

0
α  (1)  

where B0 is the magnetic field in the absence of foils. B is the magnetic field beneath the foils, α an 
attenuation constant, and d the foil thickness.  
 
Experiment  
Put the ferrite core with the coils, with legs down, on the raised block such that coil A is directly above the 
pickup coil embedded in the platform, as shown in Figure 1. Secure the core on the block by stretching the 
rubber bands over the core and under the block recess.  

1. Connect the leads for coils A and B to the jacks. Measure the resistance of all coils to make sure 
you have good connections. You should expect values of less than 10 Ω. Write your values in field 
1 on the answer sheet.  

2. Collect data to validate the model above and evaluate the attenuation constant α  for the 
aluminum foils (50 - 300 µm), for frequencies in the range of 5 - 20 kHz. Place the foils inside the 
square, above the pickup coil, and apply a sinusoidal voltage to coil A. Write your results in field 
2 on the answer sheet.  

3. Plot α versus frequency, and write in field 3 on the answer sheet, an expression describing the 
function α (f) .  

 
 
Part II. Magnetic flux linkage 
The response of two coils on a closed ferrite core to an external alternating voltage (Vg) from a sinusoidal 
signal generator is studied.  
 
 
 



Theory 
In the following basic theoretical discussion, and in the treatment of the data, it is assumed that the ohmic 
resistance in the two coils and hysteresis losses in the core have insignificant influence on the measured 
currents and voltages. Because of these simplifications in the treatment below, some deviations will occur 
between measured and calculated values. 
 
Single coil 
Let us first look at a core with a single coil, carrying a current I. The magnetic flux Φ , that the current 
creates in the ferrite core inside the coil, is proportional to the current I and to the number of windings N. 
The flux depends furthermore on a geometrical factor g, which is determined by the size and shape of the 
core, and the magnetic permeability µ =µrµ0  , which describes the magnetic properties of the core material. 
The relative permeability is denoted µr   and µ0   is the permeability of free space.  
The magnetic flux Φ is thus given by  
 
  Φ = =µgNI cNI  (2)  
 
where c=µg. The induced voltage is given by Faraday's law of induction,  
 

  ε( )
( ) ( )

t N
d t

dt
cN

dI t
dt

= − = −
Φ 2  (3)  

 
The conventional way to describe the relationship between current and voltage for a coil is through the self 
inductance of the coil L, defined by,  
 

  ε( )
( )

t L
dI t

dt
= −  (4)  

 
A sinusoidal signal generator connected to the coil will drive a current through it given by  
 
  I t I t( ) sin= 0 ω  (5)  
 
where ω is the angular frequency and I0 is the amplitude of the current. As follows from equation (3) this 
alternating current will induce a voltage across the coil given by  
 
  ε ω ω( ) cost cN I t= − 2

0  (6)  
The current will be such that the induced voltage is equal to the signal generator voltage Vg. There is a 90 
degree phase difference between the current and the voltage. If we only look at the magnitudes of the 
alternating voltage and current, allowing for this phase difference, we have  
 
  ε ω= cN I2  (7)  
 
 
 
 
 
 
 
Two coils 
Let us now assume that we have two coils on one core. Ferrite cores can be used to link magnetic flux 
between coils. In an ideal core the flux will be the same for all cross sections of the core. Due to flux 
leakage in real cores a second coil on the core will in general experience a reduced flux compared to the 



flux-generating coil. The flux ΦB in the secondary coil B is therefore related to the flux ΦA  in the primary 
coil A through  
 
  Φ ΦB Ak=  (8)  
 
Similarly a flux component ΦB  created by a current in coil B will create a flux ΦA =kΦB   in coil A. The 
factor k, which is called the coupling factor, has a value less than one.  
The ferrite core under study has two coils A and B in a transformer arrangement. Let us assume that coil A 
is the primary coil (connected to the signal generator). If no current flows in coil B (IB=0), the induced 
voltage εA due to IA is equal and opposite to  Vg. The flux created by IA  inside the secondary coil is 
determined by equation (8) and the induced voltage in coil B is  
 
  ε ωB A B AkcN N I=  (9)  
 
If a current IB  flows in coil B, it will induce a voltage in coil A which is described by a similar expression. 
The total voltage across the coil A will then be given by  
 
  V cN I kcN N Ig A A A A B B= = −ε ω ω2  (10)  
 
The current in the secondary coil thus induces an opposing voltage in the primary coil, leading to an 
increase in  IA. A similar equation can be written for εB. As can be verified by measurements, k is 
independent of which coil is taken as the primary coil.  
 
Experiment 
Place the two U-cores together as shown in Figure 2, and fasten them with the rubber bands. Set the 
function generator to produce a 10 kHz, sine wave. Remember to set the multimeters to the most sensitive 
range suitable for each measurement. The numbers of the windings of the two coils, A and B, are:  NA = 
150 turns and  NB = 100 turns (±1 turn on each coil).  
 

 
Figure 2: A transformer with a closed magnetic circuit. 

 
1. Derive algebraic expressions for the self inductances LA  and LB  , and the coupling factor k, in 

terms of measured and given quantities and write your results in field 1.a on the answer sheet. 
Draw circuit diagrams in field 1.b on the answer sheet, showing how these quantities are 
determined. Calculate the numerical values of LA  , LB  and k and write their values in field 1.c 
on the answer sheet.  

2. When the secondary coil is short-circuited, the current IP  in the primary coil will increase. Use 
the equations above to derive an expression giving IP  explicitly and write your result in field 2.a 
on the answer sheet. Measure IP  and write your value in field 2.b on the answer sheet.  

3. Coils A and B can be connected in series in two different ways such that the two flux 
contributions are either added to or subtracted from each other. 
3.1. Find the self inductance of the serially connected coils, LA+B  , from measured quantities in 
the case where the flux contributions produced by the current I in the two coils add to (strengthen) 
each other and write your answer in field 3.1 on the answer sheet. 



3.2. Measure the voltages VA  and VB  when the flux contributions of the two coils oppose each 
other. Write your values in field 3.2.a on the answer sheet and the ratio of the voltages in field 
3.2.b. Derive an expression for the ratio of the voltages across the two coils and write it in field 
3.2.c on the answer sheet.  

4. Use the results obtained to verify that the self inductance of a coil is proportional to the square of 
the number of its windings and write your result in field 4 on the answer sheet.  

5. Verify that it was justified to neglect the resistances of the coils and write your arguments as 
mathematical expressions in field 5 on the answer sheet.  

6. Thin plastic spacers inserted between the two half cores (as shown in Figure 3) reduce the coil 
inductances drastically. Use this reduction to determine the relative permeability µr of the ferrite 
material, given Ampere's law and continuity of the magnetic field B across the ferrite - plastic 
interface.  

 
 
Assume µ =µ0 =4π×10-7 Ns2/C2 for the plastic spacers and a spacer thickness of 1.6 mm. The geometrical 
factor can be determined from Ampere's law  
 

 
1
µ

Bdl I total=∫  (11) 

 
where Itotal  is the total current flowing through a surface bounded by the integration path. Write your 
algebraic expression for µr  in field 6.a on the answer sheet and your numerical value in field 6.b.  
 

 
Figure 3: The ferrite cores with the two spacers in place. 
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Problem 1  
 

Absorption of radiation by a gas 
 
 
A cylindrical vessel, with its axis vertical, contains a molecular gas at thermodynamic equilibrium. 
The upper base of the cylinder can be displaced freely and is made out of a glass plate; let's assume 
that there is no gas leakage and that the friction between glass plate and cylinder walls is just 
sufficient to damp oscillations but doesn't involve any significant loss of energy with respect to the 
other energies involved. Initially the gas temperature is equal to that of the surrounding 
environment. The gas can be considered as perfect within a good approximation. Let's assume that 
the cylinder walls (including the bases) have a very low thermal conductivity and capacity, and 
therefore the heat transfer between gas and environment is very slow, and can be neglected in the 
solution of this problem. 
 Through the glass plate we send into the cylinder the light emitted by a constant power laser; 
this radiation is easily transmitted by air and glass but is completely absorbed by the gas inside the 
vessel. By absorbing this radiation the molecules reach excited states, where they quickly emit 
infrared radiation returning in steps to the molecular ground state; this infrared radiation, however, 
is further absorbed by other molecules and is reflected by the vessel walls, including the glass plate. 
The energy absorbed from the laser is therefore transferred in a very short time into thermal 
movement (molecular chaos) and thereafter stays in the gas for a sufficiently long time. 
 We observe that the glass plate moves upwards; after a certain irradiation time we switch 
the laser off and we measure this displacement. 
 
1. Using the data below and - if necessary - those on the sheet with physical constants, 

compute the temperature and the pressure of the gas after the irradiation.      [2 points] 
2. Compute the mechanical work carried out by the gas as a consequence of the radiation 

absorption.       [1 point] 
3. Compute the radiant energy absorbed during the irradiation.      [2 points] 
4. Compute the power emitted by the laser that is absorbed by the gas, and the corresponding 

number of photons (and thus of elementary absorption processes) per unit time.    [1.5 
points] 

5. Compute the efficiency of the conversion process of optical energy into a change of 
mechanical potential energy of the glass plate.     [1 point] 

 
Thereafter the cylinder axis is slowly rotated by 90°, bringing it into a horizontal direction. The heat 
exchanges between gas and vessel can still be neglected. 
 
6. State whether the pressure and/or the temperature of the gas change as a consequence of 

such a rotation, and - if that is the case – what is its/their new value.      [2.5 points] 
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Data 
 
Room pressure: p0 = 101.3 kPa 
Room temperature: T0 = 20.0°C 
Inner diameter of the cylinder: 2r = 100 mm 
Mass of the glass plate: m = 800 g 
Quantity of gas within the vessel: n = 0.100 mol 
Molar specific heat at constant volume of the gas: cV = 20.8 J/(mol⋅K) 
Emission wavelength of the laser: λ = 514 nm 
Irradiation time: ∆t = 10.0 s 
Displacement of the movable plate after irradiation: ∆s = 30.0 mm 
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Answer sheet 

 

 
In this problem you are requested to give your results both as analytical expressions and with numerical 
data and units: write expressions first and then data (e.g. A=bc=1.23 m2). 

 

1. Gas temperature after the irradiation ………………………………………………………... 

 Gas pressure after the irradiation ……………………………………………………………. 

 

2. Mechanical work carried out ………………………………………………………………... 

 

3. Overall optical energy absorbed by the gas ………………………………………………… 

 

4. Optical laser power absorbed by the gas …………………………………………………… 

 Absorption rate of photons (number of absorbed photons per unit time) …………………... 

  

5. Efficiency in the conversion of optical energy into change of mechanical potential energy 

of the glass plate ………………………………………………………………. 

 
6. Owing to the cylinder rotation, is there a pressure change?  YES     NO  

   If yes, what is its new value? ……………………………………………………… 

 Owing to the cylinder rotation, is there a temperature change?  YES    NO   

   If yes, what is its new value? ………………………………………………………
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Physical constants and general data 
 
 
In addition to the numerical data given within the text of the individual problems, the knowledge of 
some general data and physical constants may be useful, and you may find them among the 
following ones. These are nearly the most accurate data currently available, and they have thus a 
large number of digits; you are expected, however, to write your results with a number of digits 
that must be appropriate for each problem. 
 
Speed of light in vacuum: c = 299792458 m⋅s-1 
Magnetic permeability of vacuum: µ0 = 4π⋅10-7 H⋅m-1 
Dielectric constant of vacuum: ε0 = 8.8541878 pF⋅m-1 
Gravitational constant: G = 6.67259⋅10-11 m3/(kg⋅s²) 
Gas constant: R = 8.314510 J/(mol⋅K) 
Boltzmann's constant: k = 1.380658⋅10-23  J⋅K-1 
Stefan's constant: σ = 56.703 nW/(m²⋅K4) 
Proton charge: e = 1.60217733⋅10-19  C 
Electron mass: me = 9.1093897⋅10-31 kg 
Planck's constant: h = 6.6260755⋅10-34 J⋅s 
Base of centigrade scale: TK = 273.15 K 
Sun mass: MS = 1.991⋅1030 kg 
Earth mass: ME = 5.979⋅1024  kg 
Mean radius of Earth: rE = 6.373 Mm 
Major semiaxis of Earth orbit: RE = 1.4957⋅1011  m 
Sidereal day: dS = 86.16406 ks 
Year: y = 31.558150 Ms 
Standard value of the gravitational field at the Earth surface: g = 9.80665 m⋅s-2 
Standard value of the atmospheric pressure at sea level: p0 = 101325 Pa 
Refractive index of air for visibile light, at standard pressure and 15 °C: nair = 1.000277 
Solar constant: S  = 1355 W⋅m-2 
Jupiter mass: M = 1.901⋅1027 kg 
Equatorial Jupiter radius: RB = 69.8 Mm 
Average radius of Jupiter’s orbit: R  = 7.783⋅1011 m 
Jovian day: dJ = 35.6 ks  
Jovian year: yJ = 374.32 Ms 
π: 3.14159265 
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Problem 2 
 
 Magnetic field with a V-shaped wire 
 
 
Among the first successes of the interpretation by Ampère of magnetic phenomena, we have the 
computation of the magnetic field B generated by wires carrying an electric current, as compared 
to early assumptions originally made by Biot and Savart.  
 
A particularly interesting case is that of a very long thin wire, carrying a constant current i, made 
out of two rectilinear sections and bent in the form of a "V", with angular half-span1









2
tan α

 α (see figure). 
According to Ampère's computations, the magnitude B of the magnetic field in a given point P 
lying on the axis of the "V", outside of it and at a distance d from its vertex, is proportional to 

. Ampère's work was later embodied in Maxwell's electromagnetic theory, and is 

universally accepted. 
 
 
 
 
 
 
 
 
 
 
 
Using our contemporary knowledge of electromagnetism, 
 
1. Find the direction of the field B in P.       [1 point] 

2.  Knowing that the field is proportional to 







2
tan α , find the proportionality factor k in 







=

2
tan)P( αkB .        [1.5 points] 

3. Compute the field B in a point P* symmetric to P with respect to the vertex, i.e. along the 
axis and at the same distance d, but inside the "V" (see figure).       [2 points] 

                                                 
1 Throughout this problem α is expressed in radians 

α
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4. In order to measure the magnetic field, we place in P a small magnetic needle with moment 

of inertia I and magnetic dipole moment µ; it oscillates around a fixed point in a plane 
containing the direction of B. Compute the period of small oscillations of this needle as a 
function of B.       [2.5 points] 

 
 In the same conditions Biot and Savart had instead assumed that the magnetic field in P 

might have been (we use here the modern notation) 
d

iB 2
0)P(

π
αµ

= , where µ0 is the magnetic 

permeability of vacuum. In fact they attempted to decide with an experiment between the two 
interpretations (Ampère's and Biot and Savart's) by measuring the oscillation period of the magnetic 
needle as a function of the "V" span. For some α values, however, the differences are too small to 
be easily measurable. 
 
5. If, in order to distinguish experimentally between the two predictions for the magnetic 

needle oscillation period T in  P, we need a difference by at least 10%, namely T1  > 1.10 T2  
(T1 being the Ampere prediction and T2 the Biot-Savart prediction) state in  which range, 
approximately, we must choose the "V" half-span α for being able to decide between the 
two interpretations.      [3 points] 

 
 
Hint 
 
Depending on which path you follow in your solution, the following trigonometric equation might 

be useful: 
α

αα
cos1

sin
2

tan
+

=





  
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Answer sheet 
 
In this problem write the requested results as analytic expressions, not as numerical values and 
units, unless explicitly indicated. 

 
1. Using the following sketch draw the direction of the B field (the length of the vector is not 

important). The sketch is a spatial perspective view. 

 
 
 
2. Proportionality factor k ………………………. 
 
3. Absolute value of the magnetic field intensity at the point P*, as described in the 

text………………………..……………… 

Draw the direction of the B field in the above sketch 
 

4. Period of the small angle oscillations of the magnet …………………………… 
 
5. Write for which range of α values (indicating here the numerical values of the range limits) 

the ratio between the oscillation periods, as predicted by Ampère and by Biot and Savart, is 
larger than 1.10:  

 
   ……………………. ………………………. 
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Problem 3 
 

A space probe to Jupiter 
 
 
We consider in this problem a method frequently used to accelerate space probes in the desired 
direction. The space probe flies by a planet, and can significantly increase its speed and modify 
considerably its flight direction, by taking away a very small amount of energy from the planet's 
orbital motion. We analyze here this effect for a space probe passing near Jupiter. 
 
The planet Jupiter orbits around the Sun along an elliptical trajectory, that can be approximated 
by a circumference of average radius R; in order to proceed with the analysis of the physical 
situation we must first: 
 
1. Find the speed V  of the planet along its orbit around the Sun.      [ 1.5 points] 
2. When the probe is between the Sun and Jupiter (on the segment Sun-Jupiter), find the 

distance from Jupiter  where the Sun's gravitational attraction balances that by Jupiter.       
[1 point] 

 
A space probe of mass m = 825 kg flies by Jupiter. For simplicity assume that the trajectory of 
the space probe is entirely in the plane of Jupiter's orbit; in this way we neglect the important 
case in which the space probe is expelled from Jupiter’s orbital plane. 
 We only consider what happens in the region where Jupiter's attraction overwhelms all 
other gravitational forces.  
 In the reference frame of the Sun's center of mass the initial speed of the space probe is v0 

=1.00·104 m/s (along  the positive y direction) while Jupiter's speed is along the negative x 
direction (see figure 1); by "initial speed" we mean the space probe speed when it's in the 
interplanetary space, still far from Jupiter but already in the region where the Sun's attraction is 
negligible with respect to Jupiter's. We assume that the encounter occurs in a sufficiently short 
time to allow neglecting the change of direction of Jupiter along its orbit around the Sun. We 
also assume that the probe passes behind Jupiter, i.e. the x coordinate is greater for the probe than 
for Jupiter when the y coordinate is the same. 
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Figure 1: View in the Sun center of mass system. O denotes Jupiter’s orbit, s is the space probe. 

  
3. Find the space probe's direction of motion (as the angle ϕ between its direction and the x 

axis) and its speed v’ in Jupiter's reference frame, when it's still far away from Jupiter.     
[2 points] 

4. Find the value of the space probe's total mechanical energy E in Jupiter's reference frame, 
putting – as usual – equal to zero the value of its potential energy at a very large distance, 
in this case when it is far enough to move with almost constant velocity owing to the 
smallness of all gravitational interactions.      [1 point] 

 
The space probe's trajectory in the reference frame of Jupiter is a hyperbola and its equation in 
polar coordinates in this reference frame is 
 

   













++= θcos'211

'
1

22

22

22 mMG
bEv

bv
GM

r
  (1) 

 
where b is the distance between one of the asymptotes and Jupiter (the so called impact 
parameter), E is the probe’s total mechanical energy in Jupiter’s reference frame, G is the 
gravitational constant, M is the mass of Jupiter, r and θ  are the polar coordinates (the radial 
distance and the polar angle). 
 Figure 2 shows the two branches of a hyperbola as described by equation (1); the 
asymptotes and the polar co-ordinates are also shown. Note that equation (1) has its origin in the 
"attractive focus" of the hyperbola. The space probe's trajectory is the attractive trajectory (the 
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emphasized branch). 
 

 
Figure 2 

 
5. Using equation (1) describing the space probe's trajectory, find the total angular deviation 

∆θ in Jupiter’s reference frame (as shown in figure 2) and express it as a function of 
initial speed v’ and impact parameter b.       [2 points] 

6. Assume that the probe cannot pass Jupiter at a distance less than three Jupiter radii from 
the center of the planet; find the minimum possible impact parameter and the maximum 
possible angular deviation.        [1 point] 

7. Find an equation for the final speed v” of the probe in the Sun's reference frame as a 
function only of Jupiter’s speed V, the probe’s initial speed v0 and the deviation angle ∆θ.          
[1 point] 

8. Use the previous result to find the numerical value of the final speed v” in the Sun's reference 
frame when the angular deviation has its maximum possible value.          [0.5 points] 
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Hint 
 
Depending on which path you follow in your solution, the following trigonometric formulas 
might be useful: 

βαβαβα

βαβαβα

sinsincoscos)cos(

sincoscossin)sin(

−=+

+=+
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Answer sheet 

 
Unless explixitly requested to do otherwise, in this problem  you are supposed to write your 
results both as analytic equations (first) and then as numerical results and units (e.g. A=bc=1.23 
m2). 
 

1. Speed V of Jupiter along its orbit …………………………… 

 

2. Distance from Jupiter where the two gravitational attractions balance each 

other ……………………………………. 

 

3. Initial speed  v’ of the space probe in Jupiter’s reference frame ………………………………... 

and the angle ϕ its direction forms with the x axis, as defined in figure 

1,  ……………………..……… 

 

4. Total energy E of the space probe in Jupiter’s reference frame …………………………………... 

 

5. Write a formula linking the probe’s deviation ∆θ in Jupiter’s reference frame to the impact 

parameter b, the initial speed v’ and other known or computed 

quantities …………………………………………………………………………………………

………….. 

 

6. If the distance from Jupiter’s center can’t be less than three Jovian radii, write the minimum 

impact parameter and the maximum angular deviation: b = ……………………………………; 

∆θ = …………………………………………………….. 

 

7. Equation for the final probe speed v” in the Sun’s reference frame as a function of V, v0  and 

∆θ …...………………………………..…………………………………………...……… 

 
8. Numerical value of the final speed in the Sun’s reference frame when the angular deviation has 

its maximum value as computed in step 6 ………….…………………………………………… 
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30th International Physics Olympiad 
 

Padua, Italy 
 

Experimental competition 
 

Tuesday, July 20th, 1999 
 
 
 
Before attempting to assemble your equipment, read the problem text 
completely! 
 
Please read this first: 
 
1. The time available is 5 hours for one experiment only. 
2. Use only the pen provided. 
3. Use only the front side of the provided sheets. 
4. In addition to "blank" sheets where you may write freely, there is a set of Answer sheets 

where you must summarize the results you have obtained. Numerical results must be 
written with as many digits as appropriate; don’t forget the units. Try – whenever possible – 
to estimate the experimental uncertainties. 

5. Please write on the "blank" sheets the results of all your measurements and whatever else 
you deem important for the solution of the problem, that you wish to be evaluated during 
the marking process. However, you should use mainly equations, numbers, symbols, 
graphs, figures, and use as little text as possible. 

6. It's absolutely imperative that you write on top of each sheet that you'll use: your name 
(“NAME”), your country (“TEAM”), your student code (as shown on your identification tag, 
“CODE”), and additionally on the "blank" sheets: the progressive number of each sheet (from 
1 to N, “Page n.”) and the total number (N) of "blank" sheets that you use and wish to be 
evaluated (“Page total”); leave the “Problem” field blank.  It is also useful to write the 
number of the section you are answering at the beginning of each such section. If  you use 
some sheets for notes that you don’t wish to be evaluated by the marking team, just put a large 
cross through the whole sheet, and don’t number it. 

7. When you've finished, turn in all sheets in proper order (answer sheets first, then used 
sheets in order, unused sheets and problem text at the bottom) and put them all inside the 
envelope where you found them; then leave everything on your desk. You are not allowed 
to take anything out of the room. 

 
This problem consists of 11 pages (including this one and the answer sheets). 
 
This problem has been prepared by the Scientific Committee of the 30th IPhO, including professors at the Universities 
of Bologna, Naples, Turin and Trieste. 
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Torsion pendulum 

 
 
In this experiment we want to study a relatively complex mechanical system – a torsion 
pendulum – and investigate its main parameters. When its rotation axis is horizontal it 
displays a simple example of bifurcation. 
 
 
Available equipment 
 
1. A torsion pendulum, consisting of an outer body (not longitudinally uniform) and an inner threaded 

rod, with a stand as shown in figure 1 
2. A steel wire with handle 
3. A long hexagonal nut that can be screwed onto the pendulum threaded rod (needed only for the 

last exercise) 
4. A ruler and a right triangle template 
5. A timer 
6. Hexagonal wrenches 
7. A3 Millimeter paper sheets.  
8. An adjustable clamp 
9. Adhesive tape 
10. A piece of T-shaped rod 

 
 
The experimental apparatus is shown in figure 1; it is a torsion pendulum that can oscillate 
either around a horizontal rotation axis or around a vertical rotation axis. The rotation axis is 
defined by a short steel wire kept in tension. The pendulum has an inner part that is a threaded 
rod that may be screwed in and out, and can be fixed in place by means of a small hexagonal 
lock nut. This threaded rod can not be extracted from the pendulum body.  
 When assembling the apparatus in step 5 the steel wire must pass through the brass 
blocks and through the hole in the pendulum, then must be locked in place by keeping it 
stretched:  lock it first at one end, then use the handle to put it in tension and lock it at the 
other end. 
 
Warning: The wire must be put in tension only to guarantee the pendulum stability. It's 

not necessary to strain it with a force larger than about 30 N. While straining it, 
don't bend the wire against the stand, because it might break. 
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handle

steel wire

 
 

Figure 1: Sketch of the experimental apparatus when its rotation axis is horizontal. 
 

The variables characterizing the pendulum oscillations are: 
• the pendulum position defined by the angle θ  of deviation from the direction 

perpendicular to the plane of the stand frame, which is shown horizontal in figure 1.  
• the distance x between the free end of the inner threaded rod and the pendulum rotation 

axis 
• the period T of the pendulum oscillations. 
 

The parameters characterizing the system are:  
• the torsional elastic constant κ (torque = κ ⋅ angle) of the steel wire;  
• the masses M1 and M2 of the two parts of the pendulum (1: outer cylinder 1

                                                 
1 Including the small hex locking nut. 

 and 2: 
threaded rod);  



Experimental problem  Page 3 

28/09/09  

• the distances R1 and R2 of the center of mass of each pendulum part (1: outer cylinder and 
2: threaded rod) from the rotation axis. In this case the inner mobile part (the threaded rod) 
is sufficiently uniform for computing R2 on the basis of its mass, its length   and the 
distance x. R2 is therefore a simple function of the other parameters;  

• the moments of inertia I1 and I2 of the two pendulum parts (1: outer cylinder and 2: 
threaded rod). In this case also we assume that the mobile part (the threaded rod) is 
sufficiently uniform for computing I2 on the basis of its mass, its length   and the 
distance x. I2 is therefore also a simple function of the other parameters;  

• the angular position θ0 (measured between the pendulum and the perpendicular to the 
plane of the stand frame) where the elastic recall torque is zero. The pendulum is locked 
to the rotation axis by means of a hex screw, opposite to the threaded rod; therefore θ0 
varies with each installation of the apparatus. 

 
Summing up, the system is described by 7 parameters: κ, M1, M2, R1, I1, , θ0, but θ0 

changes each time the apparatus is assembled, so that only 6 of them are really constants and 
the purpose of the experiment is that of determining them, namely κ, M1, M2, R1, I1, , 
experimentally. Please note that the inner threaded rod can’t be drawn out of the pendulum 
body, and initially only the total mass M1 + M2 is given (it is printed on each pendulum).  

In this experiment several quantities are linear functions of one variable, and you 
must estimate the parameters of these linear functions. You can use a linear fit, but alternative 
approaches are also acceptable. The experimental uncertainties of the parameters can be 
estimated from the procedure of the linear fit or from the spread of experimental data about 
the fit. 

The analysis also requires a simple formula for the moment of inertia of the inner 
part (we assume that its transverse dimensions are negligible with respect to its length, see 
figure 2):  
 

( ) ( )322332
2 33
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where /2M=λ  is the linear mass density, and therefore  
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2
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0 x- x

rotation
axis
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Figure 2: In the analysis of the experiment we can use an equation (eq. 2) for the moment of inertia of 

a bar whose transverse dimensions are much less than its length. The moment of inertia must be 
computed about the rotation axis that in this figure crosses the s axis at s=0. 

 
Now follow these steps to find the 6 parameters M1, M2, κ, R1,  , I1: 
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1. The value of the total mass M1+M2 is given (it is printed on the pendulum), and you can 
find M1 and M2 by measuring the distance R(x) between the rotation axis and the center 
of mass of the pendulum. To accomplish this write first an equation for the position R(x) 
of the center of mass as a function of x  and of the parameters M1, M2, R1,  .       [0.5 
points] 

2.  Now measure R(x) for several values of x (at least 3) 2

 

. Clearly such measurement must 
be carried out when the pendulum is not attached to the steel wire. Use these 
measurements and the previous result to find M1 and M2.        [3 points] 

x



θ

θ0

 
 

Figure 3: The variables θ  and x and the parameters θ0  and  are shown here. 
 
3. Find an equation for the pendulum total moment of inertia I as a function of x  and of the 

parameters M2, I1 and  .        [0.5 points] 
4. Write the pendulum equation of motion in the case of a horizontal rotation axis, as a 

function of the angle θ   (see figure 3) and of x, κ, θ0, M1, M2, the total moment of 
inertia I and the position R(x)  of the center of mass.        [1 point] 

                                                 
2 The small hex nut must be locked in place every time you move the threaded rod. Its mass is included in M1. 
This locking must be repeated also in the following, each time you move the threaded rod. 
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5. In order to determine κ, assemble now the pendulum and set it with its rotation axis 
horizontal. The threaded rod must initially be as far as possible inside the pendulum. 
Lock the pendulum to the steel wire, with the hex screw, at about half way between the 
wire clamps and in such a way that its equilibrium angle (under the combined action of 
weight and elastic recall) deviates sizeably from the vertical (see figure 4). Measure the 
equilibrium angle θe  for several values of x (at least 5).       [4 points] 

 

 
Figure 4: In this measurement set the pendulum so that its equilibrium position deviates from the 

vertical. 
 
6. Using the last measurements, find κ.       [4.5 points] 
7. Now place the pendulum with its rotation axis vertical3

 

, and measure its oscillation 
period for several values of x (at least 5). With these measurements, find I1 and  .      [4 
points] 

At this stage, after having found the system parameters, set the experimental 
apparatus as follows:  
• pendulum rotation axis horizontal 
• threaded rod as far as possible inside the pendulum 
• pendulum as vertical as possible near equilibrium 
• finally add the long hexagonal nut at the end of the threaded rod by screwing it a few 

turns (it can’t go further than that) 
 

In this way the pendulum may have two equilibrium positions, and the situation 
varies according to the position of the threaded rod, as you can also see from the generic 
graph shown in figure 5, of the potential energy as a function of the angle θ. 

The doubling of the potential energy minimum in figure 5 illustrates a phenomenon 
known in mathematics as bifurcation; it is also related to the various kinds of symmetry 
breaking that are studied in particle physics and statistical mechanics.  

 
 

                                                 
3 In order to stabilize it in this position, you may reposition the stand brackets. 
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Figure 5: Graph of the function θθθθ cos)(
2

)( 2
0 +−=

aU  (which is proportional to the 

potential energy of this problem) as a function of θ, with θ0 ≠ 0. The various curves 
correspond to different a values as labeled in the figure; smaller values of a  (a < 1) 
correspond to the appearence of the bifurcation. In our case the parameter a is associated 
with the position x of the threaded rod. 

 
We can now study this bifurcation by measuring the period of the small oscillations 

about the equilibrium position:  
 
8. Plot the period4

 

 T as a function of x. What kind of function is it? Is it increasing, 
decreasing or is it a more complex function?        [2.5 points] 

                                                 
4 You may be able to observe two equilibrium positions, but one of them is more stable than the other (see 
figure 5). Report and plot the period for the more stable one. 
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Solution 
 

1. At equilibrium the pressure p inside the vessel must be equal to the room pressure p0 plus the 

pressure induced by the weight of the movable base: 20 r
mgpp
π

+= . This is true before and after 

irradiation. Initially the gas temperature is room temperature. Owing to the state equation of perfect 

gases, the initial gas volume V1 is 
p

nRTV 0
1 =  (where R is the gas constant) and therefore the height 

h1 of the cylinder which is occupied by the gas is 
mgrp

nRT
r

Vh
+

== 2
0

0
2

1
1 ππ

. After irradiation, this 

height becomes h2 = h1+∆s, and therefore the new temperature is  

 
nR

mgrpsT
h
sTT )(1

2
0

0
1

02
+∆

+=






 ∆
+=

π . 

Numerical values: p = 102.32 kPa; T2 = 322 K = 49°C 
 

    2. The mechanical work made by the gas against the plate weight is mg∆s and against the room 
pressure is srp ∆2

0π , therefore the total work is J1.24)( 2
0 =∆+= srpmgL π  

 
    3. The internal energy, owing to the temperature variation, varies by an amount )( 02V TTncU −=∆ . 

The heat introduced into the system during the irradiation time ∆t is 

( ) 





 ++∆=∆++

∆
=+∆= 1)( V2

0
2

0
1

0
V R

cmgrpssrpmg
h

sTncLUQ ππ . This heat comes 

exclusively from the absorption of optical radiation and coincides therefore with the absorbed 
optical energy, Q = 84 J. 
 
The same result can also be obtained by considering an isobaric transformation and remembering 
the relationship between molecular heats: 








 ++∆=










 +∆
+=−= 1)(

)(
)()( V2

0

2
0

V02 R
c

mgrps
nR

mgrps
RcnTTncQ p π

π
 

 
    4. Since the laser emits a constant power, the absorbed optical power is 

)(1 2
0

V mgrp
t
s

R
c

t
QW +

∆
∆








 +=
∆

= π  = 8.4 W. The energy of each photon is hc/λ, and thus the 

number of photons absorbed per unit time is 
hc

Wλ  = 2.2⋅1019 s-1 

 
5. The potential energy change is equal to the mechanical work made against the plate weight, 

therefore the efficiency η of the energy transformation is  
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%3.0108.2
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1 3
2

0

≈⋅=







 +










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=
∆ −

R
c
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rpQ

smg

Vπ
 

 
6. When the cylinder is rotated and its axis becomes horizontal, we have an adiabatic transformation 

where the pressure changes from p to p0, and the temperature changes therefore to a new value T3. 
The equation of the adiabatic transformation constant=γpV  may now be written in the form 

γ
γ 1

0
23

−









=

p
pTT , where 399.11

VV

V

V

p =+=
+

==
c
R

c
Rc

c
c

γ . Finally T3  = 321 K = 48°C 
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Grading guidelines 
 
1. 0.5 Understanding the relationship between inner and outer pressure 
 0.7 Proper  use of  the plate displacement 
 0.2+0.2 Correct results for final pressure 
 0.2+0.2 Correct results for final  temperature 
 
2. 0.6 Understanding that the work is made both against plate weight and against 

atmospheric pressure 
 0.2+0.2 Correct results for work 
 
3. 1 Correct approach 
 0.5 Correct equation for heat 

0.3 Understanding that the absorbed optical energy equals heat 
 0.2 Correct numerical result for optical energy 
 
4. 0.2+0.2 Correct results for optical power 
 0.5 Einstein’s equation 
 0.3+0.3 Correct results for number of photons 
 
5. 0.6 Computation of  the change in potential energy 
 0.2+0.2 Correct results for efficiency 
 
6. 0.8 Understanding that the pressure returns to room value 
 0.4 Understanding that there is an adiabatic transformation 
 0.4 Equation of adiabatic transformation 
 0.5 Derivation of  γ from the relationship between specific heats 

0.2+0.2 Correct results for temperature 
 
 
For “correct results” two possible marks are given: the first one is for the analytical equation and 
the second one for the numerical value. 
For the numerical values a full score cannot be given if the number of digits is incorrect (more than 
one digit more or less than those given in the solution) or if the units are incorrect or missing. 
No bonus can be given for taking into account the gas weight 
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Solution 
 

1. The contribution to B given by each leg of the "V" has the same direction as that of a corresponding 
infinite wire and therefore - if the current proceeds as indicated by the arrow - the magnetic field is 
orthogonal to the wire plane taken as the x-y plane. If we use a right-handed reference frame as 
indicated in the figure, B(P) is along the positive z axis.  
 
 

 
 
For symmetry reasons, the total field is twice that generated by each leg and has still the same 
direction. 
 

2A. When α=π/2 the "V" becomes a straight infinite wire. In this case the magnitude of the field B(P) is 

known to be 
d

i
dc

iB
π
µ

επ 22
0

2
0

== , and since tan(π/4)=1, the factor k is 
d2

i 0

π
µ . 

 
 The following solution is equally acceptable: 

2B. If the student is aware of the equation 
h

iB 210 coscos
4

θθ
π
µ −

=  for a finite stretch of wire lying on a 

straight line at a distance h from point P and whose ends are seen from P under the angles θ1 and θ2, 

he can find that the two legs of the “V” both produce fields 
α
α

π
µ

sin
cos1

4
0

d
i −  and therefore the total 

field is 





=

−
=

2
tan

2sin
cos1

2
00 α

π
µ

α
α

π
µ

d
i

d
iB . This is a more complete solution since it also proves 

the angular dependence,  but it is not required. 
 

3A. In order to compute B(P*) we may consider the "V" as equivalent to two crossed infinite wires (a 
and b in the following figure) plus another "V", symmetrical to the first one, shown in the figure as 
V', carrying the same current i, in opposite direction. 
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 Then )(P)P()P()P( *

V'
*** BBBB ba ++= . The individual contributions are: 

απ
µ
sin2

)P()P( 0**

d
iBB ba == , along the negative z axis; 







=

2
tan

2
)P( 0*

V'
α

π
µ

d
iB , along the positive z axis. 

Therefore we have 





=






 +

=













−=

2
cot

sin
cos1

2
tan

sin
2

2
)P( 0* α

α
αα

απ
µ kk

d
iB , and the field is 

along the negative z axis. 
 
The following solutions are equally acceptable: 

   3B. The point P* inside a "V" with half-span α can be treated as if it would be on the outside of a "V" 
with half-span π-α carrying the same current but in an opposite way, therefore the field is 







=






 −=






 −

=
2

cot
22

tan
2

tan)P( * ααπαπ kkkB ; the direction is still that of the z axis but it is 

along the negative axis because the current flows in the opposite way as previously discussed. 
 

3C. If the student follows the procedure outlined under 2B., he/she may also find the field value in P* 
by the same method. 
 

4. The mechanical moment M acting on the magnetic needle placed in point P is given by  M = µ ∧ B 
(where the symbol ∧ is used for vector product). If the needle is displaced from its equilibrium 
position by an angle β small enough to approximate sinβ with β, the angular momentum theorem 

gives 
dt

dI=
dt
dL=B-=M 2

2 ββµ , where there is a minus sign because the mechanical momentum is 

always opposite to the displacement from equilibrium. The period T of the small oscillations is 

therefore given by 
B

IT
µ

π
ω
π 22
== . 

Writing the differential equation, however, is not required: the student should recognise the same 
situation as with a harmonic oscillator. 

5. If we label with subscript A the computations based on Ampère's interpretation, and with subscript 
BS those based on the other hypothesis by Biot and Savart, we have 

 



Problem 2 – Solution Page 3 

)
2

tan(

2

2
)

2
tan(

22

)
2

tan(
2

BS

A

0

2

BS

0

A

2
0

BS
0

A

απ

α

αµµ
ππ

αµµ

ππ

α
π
µα

π
µ

=

==

==

T
T

i
IdT

i

IdT

d
i

B
d

i
B

 

 

For α = π/2 (maximum possible value) TA = TBS; and for α → 0 BSBSA 128.12 TTT ≈→
π

. Since 

within this range 
2/

)2/tan(
α
α  is a monotonically growing function of α, 

BS

A

T
T is a monotonically 

decreasing function of α; in an experiment it is therefore not possible to distinguish between the 
two interpretations if the value of α is larger than the value for which TA = 1.10 TBS (10% 

difference), namely when 
2

05.1
221.1

4
2

tan αα
π

α
==






 . By looking into the trigonometry tables or 

using a calculator we see that this condition is well approximated when α/2 = 0.38 rad; α must 
therefore be smaller than 0.77 rad ≈ 44°. 
A graphical solution of the equation for α is acceptable but somewhat lengthy. A series 
development, on the contrary, is not acceptable. 
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Grading guidelines 
 
 
1. 1 for recognising that each leg gives the same contribution 
 0.5 for a correct sketch 
 
2. 0.5 for recognising that α=π/2 for a straight wire, or for knowledge of the equation given in 

2B. 
 0.25 for correct field equation (infinite or finite) 
 0.25 for value of k  
 
3. 0.7 for recognising that the V is equivalent to two infinite wires plus another V 
 0.3 for correct field equation for an infinite wire 
 0.5 for correct result for the intensity of the required field 
 0.5 for correct field direction 
alternatively 
 0.8 for describing the point as outside a V with π-α half-amplitude and opposite current 
 0.7 for correct analytic result 
 0.5 for correct field direction 
alternatively 
 0.5 for correctly using equation under 2B 
 1 for correct analytic result 

0.5 for correct field direction 
 
4. 0.5 for correct equation for mechanical moment M 

0.5 for doing small angle approximation sin β ≈ β 
1 for correct equation of motion, including sign, or for recognizing analogy with 

harmonic oscillator 
 0.5 for correct analytic result for T 
 
5. 0.3 for correct formulas of the two periods 
 0.3 for recognising the limiting values for α 
 0.4 for correct ratio between the periods 

1 for finding the relationship between α and tangent 
 0.5 for suitable approximate value of α 
 0.5 for final explicit limiting value of α  

 
 

For the numerical values a full score cannot be given if the number of digits is incorrect (more than 
one digit more or less than those given in the solution) or if the units are incorrect or missing 
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Solution 
 

1A. Assuming – as outlined in the text – that the orbit is circular, and relating the radial acceleration 

R
V 2

 to the gravitational field 2
S

R
GM  (where MS is the solar mass) we obtain Jupiter's orbital 

speed m/s10306.1 4S ⋅≈=
R

GM
V . 

 
The following alternative solution is also acceptable: 

1B. Since we treat Jupiter’s motion as circular and uniform, 
J

2
y

RRV πω == , where yJ is the 

revolution period of Jupiter, which is given in the list of the general physical constants. 
 

2.  The two gravitational forces on the space probe are equal when 
 

     
2

S
2 )( ρρ −

=
R

mGMGMm     (2) 

(where ρ  is the distance from Jupiter and M is Jupiter’s mass), whence 
 
     S)( MRM ρρ =−    (3) 

and 

   m10333.202997.0 10

S
⋅==

+
= RR

MM

M
ρ  (4) 

 
and therefore the two gravitational attractions are equal at a distance of about 23.3 million 
kilometers  from Jupiter (about 334 Jupiter radii). 
 

3.  With a simple Galilean transformation we find that the velocity components of the probe in 
Jupiter's reference frame are 

 









=

=

0'

'

vv

Vv

y

x

  

 

and therefore - in Jupiter's reference frame – the probe travels with an angle 
V
v0

0 tanarc=θ  with 

respect to the x axis and its speed is 22
0' Vvv +=  (we also note that 

'
cos

22
0

0 v
V

Vv
V

=
+

=θ  
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and 
'

sin 0
22

0

0
0 v

v
Vv

v
=

+
=θ ). 

 Using the given values we obtain  θ0 = 0.653 rad ≈ 37.4°  and  v'=1.65·104 m/s . 
 

4.  Since the probe trajectory can be described only approximately as the result of a two-body 
gravitational interaction (we should also take into account the interaction with the Sun and other 
planets) we assume a large but not infinite distance from Jupiter and we approximate the total 
energy in Jupiter's reference frame as the probe's kinetic energy at that distance: 
 

     2'
2
1 mvE ≈     (5) 

The corresponding numerical value is E = 112 GJ. 
 

5.  Equation (1) shows that the radial distance becomes infinite, and its reciprocal equals zero, when 
 

    0cos'211 22

22

=++ θ
mMG
bEv    (7) 

namely when 

    

mMG
bEv

22

22'21

1cos
+

−=θ    (8) 

 
We should also note that the radial distance can't be negative, and therefore its acceptable values 
are those satisfying the equation 
 

    0cos'211 22

22

≥++ θ
mMG
bEv    (9) 

or 

    

mMG
bEv

22

22'21

1cos
+

−≥θ    (10) 

 
 The solutions for the limiting case of eq. (10) (i.e. when the equal sign applies) are: 
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and therefore the angle ∆θ (shown in figure 2) between the two hyperbola asymptotes is given by: 
 

    

22

24

22

22

1

1arccos2

'21

1arccos2

)(

MG
bv

mMG
bEv

′
+

−=

+

−=

−−=∆ −+

π

π

πθθθ

  (12) 

 
In the last line, we used the value of the total energy as computed in the previous section. 
 

6.  The angular deviation is a monotonically decreasing function of the impact parameter, whence 
the deviation has a maximum when the impact parameter has a minimum. From the discussion in 
the previous section we easily see that the point of nearest approach is when θ = 0, and in this 
case the minimum distance between probe and planet center is easily obtained from eq. (1): 
 

    

1

22

2422

min

'
11

'
−










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
++=

MG
bv
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r   (13) 

 
 By inverting equation (13) we obtain the impact parameter 
 

    min2
2

min '
2 r

v
GMrb +=    (14) 

 
 We may note that this result can alternatively be obtained by considering that, due to the 
conservation of angular momentum, we have 
 

minmin'' rmvbmvL ==  

 
where we introduced the speed corresponding to the nearest approach. In addition, the 
conservation of energy gives 
 

min

2
min

2 '
2
1'

2
1

r
GMmmvmvE −==  
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and by combining these two equations we obtain equation (14) again. 
 The impact parameter is an increasing function of the distance of nearest approach; 
therefore, if the probe cannot approach Jupiter's surface by less than two radii (and thus rmin = 
3RB, where RB is Jupiter’s body radius), the minimum acceptable value of the impact parameter 
is 
 

    B2
2
Bmin '

69 R
v
GMRb +=     (15) 

 
From this equation we finally obtain the maximum possible deviation: 
 


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
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R
v
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MG
v

MG
bv

ππθ  (16) 

 
and by using the numerical values we computed before we obtain: 
 
bmin  = 4.90·108 m  ≈ 7.0 RB and  ∆θ max = 1.526 rad ≈ 87.4°  
 

7.  The final direction of motion with respect to the x axis in Jupiter’s reference frame is given by 
the initial angle plus the deviation angle, thus θ 0 + ∆ θ  if the probe passes behind the planet. The 

final velocity components in Jupiter's reference frame are therefore: 
 


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




∆+=

∆+=

)sin(''

)cos(''

0

0

θθ
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vv

vv
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whereas in the Sun reference frame they are 
 


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




∆+=′′
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0

0
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Therefore the final probe speed in the Sun reference frame is 
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  (17) 

 
8. Using the value of the maximum possible angular deviation, the numerical result is v” = 2.62·104 

m/s. 
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Grading guidelines 
 
1. 0.4 Law of gravitation, or law of circular uniform motion 
 0.4 Correct approach 
 0.4+0.3 Correct results for velocity of Jupiter  
 
2. 0.3 Correct approach 
 0.4+0.3 Correct results for distance from Jupiter 
 
3. 1 Correct transformation between reference frames 
 0.3+0.2 Correct results for probe speed in Jupiter reference frame 
 0.3+0.2 Correct results for probe angle 
 
4. 0.8 Understanding how to handle the potential energy at infinity 

0.2 Numerical result for kinetic energy 
 
5. 0.6 Correct approach 

0.6 Equation for the orientation of the asymptotes 
0.8 Equation for the probe deflection angle 

 
6. 0.3+0.2 Correct results for minimum impact parameter 
 0.3+0.2 Correct results for maximum deflection angle 
 
7. 0.5 Equation for velocity components in the Sun reference frame 

0.5 Equation for speed as a function of angular deflection 
 
8. 0.5 Numerical result for final speed 
 
 
For “correct results” two possible marks are given: the first one is for the analytical equation and 
the second one for the numerical value. 
For the numerical values a full score cannot be given if the number of digits is incorrect (more than 
one digit more or less than those given in the solution) or if the units are incorrect or missing. 
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Solution 
 
The numerical values given in the text are those obtained in a preliminary test performed by a 
student of the University of Bologna1

 

, and are reported here only as a guide to the evaluation 
of the student solutions. 

1. and 2. The distance from the center of mass to the rotation axis is: 
 

21

211 )2/()(
MM
xMRMxR

+
−+

=
         (1) 

 
and therefore, if we measure the position of the center of mass2

)( 212 MMM +

 as a function of x  we obtain a 
relationship between the system parameters, and by a linear fit of eq. (1) we obtain an angular 
coefficient equal to , and from these equations, making use of the given total 
mass M1 + M2 =  41.0 g ± 0.1 g, we obtain M1 and M2. The following table shows some 
results obtained in the test run. 
 

n x [mm] R(x) [mm] 

1 204±1 76±1 

2 220±1 83±1 

3 236±1 89±1 

4 254±1 95±1 

5 269±1 101±1 

6 287±1 107±1 

7 302±1 113±1 

8 321±1 119±1 

 
Figure 6 shows the data concerning the position of the pendulum's center of mass together 
with a best fit straight line: the estimated error on the length measurements is now 1 mm and 
we treat it as a Gaussian error. Notice that both the dependent variable R(x) and the 
independent variable x are affected by the experimental uncertainty, however we decide to 
neglect the uncertainty on x, since it is smaller than 1%. The coefficients a  and b  in R(x) = 
ax+b  are 
 
a = 0.366 ± 0.009 
b = 2 mm ± 2 mm 
                                                 
1 Mr. Maurizio Recchi. 
2 This can easily be done by balancing the pendulum, e.g. on the T-shaped rod provided. 
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(therefore b  is compatible with 0) 
 

R(x) [mm] vs. x[mm] 

 
x[mm] 

Figure 6: Graph of the position of the pendulum's center of mass (with respect to the rotation axis) as 
a function of the variable x. The numbering of the data points corresponds to that mentioned in the 

main text. The estimated error is compatible with the fluctuations of the measured data. 
 
For computing the masses only the a  value is needed; using the total pendulum mass we find:  
 
M1 = 26.1 ± 0.4 g 
M2 = 15.0 g ± 0.4 g 
 
Even though many non-programmable pocket calculators can carry out a linear regression, it 
is likely that many students will be unable to do such an analysis, and in particular they may 
be unable to estimate the uncertainty of the fit parameters even if their pocket calculators 
provide a linear regression mode. It is also acceptable to find a and b using several pairs of 
measurements and finally computing a weighted average of the results. For each pair of 
measurements a  and b  are given by 
 

22

12

12

axyb

xx
yya

−=

−
−

=
          (2) 

 
and the parameter uncertainties (assuming them gaussian) by 
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In order to calculate (2) and (3) the data can be paired with a scheme like 
{1,5},{2,6},{3,7},{4,8}, where "far" points are coupled in order to minimize the error on 
each pair.  
There may be other alternative and equally acceptable approaches: they should all be 
considered valid if the order of magnitude of the estimated uncertainty is correct. 
 
3. The pendulum's total moment of inertia is the sum of the moments of its two parts, and 
from figure 3 we see that 
 







 ++−=+= 22

12
2

221 3
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MIxMxMxIIxI      (4) 

 
4. The pendulum's equation of motion is 
 

)()( 02

2

θθκθ
−−=

dt
dxI         (5) 

 
if the rotation axis is vertical, while it's 
 

θθθκθ sinxgRMM
dt
dxI )()()()( 2102

2

++−−=      (6) 

  
if the rotation axis is horizontal. 
 
5. and 6. When the system is at rest in an equilibrium position, the angular acceleration is 
zero and therefore the equilibrium positions θe can be found by solving the equation 
 

0sin)()()( e210e =++−− θθθκ xgRMM       (7) 

 
If the value xi corresponds to the equilibrium angle θe,i, and if we define the quantity (that can 
be computed from the experimental data) ieii xgRMMy ,21 sin)()( θ+= , then eq. (7) may be 

written as 
 

0, κθκθ −= ieiy          (8) 
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and therefore the quantities κ and κθ0 can be found with a linear fit. The following table 
shows several data collected in a trial run according to the geometry shown in figure 7. 
 

n x [mm] h [mm] sinθ e= h/x θe y [N⋅µm] 

1 204±1 40±1 0.196±0.005 0.197±0.005 6.1±0.3 

2 220±1 62±1 0.282±0.005 0.286±0.005 9.4±0.4 

3 238±1 75±1 0.315±0.004 0.321±0.005 11.3±0.5 

4 255±1 89±1 0.349±0.004 0.357±0.004 13.4±0.5 

5 270±1 109±1 0.404±0.004 0.416±0.004 16.4±0.6 

6 286±1 131±1 0.458±0.004 0.476±0.004 19.7±0.7 

7 307±1 162±1 0.528±0.004 0.556±0.004 24.3±0.8 

8 321±1 188±1 0.586±0.004 0.626±0.004 28.2±0.9 

 
 

 
Figure 7: Geometry of the measurements taken for finding the angle. 

 
We see that not only the dependent but also the independent variable is affected by a 
measurement uncertainty, but the relative uncertainty on θ e is much smaller than the relative 
uncertainty on y and we neglect it. We obtain from such data (neglecting the first data point, 
see figure 8): 
 
κ = 0.055 N⋅m⋅rad-1 ± 0.001 N⋅m⋅rad-1  
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κθ0 = -0.0063 N⋅m ± 0.0008 N⋅m 
 
Clearly in this case only the determination of the torsion coefficient κ is interesting. The fit of 
the experimental data is shown in figure 8.  
 

 0κθκθ −=y  [N⋅mm] vs. θ  

 
θ  [rad] 

Figure 8: Fit of eq. (8) as a function of θ. In this case the estimated error is again compatible with the 
experimental data fluctuations. However the data points show a visible deviation from straightness 

which may be due to an error in the first measurement (the one at lowest θ). 
 
7. The moment of inertia can be found experimentally using the pendulum with its rotation 
axis vertical and recalling eq. (5); from this equation we see that the pendulum oscillates with 

angular frequency 
)(

)(
xI

x κω =  and therefore 

 

2

2

4
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π
κ xTxI =          (9) 

 
where T  is the measured oscillation period. Using eq. (9) we see that eq. (4) can be rewritten 
as 
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The left-hand side in eq. (10) is known experimentally, and therefore with a simple linear fit 

we can find the coefficients 2M  and 





 + 22

1 3


MI , as we did before. The experimental data 

are in this case: 
 

n x [mm] T [s] 

1 204±1 0.502±0.002 

2 215±1 0.528±0.002 

3 231±1 0.562±0.002 

4 258±1 0.628±0.002 

5 290±1 0.708±0.002 

6 321±1 0.790±0.002 

 
The low uncertainty on T has been obtained measuring the total time required for 50 full 
periods. 
Using the previous data and another linear fit, we find 
 
  = 230 mm ± 20 mm 

I1 = 1.7⋅10-4 kg⋅m2 ± 0.7⋅10-4 kg⋅m2  
 
and the fit of the experimental data is shown in figure 9.  
 

2
2

2
2

)(
4

xMxTy −=
π
κ  [kg⋅m2] vs. x [m] 

 
x [m] 
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Figure 9: Fit of eq. (10) as a function of x. In this case the estimated error is again compatible with the 
experimental data fluctuations. 

 
8. Although in this case the period T  is a complicated function of x, its graph is simple, and it 
is shown in figure 10, along with the test experimental data. 
 
The required answer is that there is a single local maximum. 

 

T [s] vs. x[m] 

 
x [m] 

 
Figure 10: The period T  of the pendulum with horizontal axis as a function of x. In addition to the 
experimental points the figure shows the result of a theoretical calculation of the period in which the 
following values have been assumed: g = 9.81 m/s2; κ = 0.056 N⋅m/rad; M1 = 0.0261 kg; M2 = 
0.0150 kg; M3 = 0.00664 kg; I1 = 1.0⋅10-4 kg⋅m2;  = 0.21 m; 3 = 0.025 m; a = 0.365; b = 0.0022  

m (so that the position of the center of mass - excluding the final nut of length 3 - is R(x) = ax+b); 

these are the central measured values, with the exception of κ, I1  and  which are taken one standard 

deviation off their central value. Also, the value θ0 = 0.030 rad ≈ 1.7° has been assumed. Even though 

the theoretical curve is the result of just a few trial calculations using the measured values (± one 
standard deviation) and is not a true fit, it is quite close to the measured data. 
 



























































IPhO2001 - theoretical competition

Theoretical Competition

Monday, July 2nd, 2001

Please read this first:

1. The time available is 5 hours for the theoretical competition.
2. Use only the pen provided.
3. Use only the front side of the paper.
4. Begin each part of the problem on a separate sheet.
5. For each question, in addition to the blank sheets where you may write, there is an answer form

where you must summarize the results you have obtained. Numerical results should be written
with as many digits as are appropriate to the given data.

6. Write on the blank sheets of paper whatever you consider is required for the solution of the
question. Please use as little text as possible; express yourself primarily in equations, numbers,
figures, and plots.

7. Fill i n the boxes at the top of each sheet of paper used by writing your Country No and Country
Code, your student number (Student No), the number of the question (Question No), the
progressive number of each sheet (Page No), and the total number of blank sheets used for each
question (Total No of pages). Write the question number and the section letter of the part you
are answering at the top of each sheet. If you use some blank sheets of paper for notes that you
do not wish to be marked, put a large X across the entire sheet and do not include it in your
numbering.

8. At the end of the exam, arrange all sheets for each problem in the following order;
• answer form
• used sheets in order
• the sheets you do not wish to be marked
• unused sheets and the printed question
Place the papers inside the envelope and leave everything on your desk. You are not allowed to
take any sheets of paper out of the room.



IPhO2001 - theoretical competition

Question 1

1a) KLYSTRON

Klystrons are devices used for ampli fying very high-frequency signals. A klystron basically consists
of two identical pairs of parallel plates (cavities) separated by a distance b, as shown in the figure.

An electron beam with an initial speed v0 traverses the entire system, passing through small holes in
the plates. The high-frequency voltage to be ampli fied is applied to both pairs of plates with a
certain phase difference (where period T corresponds to 2π phase) between them, producing
horizontal, alternating electric fields in the cavities. The electrons entering the input cavity when the
electric field is to the right are retarded and vice versa, so that the emerging electrons form bunches
at a certain distance. If the output cavity is placed at the bunching point, the electric field in this
cavity will absorb power from the beam provided that its phase is appropriately chosen. Let the
voltage signal be a square wave with period T=1.0x10-9 s, changing between V=±0.5 volts. The
initial velocity of the electrons is v0=2.0x106 m/s and the charge to mass ratio is e/m=1.76x1011

C/kg. The distance α is so small that the transit time in the cavities can be neglected. Keeping 4
significant figures, calculate;

a) the distance b, where the electrons bunch. Copy your result onto the answer form. [1.5 pts]

b) the necessary phase difference to be provided by the phase shifter. Copy your result onto the
answer form. [1.0 pts]

1b) INTERMOLECULAR DISTANCE

Let dL and dV represent the average distances between molecules of water in the liquid phase and in
the vapor phase, respectively. Assume that both phases are at 100 °C and atmospheric pressure, and
the vapor behaves like an ideal gas. Using the following data, calculate the ratio dV /dL and copy
your result onto the answer form. [2.5 pts]

Density of water in liquid phase: ρL=1.0x103 kg/m3,

Molar mass of water: M=1.8x10-2 kg/mol
Atmospheric pressure: Pa=1.0x105 N/m2

Gas constant: R=8.3 J/mol . K
Avagadro’s number:  NA=6.0x1023 /mol

v0

input
cavity

output
cavity

α b α

~
phase
shifter
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1c) SIMPLE SAWTOOTH SIGNAL GENERATOR

A sawtooth voltage waveform V0 can be obtained across
the capacitor C in Fig. 1. R is a variable resistor, Vi is an
ideal battery, and SG is a spark gap consisting of two
electrodes with an adjustable distance between them.
When the voltage across the electrodes exceeds the firing
voltage Vf , the air  between the electrodes breaks down,
hence the gap becomes a short circuit and remains so until
the voltage across the gap becomes very small .

a) Draw the voltage waveform V0 versus time t, after the switch is closed. [0.5 pts]

b) What condition must be satisfied in order to have an almost linearly varying sawtooth voltage
waveform V0? Copy your result onto the answer form. [0.2 pts]

c) Provided that this condition is satisfied, derive a simpli fied expression for the period T of the
waveform. Copy your result onto the answer form. [0.4 pts]

d) What should you vary( R and/or SG ) to change the period only? Copy your result onto the
answer form. [0.2 pts]

e) What should you vary ( R and/or SG )  to change the amplitude only? Copy your result onto the
answer form. [0.2 pts]

f) You are given an additional, adjustable
DC voltage supply. Design and draw a
new circuit indicating the terminals
where you would obtain the voltage
waveform 0V ′  described in Fig. 2. [1.0

pts]

1d) ATOMIC BEAM

An atomic beam is prepared by heating a
collection of atoms to a temperature T and
allowing them to emerge horizontally through
a small hole (of atomic dimensions) of
diameter D in one side of the oven. Estimate
the diameter of the beam after it has traveled a
horizontal length L along its path. The mass of
an atom is M. Copy your result onto the
answer form. [2.5 pts]

Diameter = D

Oven at temperature T

Atoms of mass M

L

Vf

t

Figure 2

0V ′

R

C
V0

+

-
Figure 1

Vi
+

-
SG
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Question 2
BINARY STAR SYSTEM

a) It is well known that most stars form binary systems. One type of binary system consists of an
ordinary star with mass m0 and radius R, and a more massive, compact neutron star with mass
M, rotating around each other. In all the following ignore the motion of the earth. Observations
of such a binary system reveal the following information:

• The maximum angular displacement of the
ordinary star is ∆θ, whereas that of the neutron
star is ∆φ (see Fig. 1).

• The time it takes for these maximum
displacements is τ.

• The radiation characteristics of the ordinary star
indicate that its surface temperature is T and the
radiated energy incident on a unit area on earth’s
surface per unit time is P.

• The calcium line in this radiation differs from its
normal wavelength λ0 by an amount ∆λ, due
only to the gravitational field of the ordinary
star. (For this calculation the photon can be
considered to have an effective mass of  h/cλ.)

Find an expression for the distance 
�

 from earth to this system, only in terms of the observed
quantities and universal constants. Copy your result onto the answer form. [7 pts]

b) Assume that M>>m0, so that the ordinary star is
basically rotating around the neutron star in a
circular orbit of radius r0. Assume that the ordinary
star starts emitting gas toward the neutron star with
a speed v0, relative to the ordinary star (see Fig. 2).
Assuming that the neutron star is the dominant
gravitational force in this problem and neglecting
the orbital changes of the ordinary star find the
distance of closest approach rf shown in Fig. 2.
Copy your result onto the answer form. [3pts]

Fig. 2

r0

rf

m0

v0

(dm)

M

�

∆φ

∆θ Ordinary star

Neutron star

Telescope

I IIII I

Fig. 1
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Question 3
MAGNETOHYDRODYNAMIC (MHD) GENERATOR

A horizontal rectangular plastic pipe of width w and height h, which closes upon itself, is fill ed with
mercury of resistivity ρ. An overpressure P is produced by a turbine which drives this fluid with a
constant speed v0. The two opposite vertical walls of a section of the pipe with length L are made of
copper.

The motion of a real fluid is very complex. To simpli fy the situation we assume the following:
• Although the fluid is viscous, its speed is uniform over the entire cross section.
• The speed of the fluid is always proportional to the net external force acting upon it.
• The fluid is incompressible.

These walls are electrically shorted externally and a uniform, magnetic field B is applied vertically

upward only in this section. The set up is ill ustrated in the figure above, with the unit vectors 
∧
x , 

∧
y ,

∧
z  to be used in the solution.

a) Find the force acting on the fluid due to the magnetic field  (in terms of L, B, h, w, ρ and
the new velocity v) [2.0 pts]

b) Derive an expression for the new speed v of the fluid (in terms of v0, P, L, B and ρ ) after
the magnetic field is applied. [3.0 pts]

c) Derive an expression for the additional power that must  be supplied by the turbine to
increase the speed to its original value v0. Copy your result onto the answer form. [2.0 pts]

d) Now the magnetic field is turned off and mercury is replaced by water flowing with speed
v0. An electromagnetic wave with a single frequency is sent along the section with length L
in the direction of the flow. The refractive index of water is n, and v0 <<c. Derive an
expression for the contribution of the fluid’s motion to the phase difference between the
waves entering and leaving section L. Copy your result onto the answer form. [3.0 pts]

∧
x

∧
z

∧
y
y

w

h
v

Shorting wires

L

B
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Country no Country code Student No. Question No. Page No. Total
No. of pages

1C
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T=

d)

e)

1D

New diameter of the beam =
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1

Exper imental Competition

Saturday, June 30th, 2001

Please read this first:

1. The time available is 5 hours for the experimental competition.
2. Use only the pen provided.
3. Use only the front side of the paper.
4. Begin each part of the problem on a separate sheet.
5. For each question, in addition to the blank sheets where you may write, there is an answer form

where you must summarize the results you have obtained. Numerical results should be written
with as many digits as are appropriate to the given data.

6. Write on the blank sheets of paper the results of all your measurements and whatever else you
consider is required for the solution of the question. Please use as little text as possible; express
yourself primarily in equations, numbers, figures and plots.

7. Fill i n the boxes at the top of each sheet of paper used by writing your Country no and Country
code, your student number (Student No.), the number of the question (Question No.), the
progressive number of each sheet (Page No.) and the total number of blank sheets used for each
question (Total No. of pages). Write the question number and the section label of the part you
are answering at the beginning of each sheet of writing paper. If you use some blank sheets of
paper for notes that you do not wish to be marked, put a large X across the entire sheet and do
not include it in your numbering.

8. At the end of the exam, arrange all sheets in the following order;
• answer form
• used sheets in order
• the sheets you do not wish to be marked
• unused sheets and the printed question

Place the papers inside the envelope and leave everything on your desk. You are not allowed
to take any sheets of paper and any material used in the experiment out of the
room.
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ROTATING LIQUID

This experiment consists of three basic parts:
1. investigation of the profile of the rotating liquid’s surface and the determination of the

acceleration due to gravity,
2. investigation of the rotating liquid as an optical system,
3. determination of the refractive index of the liquid.

When a cylindrical container fill ed with a liquid rotates about the vertical axis passing through its
center with a uniform angular velocity ω, the liquid’s surface becomes parabolic (see Figure 1). At
equili brium, the tangent to the surface at the point P(x, y) makes an angle θ with the horizontal such
that

Rx for        
g

x
tan ≤ω=

2

θ (1)

where R is the radius of the container and g is the acceleration due to gravity.

It can further be shown that for ω<ωmax (where ωmax is the angular speed at which the center of the
rotating liquid touches the bottom of the container)

at x=x0=
2

R
, y(x0)=h0 (2)

that is; the height of the rotating liquid is the same as if it were not rotating.

The profile of the rotating liquid’s surface is a parabola defined by the equation

C
x

yy
4

2

0 += (3)

where the vertex is at V(0, y0) and the focus is at F(0, y0+C). When optical rays parallel to the axis
of symmetry (optical axis) reflect at the parabolic surface, they all focus at the point F (see Fig.1).
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Apparatus

• A cylindrical rigid plastic cup containing liquid glycerin. Millim etric scales are attached to
the bottom and the sidewall of this cup.

• A turntable driven by a small dc electric motor powered by a variable voltage supply, which
controls the angular velocity.

• A transparent horizontal screen on which you can put transparent or semi-transparent
millimetric scales. The location of the screen can be adjusted along the vertical and
horizontal directions.

• A laser pointer mounted on a stand. The position of the pointer can be adjusted. The head of
the pointer can be changed.

• Additional head for the laser pointer.
• A ruler.
• A highlighter pen.
• A stopwatch. Push the left button to reset, the middle button to select the mode, and the right

button to start and stop the timing.
• Transmission gratings with 500 or 1000 lines/mm.
• Bubble level.
• Glasses.

IMPORTANT NOTES

• DO NOT LOOK DIRECTLY INTO THE LASER BEAM. BE AWARE THAT LASER
LIGHT CAN ALSO BE DANGEROUS WHEN REFLECTED OFF A MIRROR-LIKE
SURFACE. FOR YOUR OWN SAFETY USE THE GIVEN GLASSES.

• Throughout the whole experiment carefully handle the cup containing glycerin.

• The turntable has already been previously adjusted to be horizontal. Use bubble level only
for horizontal alignment of the screen.

• Throughout the entire experiment you will observe several spots on the screen produced by
the reflected and/or refracted beams at the various interfaces between the air, the liquid, the
screen, and the cup. Be sure to make your measurements on the correct beam.

• In rotating the liquid change the speed of rotation gradually and wait for long enough times
for the liquid to come into equilibrium before making any measurements.
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EXPERIMENT

PART 1: DETERMINATION of g USING a ROTATING LIQUID [7.5 pts]

• Derive Equation 1.
• Measure the height h0 of the liquid in the container and the inner diameter 2R of the

container.
• Insert the screen between the light source and the container. Measure the distance H

between the screen and the turntable (see Figure 2).
• Align the laser pointer such that the beam points vertically downward and hits the surface of

the liquid at a distance x0=
2

R
 from the center of the container.

• Rotate the turntable slowly. Be sure that the center of the rotating liquid is not touching the
bottom of the container.

• It is known that at x0= 
2

R
 the height of the liquid remains the same as the original height

h0, regardless of the angular speed ω. Using this fact and measurements of the angle θ of the
surface at x0 for various values of ω, perform an experiment to determine the gravitational
acceleration g.

•• Prepare tables of measured and calculated quantities for each ω.
•• Produce the necessary graph to calculate g.
•• Calculate the value of g and the experimental error in it
•• Copy the values 2R, x0, h0, H and the experimental value of g and its error onto the answer

form.
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PART 2: OPTICAL SYSTEM

In this part of the experiment the rotating liquid will be treated as an image forming optical system.
Since the curvature of the surface varies with the angular speed of rotation, the focal distance of this
optical system depends on ω.

2a) Investigation of the focal distance [5.5 pts]

• Align the laser pointer such that the laser beam is directed vertically downward at the center
of the container. Mark the point P where the beam strikes the screen. Thus the line joining
this point to the center of the cup is the optical axis of this system (see Figure 2).

• Since the surface of the liquid behaves like a parabolic mirror, any incident beam parallel to
the optical axis will pass through the focal point F on the optical axis after reflection.

• Adjust the speed of rotation to locate the focal point on the screen. Measure the angular
speed of rotation ω and the distance H between the screen and the turntable.

• Repeat the above steps for different H values.
• Copy the measured values of 2R and h0 and the value of ω at each H onto the answer form.
• With the help of an appropriate graph of your data, find the relationship between the focal

length and the angular speed. Copy your result onto the answer form.

2b) Analysis of the “ image” (what you see on the screen) [3.5 pts]

In this part of the experiment the properties of the “image” produced by this optical system will be
analyzed. To do so, follow the steps given below.

• Remove the head of the laser pointer by turning it counterclockwise.
• Mount the new head (provided in an envelope) by turning it clockwise. Now your laser

produces a well defined shape rather than a narrow beam.
• Adjust the position of the laser pointer so that the beam strikes at about the center of the cup

almost normally.
• Put a semitransparent sheet of paper on the horizontal screen, which is placed close to the

cup, such that the laser beam does not pass through the paper, but the reflected beam does.
• Observe the size and the orientation of the “image” produced by the source beam and the

beam reflected from the liquid when it is not rotating.
• Start the liquid rotating, and increase the speed of rotation gradually up to the maximum

attainable speed while watching the screen. As ω increases you might observe different
frequency ranges over which the properties of the “image” are drastically different. To
describe these observations complete the table on the answer form by adding a row to this
table for each such frequency range and fill it  in by using the appropriate notations
explained on that page.
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PART 3: REFRACTIVE INDEX [3.5 pts]

In this part of the experiment the refractive index of the given liquid will be determined using a
grating. When monochromatic light of wavelength λ is incident normally on a diff raction grating,
the maxima of the diffraction pattern are observed at angles αm given by the equation

msindm αλ = (4)
where, m is the order of diffraction and d is the distance between the rulings of the grating. In this
part of the experiment a diffraction grating will be used to determine the wavelength of the laser
light and the refractive index of the liquid (see Figure 3).

•• Use the grating to determine the wavelength of the laser pointer. Copy your result onto the
answer form.

•• Immerse the grating perpendicularly into the liquid at the center of the cup.
•• Align the laser beam such that it enters the liquid from the sidewall of the cup and strikes the

grating normally.
•• Observe the diffraction pattern produced on the millimetric scale attached to the cup on the

opposite side. Make any necessary distance measurements.
•• Calculate the refractive index n of the liquid by using your measurements. (Ignore the effect

of the plastic cup on the path of the light.)
•• Copy the result of your experiment onto the answer form.
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Figure 1. Definitions of the bank angle θ at point P(x,y), the vertex V and the focus F for the
parabolic surface produced by rotating the liquid, of initial height h0 and radius R, at a constant
angular speed ω around the y-axis.

P(x,y)

x

ωω

θθh0

R

F(0,y0+C)

V(0,y0)

y
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Figure 2 Experimental setup for parts 1 and 2.

1. Laser pointer on a stand, 2. Transparent screen, 3. Motor, 4. Motor controller, 5. Turntable, 6.
Axis of rotation, 7. Cylindrical container.

2

3

x

ωω

220V AC

H

h0

y

R

7

1

5

2

6~

P+

4



IPhO2001-experimental competition

9

Figure 3 Top view of the grating in a liquid experiment.

1. Scaled sidewall , 2. Grating on a holder, 3. Laser pointer, 4. Cylindrical container.
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Country no Country code Student No. Question No. Page No. Total
No. of pages

��������	�
��
���������������

1) Determination of g using a rotating liquid

2R x0 h0 H

Experimental value of g:

2a) Investigation of the focal distance

2R h0

H ω

Relation between focal length and ω:
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2b) Analysis of the “ image”

Use the appropriate notations explained below to describe what you see on
the screen due to reflected beam

ωω range: For the frequency ranges only approximate values are required.

Orientation (in comparison with the object beam as seen on the transparent screen):
Inverted : INV
Erect : ER

Var iation of the size with increasing ω:
Increases : I
Decreases : D
No change : NC

For the frequency ranges you have found above:

Write “R” if the screen is above the focal point.
Write “V” if the screen is below the focal point.

ωω Range Orientation Var iation
of the size

“ image”

ω=0

Country no Country code Student No. Question No. Page No. Total
No. of pages
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3) Refractive index

Wavelength =

Experimental value for n =
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I. Ground-Penetrating Radar 
 
Ground-penetrating radar (GPR) is used to detect and locate underground objects near the 
surface by means of transmitting electromagnetic waves into the ground and receiving the 
waves reflected from those objects. The antenna and the detector are directly on the 
ground and they are located at the same point. 
 
A linearly polarized electromagnetic plane wave of angular  frequency ω propagating in 
the z direction is represented by the following expression for its field: 
 

( )    ztcoseEE z
0 βωα −= − ,               (1) 

 
where Eo is constant, α is the attenuation coefficient and β is the wave number expressed 
respectively as follows 
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with  µ,ε, and σ  denoting the magnetic permeability, the electrical permittivity, and the 
electrical conductivity respectively.  
 
The signal becomes undetected when the amplitude of the radar signal arriving at the 
object drops below 1/e (≈ 37%) of its initial value. An electromagnetic wave of variable 
frequency (10 MHz – 1000 MHz) is usually used to allow adjustment of range and 
resolution of detection. 
 
The performance of GPR depends on its resolution. The resolution is given by the 
minimum separation between the two adjacent reflectors to be detected. The minimum 
separation should give rise to a minimum phase difference of 180o between the two 
reflected waves at the detector.  
 
Questions: 
(Given  : µo = H/m 10 x4 7−π  and εo = F/m 10 x85.8 12− ) 
 

1. Assume that the ground is non-magnetic (µ=µ0) satisfying the condition  

1
2

〈〈





ωε
σ

. Derive the expression of propagation speed v  in terms of µ and ε, 

using equations (1) and (2) [1.0 pts].   
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2. Determine the maximum depth of detection of an object in the ground with 
conductivity of  1.0 mS/m and permittivity of 9ε0, satisfying the condition 

1
2

〈〈





ωε
σ

 , (S=ohm-1 ; use µ=µ0). [2.0 pts] 

3. Consider two parallel conducting rods buried horizontally in the ground. The rods 
are 4 meter deep. The ground is known to have conductivity of  1.0 mS/m and 
permittivity of  9ε0. Suppose the GPR measurement is carried out at a position 
aproximately above one of the rod. Assume point detector is used. Determine the 
minimum frequency required  to get a lateral resolution of  50 cm [3.5 pts].  

4. To determine the depth  of a buried rod d in the same ground, consider the 
measurements carried out along a line perpendicular to the rod. The result is 
described by the following figure: 

 
 
 
  

 
 
 
 
 
 
 

Graph of traveltime t vs detector position x, tmin  = 100 ns. 
 

Derive t as a function of x and determine  d [3.5 pts]. 
 

 
             detector position                 x 
 

t 
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II. Sensing Electrical Signals 

 

Some seawater animals have the ability to detect other creatures at some distance 

away due to electric currents produced by the creatures during the breathing processes 

or other processes involving muscular contraction. Some predators use this electrical 

signal to locate their preys, even when buried under the sands.  

 

The physical mechanism underlying the current generation at the prey and its 

detection by the predator can be modeled as described by Figure II-1. The current 

generated by the prey flows between two spheres with positive and negative potential 

in the prey’s body.  The distance between the centers of the two spheres is ls, each 

having a radius of rs, which is much smaller than ls. The seawater resistivity is ρ. 

Assume that the resistivity of the prey’s body is the same as that of the surrounding 

seawater, implying that the boundary surrounding the prey in the figure can be 

ignored. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II-1. A model describing the detection of electric power coming  

       from a prey  by its predator.  

 

 

 

sl

y

+−

dl

dR

P

predator

prey
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In order to describe the detection of electric power by the predator coming from the 

prey, the detector is modeled similarly by two spheres on the predator’s body and in 

contact with the surrounding seawater, lying parallel to the pair in the prey’s body. 

They are separated by a distance of ld, each having a radius of rd which is much 

smaller than ld. In this case, the center of the detector is located at a distance y right 

above the source and the line connecting the two spheres is parallel to the electric 

field as shown in Figure II-1. Both ls and ld are also much smaller than y. The electric 

field strength along the line connecting the two spheres is assumed to be constant. 

Therefore the detector forms a closed circuit system connecting the prey, the 

surrounding seawater and the predator as described in Figure II-2.  

 

 

 

 

 

 

Figure II-2. The equivalent closed circuit system involving the sensing 

predator, the prey and the surrounding seawater. 

 

 

In the figure, V is the voltage difference between the detector’s spheres due to the 

electric field induced by the prey, Rm is the inner resistance due to the surrounding sea 

water. Further, Vd and Rd are respectively the voltage difference between the detecting 

spheres and the resistance of the detecting element within the predator.  

 

Questions: 

1. Determine the current density vector j
r

 (current per unit area) caused by a 

point current source Is at a distance r in an infinite medium. [1.5 pts] 

dR

mR

V dV+
−
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2. Based on the law jE
rr

ρ= , determine the electric field strength pE
r

at the 

middle of the detecting spheres (at point P) for a given current Is that flows 

between two spheres in the prey’s body [2.0 pts]. 

 

3.  Determine for the same current Is, the voltage difference between the source 

spheres (Vs) in the prey [1.5 pts].  Determine the resistance between the two 

source spheres (Rs) [0.5 pts] and the power produced by the source (Ps) [0.5 

pts]. 

 

4.  Determine Rm [0.5 pts], Vd [1.0 pts] in Figure II-2 and calculate also the 

power transferred from the source to the detector (Pd) [0.5 pts]. 

 

5.  Determine the optimum value of Rd leading to maximum detected power [1.5 

pts] and determine also the maximum power [0.5 pts]. 
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III.  A Heavy Vehicle Moving on An Inclined Road 

 

Figure III-1: A simplified model of a heavy vehicle moving on an inclined 

road. 

 

The above figure is a simplified model of a heavy vehicle (road roller) with 

one rear and one front cylinder as its wheels on an inclined road with inclination angle 

of è as shown in Figure III-1. Each of the two cylinders has a total mass 

M(m2=m3=M) and consists of a cylindrical shell of outer radius Ro , inner radius Ri = 

0.8 Ro and eight number of spokes with total mass 0.2 M. The mass of the 

undercarriage supporting the vehicle’s body is negligible. The cylinder can be 

modeled as shown in Figure III-2. The vehicle is moving down the road under the 

influence of gravitational and frictional forces. The front and rear cylinder are 

positioned symmetrically with respect to the vehicle.  

è 

2l 

h

m1           m2        
       rear cylinder 

      m3    
front cylinder 

t 

L 

  m1 
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Figure III-2:  A simplified model of the cylinders. 

 

The static and kinetic friction coefficients between  the cylinder and the road are µs 

and µk respectively. The body of the vehicle has a mass of 5M , length of L and 

thickness of  t . The distance between the front and the rear cylinder is 2 l while the 

distance from the center of cylinder to the base of the vehicle’s body is h. Assume that 

the rolling friction between the cylinder and its axis is negligible. 

 

Questions:  

1. Calculate the moment of inertia of either cylinder [1.5 pts].  

 
2. Draw all forces that act on the body, the front cylinder, and the rear one. Write 

down equations of motion for each part of them [2.5 pts]. 

 
3. The vehicle is assummed to move from rest, then freely move under 

gravitational influence. State all the possible types of motion of the system and 

derive their accelerations in terms of the given physical quantities [4.0 pts]. 

 

4. Assume that after the vehicle travels a distance d by pure rolling from rest the 

vehicle enters a section of the road with  all the friction coefficients drop to 

smaller constant values µs’ and µk’ such that the two cylinders start to slide. 

Calculate the linear and angular velocities of each cylinder after the vehicle 

has traveled a total distance of s meters. Here we assume that d and s is much 

larger than the dimension of vehicle [2.0 pts] 

 
 

Ro 

Ri 
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I. Determination of e/kB Through Electrolysis Process 
 
Background Theory 
 
The electrolysis of water is described by the reaction : 
 
 H2O → 2H+ + O-2   

 2H+ + 2e-  → H2 ; O-2 → 
2
1 O2 + 2e-   

 
The reaction takes place when an electric current is supplied through a pair of 
electrodes immersed in the water. Assume that both gases produced in the reaction are 
ideal. 
 
One of the gases produced by the reaction is kept in a test tube marked by arbitrary 
scale. By knowing the total charge transferred and the volume of the gas in the test 
tube the  quantity e/kB can be determined, where e  is the charge of electron and kB is 
the Boltzmann constant. 
 
For the purpose mentioned above, this experiment is divided into two parts.  
 
Part A: Calibration of the arbitrary scale on the test tube by using a dynamic method. 
This result will be used for part B 
 
Part B: Determination of the physical quantity e/kB by means of water electrolysis 

 
You are not obliged to carry out the two experiments ( part A and part B ) in 
alphabetical order 
 

The following physical quantities are assumed: 
• Acceleration of gravity, g = (9.78 ± 0.01) ms-2 
• Ratio of internal vs external diameters of the test tube, α = 0.82 ±0.01 

The local values of temperature T and pressure P will be provided by the organizer.  
 
 
List of tools and apparatus given for experiment (part A & B): 
• Insulated copper wires of three different diameters: 

1. Brown of larger diameter 
2. Brown of smaller diameter 
3. Blue  

• A regulated voltage source  (0-60 V,  max.1A) 
• A plastic container and a bottle of water.   
• A block of brass with plastic clamp to keep the electrode in place without 

damaging the insulation of the wire. 
• A digital stopwatch. 
• A multimeter (beware of its proper procedure).  
• A wooden test tube holder designed to hold the tube vertically. 
• A multipurpose pipette 
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• A vertical stand. 
• A bottle of white correction fluid for marking. 
• A cutter 
• A pair of scissors 
• A roll of cellotape 
• A steel ball 
• A piece of stainless steel plate to be used as electrode. 
• A test tube with scales. 
• Graph papers. 
Note that all scales marked on the graph papers and the apparatus for the experiments 
(e.g. the test tube) are of the same scale unit, but not calibrated in millimeter. 
 
EXPERIMENT 
 
Part A: Calibration of the arbitrary scale on the test tube  
• Determine a dynamic method capable of translating the arbitrary length scale to a 

known scale available. 
• Write down an expression that relates the measurable quantities from your 

experiment in terms of the scale printed on the test tube, and sketch the 
experiment set up.  

• Collect and analyze the data from your experiment for the determination and 
calibration of the unknown length scale.  

 
Part B: Determination of physical quantity e/kB  
• Set up the electrolysis experiment with a proper arrangement of the test tube in 

order to trap one of the gases produced during the reaction. 
• Derive an equation relating the quantities: time t, current  Ι, and water level 

difference ∆h, measured in the experiment. 
• Collect and analyze the data from your experiment. For simplicity, you may 

assume that the gas pressure inside the tube remains constant throughout the 
experiment. 

• Determine the value of e/kB. 
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 CountryCount ry  S tudent  No .Student  No .  Experiment No.Experiment No.  Page No.Page No.  Total PTotal Pagesages  

      

 

 
ANSWER FORM 

 
PART A 
 

1. State the method of your choice and sketch the experimental set up of 
the method:  [0.5 pts] 

 
 
 

  
 

2. Write down the expression relating the measurable quantities in your 
chosen method: [0.5 pts]. State all the approximations used in 
obtaining this expression [1.0 pts]. 

 
 

 
 
 

3. Collect and organize the data in the following orders : physical 
quantities, values, units  [1.0 pts] 

 
 
 

 
 

 
 

 

 
 

4. Indicate the quality of the calibration by showing the plot relating two 
independently measured quantities and mark the range of validity. [0.5 
pts] 

 
 

 

 
5. Determine the smallest unit of the arbitrary scale in term of mm and its 

estimated error induced in the measurements. [1.5 pts] 
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CountryCount ry  S tudent  No .Student  No .  Experiment No.Experiment No.   Page No.Page No.  Total PagesTotal Pages  

     

 

 
PART B 

 
1. Sketch of the experimental set up. [1.0 pts] 

 

 
 
 

 
 
 
 

2. Derive the following expression: 

   

h)(2
k
e              

2

B

∆=∆
T

rPtI π                               [1.5 pts] 

 
 

 
 
 

 
 
 
 
 

3. Collect and organize the data in the following format : physical 
quantities (value, units) [1.0 pts] 

 
 
 

 
 

 
 
 

 
 

4. Determine the value of e/kB  and its estimated error [1.5 pts] 
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II. OPTICAL BLACK BOX 
 
Description 
In this problem, the students have to identify the unknown optical components inside the 
cubic box. The box is sealed and has only two narrow openings protected by red plastic 
covering. The components should be identified by means of  optical phenomena observed in 
the experiment. Ignore the small thickness effect of the plastic covering layer. 

A line going through the centers of the slits is defined as the axis of the box.  Apart from the 
red plastic coverings, there are three (might be identical or different) elements from the 
following list: 
• Mirror, either plane or spherical 
• Lens, either positive or negative 
• Transparent plate having parallel flat surfaces (so called plane-parallel plate) 
• Prism  
• Diffraction grating.    
The transparent components are made of material with a refractive index of 1.47 at the 
wavelength used. 
 
 

Apparatus available: 
• A laser pointer with a wavelength of 670 nm.  CAUTION: DO NOT LOOK 

DIRECTLY INTO THE LASER BEAM. 
• An optical rail 
• A platform for the cube, movable along the optical rail 
• A screen which can be attached to the end of the rail, and detached from it for other 

measurements.  
• A sheet of graph paper which can be pasted on the screen by cellotape.   
• A vertical stand equipped with a universal clamp and a test tube with arbitrary scales, 

which are also used in the  Problem I.   
 

Note that all scales marked on the graph papers and  the apparatus for the experiments are 
of the same scale unit, but not calibrated in millimeter. 
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The Problem 
Identify each of the three components and give its respective specification:  
 

Possible type of component Specification required 

mirror radius of curvature, angle between the mirror axis and  
the axis of the box  

lens* positive or negative,  its focal le ngth, and its position inside the 
box 

plane-parallel plate thickness, the angle between the plate and the axis of the box  

prism apex angle, the angle between one of its deflecting sides and 
the axis of the box 

diffraction grating* line spacing, direction of the lines, and its position inside the 
box 

• implies that its plane is at right angle to the axis of the box 

 
Express your final answers for the specification parameters of each component (e.g. focal 
length, radius of curvature) in terms of millimeter, micrometer or the scale of graph paper.  
 
You don’t have to determine the accuracy of the results. 
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CountryCount ry  Student No.Student No.   Experiment No.Experiment No.   Page No.Page No.   Total PagesTotal Pages  

     

 
ANSWER FORM 

 
 

1.  Write down the types of the optical components inside the box :   

  no.1. ………………………………………… [0.5 pts]  

  no.2..  ………………………………………… [0.5 pts]  

  no.3.  ………………………………………… [0.5 pts]  

 

2. The cross section of the box is given in the figure below.  Add a sketch in the figure  
  to show how the three components are positioned inside the box. In your sketch, 
 denote each component with its code number in answer 1 .   
          [0.5 pts for each correct position] 
 
 
 
 
 
 
 
                       axis of the box 
   
             
 
    direction of the slit      direction of the slit  
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3. Add detailed information with additional sketches regarding arrangement of the optical 

components in answer 2, such as the angle, the distance of the component from the slit, and 
the orientation or direction of the components.  [1.0 pts]  
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CountryCount ry  Student No.Student No.   Experiment No.Experiment No.   Page No.Page No.   Total PagesTotal Pages  

     

 
4. Summarize the observed data [0.5 pts], determine the specification of the optical  

component no.1 by deriving the appropriate formula with the help of drawing [1.0 pts], 
calculate the specifications in question and enter your answer in the box below [0.5 pts].    

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Name of component no.1 Specification 
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CountryCount ry  Student No.Student No.   Experiment NoExperiment No..  Page No.Page No.   Total PagesTotal Pages  

     

 

5. Summarize the observed data [0.5 pts], determine the specification of the optical  
component no.2 by deriving the appropriate formula with the help of drawing [1.0 pts], 
calculate the specifications in question and enter your answer in the box below [0.5 pts].    

 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

 

 

  

 Name of component no.2 Specification 
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CountryCount ry  Student No.Student No.   Experiment No.Experiment No.   Page No.Page No.   Total PagesTotal Pages  

     

 

6. Summarize the observed data [0.5 pts], determine the specification of the optical  
component no.3 by deriving the appropriate formula with the help of drawing [1.0 pts], 
calculate the specifications in question and enter your answer in the box below [0.5 pts].    

  
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Name of component no.3 Specification 
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THEORETICAL COMPETITION 
Tuesday, July 23rd, 2002 

 
 

Solution I: Ground-Penetrating Radar 
 
1. Speed of radar signal in the material vm:   

 constant  z -constant  tt zω β β ω− = → = +  (0.2 pts)  

β
ω=mv         

2/1

2/1
22

2

1)1(
2

1
















 ++

=

ωε
σµε

ω
mv      (0.4 pts)  

 

 
µεµε

1

)11(
2

1
2/1 =







 +

=mv      (0.4 pts)  
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2.  The maximum depth of detection (skin depth, δ) of an object in the ground is 
inversely proportional to the attenuation constant:  

     (0.5 pts)                                                      (0.3 pts)                       (0.2 pts) 
 

1/2 1/2 1 / 221 / 2 22

2 22 22 2

1 1 1 1

11 .1 11 1 2 22 22

a
δ

µε σµε σµε σ ωωω ε ωε ωε ω

= = = =
             + −   + −                 

2/1
2












=

µ
ε

σ
δ .  

 
  

Numerically  
( )

σ
ε

δ r31.5
=  m, where σ  is in mS/m.         (0.5 pts) 

For a medium with conductivity of 1.0 mS/m and relative permittivity of 9, the skin depth  
 

 
( )5.31 9

 15.93 m
1.0

δ = =             (0.3 pts)  + (0.2 pts) 
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3. Lateral resolution: 
       Antenna 
 
 
 
 
 
 
 
 
 
  

                              (1.0 pts) 

r =0.5 m, d =4 m:  
1

2 21 4
2 2 16

λ λ 
= + 
 

,  2 32 4 0λ λ+ − =                         (0.5 pts) 

The wavelength is λ=0.125 m.      (0.3 pts)  + (0.2 pts) 
The propagation speed of the signal in medium is 

 

rroororo
mv

εµεµεεµµµε
1111 ===  

 1 and 1    where,  m/ns 3.0
r ==== µ

εµεεµ oorrr
m ccv  

              m/s 10  m/ns 1.0 8==mv         (0.5 pts) 
 

The minimum frequency need to distinguish the two rods as two separate objects is    
 

    
λ
vf =min                             (0.5 pts) 

 MHz 800   Hz  10
125.0
9
3.0

9
min == xf     (0.3 pts) + (0.20 pts) 

 
 

4
d λ+

r 

d 

2 2 2( )
4

r d d λ+ = +

1
2 2

2 16
dr λ λ 

= + 
 

 

rod rod 
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4. Path of EM waves for some positions on the ground surface 
 
 
  
  
  
 
 
 
 
 
 
 
 The traveltime as  function of x is 
   

  
2

2 2

2
t v d x  = +  

,        (1.0 pts) 

       
2 24 4( ) d xt x

v
+=      (1.0 pts) 

 

 1 2 22
( )

0.3
rt x d x

ε
= +    

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

For x =0       (1.0 pts) 
    
  100 = 2×(3/0.3)  d 
 
  d = 5 m         (0.5 pts) 
 

ε1, σ1 
T R T R  

d 1 
2 

3 

x 

Buried rod(ε2, σ2) 

T R 

Antenna Positions 
Scanning direction 

Graph of traveltime, t(x) 
             Antenna Positions                 x 
 

t 
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THEORETICAL COMPETITION 
Tuesday, July 23rd, 2002 

 
 

Solution II: Sensing Electrical Signals  
 
 
1.  When a point current source Is is in infinite isotropic medium, the current 
density vector at a distance r from the point is  
 

r
r

I
j s rr

34π
=  

 
[+1.5 pts] (without vector notation, -0.5 pts) 
 
2. Assuming that the resistivities of the 

prey body and that of the surrounding 
seawater are the same, implying the 
elimination of the boundary surrounding 
the prey, the two spheres seem to be in 
infinite isotropic medium with the 
resistivity of ρ. When a small sphere 
produces current at a rate Is, the current 
flux density at a distance r from the 
sphere's center is also 

 

 r
r

I
j s rr

34π
=  

 
 
The seawater resistivity is ρ, therefore the field strength at r is 
 

( ) r
r
I

jrE s rrrr
34π

ρ
ρ ==   [+0.2 pts] 

 
In the model, we have two small spheres. One is at positive voltage relative to the 
other therefore current Is flows from the positively charged sphere to the negatively 
charged sphere. They are separated by ls. The field strength at P(0,y) is: 

2
slx −= 0=x

P

y

+−
2

slx +=

prey
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3. The field strength along the axis between the two source spheres is: 
 

( ) ( )i
l

x
l

x

I
xE

ss

s −










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2
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 [+0.5 pts] 

 
The voltage difference to produce the given current Is is 
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The resistance between the two source spheres is: 
 

ss

s
s rI

V
R

π
ρ

2
==  

 
[+0.5 pts] 
 
The power produced by the source is: 
 

s

s
ss r

I
VIP

π
ρ
2

2

==  

 
[+0.5 pts] 
 

4. V is the voltage difference between the 
detector’s spheres due to the electric 
field induced by the prey, Rm is the inner 
resistance due to the surrounding sea 
water. Vd and Rd are respectively the 
voltage difference between the detecting 
spheres and the resistance of the 
detecting element within the predator 
and id is the current flowing in the closed 
circuit.                     

  
. Analog to the resistance between the two 

source spheres, the resistance of the 
medium with resistivity ρ between the 
detector spheres, each having a radius of 
rd is: 

  

 
d

m r
R

π
ρ

2
=  

  
 [+0.5 pts] 
 
 Since ld is much smaller than y, the 

electric field strength between the 
detector spheres can be assumed to be 
constant, that is: 

 

 34 y
lI

E ss

π
ρ

=  [+0.2 pts] 

Therefore, the voltage difference present in the medium between the detector spheres 
is: 

34 y
llI

ElV dss
d π

ρ
==  [+0.3 pts] 

dR

mR

V dV
+
−

di

sl
0=x

y

+−

dl

dR predator

prey
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The voltage difference across the detector spheres is: 
 

d
d

ddss

md

d
d

r
R

R
y

llI
RR

R
VV

π
ρπ

ρ

2
4 3

+
=

+
=  

[+0.5 pts] 
 
The power transferred from the source to the detector is: 
 

2

2

3

2

4






+







=

+
==

d
d

ddss
d

md
ddd

r
R

R
y

llI
V

RR
VViP

π
ρπ

ρ  

[+0.5 pts] 
 
 
5. Pd is maximum when  
 

( )
maximum is     

2

22
md

d

d
d

d
t

RR
R

r
R

R
R

+
=







+

=

π
ρ

 [+0.5 pts] 

 
Therefore, 
 

( ) ( )
( )

( )

pts] 0.5[          
2
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pts] 0.5[      0
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+==

=−+
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+

+−+
=

d
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mddmd

d

t

r
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RRRRR
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π
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The maximum power is: 
 

( )
6

22

3
max

3224 y
rllIr

y
llI

P ddssddssimum
d π

ρ
ρ

π
π

ρ
=





=  

 
[+0.5 pts] 
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SOLUTION T3 : .  A Heavy Vehicle Moving on An Inclined Road  

 
    To simplify the model we use the above figure with h1 = h+0.5 t 
    Ro = R 
 

1. Calculation of the moment inertia of the cylinder 
 

Ri=0.8 Ro       
Mass of cylinder part : mcylinder =0.8 M 
Mass of each rod        : mrod = 0.025 M 

                       

θ 

l 

l 

h1 
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pts 0.1                                                               7.000533.08656.0
becomes each wheel of inertiamoment  The

pts 0.5          00533.0)64.0(025.0
3
1

3
1

3
1

pts 0.5                                                     656.0)64.01()8.0(5.0                

)(5.0)(5.02

pts 0.4                                                     ...

222

2223

0

2

rod

2

22

22443

.

2

 

2

rod1

2

.

22

MRMRxMRI

MRRMRmRdrrdmr

MRRM

RRmRRdrrdmr

dmrdmrdmrdmrI

inrodin

Rin

iocylinderio

Ro

Rishellcyl

nrodshellcylwholepart

=+=

=====

=+=

+=−==

+++==

∫∫

∫∫

∫∫∫∫

λλ

πσπσ

 

 
2.   Force diagram and balance equations: 
 
To simplify the analysis we devide the system into three parts:  frame (part1) which 
mainly can be treated as flat homogeneous plate, rear cylinders (two cylinders are treated  
collectively as part 2 of the system), and front cylinders (two front cylinders are treated 
collectively as part 3 of the system). 
 
Part 1 : Frame 
 

                                          0.4 pts 
The balance equation related to the forces work to this parts are: 
 
 
 
 
 
 
 

l 

l 

h1 

N13 m1g 
f13h 

f12h 

N12 
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  Required conditions: 

  

pts 0.2  (3)                                                               0NN
 thatso zero, is Oagainst on Then torsi

pts 0.2  (2)                                                                               cos
axis  verticalin the force of Balance

pts 0.2  (1)                                                                       sin
axis horizontal in the force of Balance

1131121312

13121

113121

=++−

+=

=−−

hfhfll

NNgm

amffgm

hh

hh

θ

θ

  

 
Part two : Rear cylinder 
 

     0.25 pts 
 

pts 0.15      (5)                                                                          0cosN
pts 0.15      (4)                                                                         sinf

: rear wheelin condition  balance From

212

221h

=−−
=+−

θ
θ

MgN
MaMgf       

 
For pure rolling: 
 

                                            

(6)                                                                afor   

                                                   

22

2
22

R
I

R
a

IIRf

=

== α

 

For rolling with sliding: 
   

    F2 =  uk  N2             (7)  
 

               0.2 pts 
 
Part Three : Front Cylinder: 
 
 

 
 

f21h 

Mg 
N21 

f2 
N2 
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   0.25 pts 
 

pts 0.15      (9)                                                                                0cosN
pts 0.15      (8)                                                                               sinf

:  lfront whee in thecondition  balance From

313

331h

=−−
=+−

θ
θ

MgN
MaMgf  

 
For pure rolling: 
 
                                                                                                

(10)                                                                                                                  afor   

                                                   

23

3
33

R
I

R
a

IIRf

=

== α

 

For rolling with sliding: 
   
    F3 =  uk N3                                  (11)  
 
                     0.2 pts 
3.  From equation (2), (5) and (9) we get 
 

         m1 gcosθ = N2 – m2g cosθ+N3-m3g cosθ 
      N2 + N3  =  (m1+m2+m3)gcosθ=7Mgcosθ                   (12)  
 
And from equation (3), (5) and (8) we get  
 
(N3-Mg cos θ) l – (N2-Mg cos θ) l=h1 (f2 +Ma-Mg sinθ+f3+Ma-Mg sinθ) 
 
(N3 – N2)= h1 (f2 +2Ma-2Mg sinθ+f3)/l                                                                        
 

Equations 12 and 13 are given  0.25 pts  
 
 CASE  ALL CYLINDER IN PURE ROLLING 
 
From equation (4) and (6) we get  

f31h 

Mg 
N31 

f3 
N3 
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     f21h = (I/R2)a +Ma-Mg sinθ       (14)     0.2 pts 
 
From equation (8) and (10) we get  
  
     f31h = (I/R2)a +Ma-Mg sinθ       (15)     0.2 pts 
 
Then from eq. (1) , (14) and (15) we get 
 
 5Mg sinθ - {(I/R2)a +Ma-Mg sinθ}-{(I/R2)a +Ma-Mg sinθ}= m1a 
 
7 Mg sinθ = (2I/R2 +7M)a  

                    θ
θθ sin833.0

7.027

sin7

27

sin7

2

2

2

g

R
MRM

Mg

R
IM

Mga =
+

=
+

=            (16)   0.35 pts 

 

θθ

θθθ

θθθ

sin41.0cos Mg 3.5       

]sin sin833.0)7.0[(3.5Mgcos      

]sinsin833.0)[(cos
2

7

1

1

2
1

3

Mg
l
h

MggMM
l
h

Mgg
R
IM

l
h

gMN

+=

−×++=

−×++=

 

 

θθ

θ
θ

θ

θθθ

sin0.41  cos 3.5g       

]sin2 
77.0

sin7)7.0[(-  cos 3.5g       

]sin sin833.0)[(cos
2

7

1

1

2
1

2

Mg
l
h

Mg
MM

MgMM
l
h

MggM
R
I

l
hgMN

−=

−
+

+=

−×+−=

 

          0.2 pts 
The Conditions for pure rolling: 
 

 
32

3

3
22

2

2

3322

 a
R
I  and                a

R
I

  and                   

NN

NfNf

ss

ss

µµ

µµ

≤≤

≤≤
                          0.2 pts 

l
h

Mg
l
hgM

s

s

s

1

1

41.05831.0

5.3
tan

)sin0.41  cos (3.5Mgsin833.07.0

becomesequation left  The

µ

µ
θ

θθµθ

+
≤

−≤×
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l
h

mg
l
hgm

s

s

s

1

1

41.05831.0

5.3tan

)sin0.41  cos (3.5mgsin833.07.0

becomesequation right   theWhile

µ

µ
θ

θθµθ

−
≤

+≤×
 

                                                                     (17)            0.1 pts 
 
CASE  ALL CYLINDER SLIDING 
 
From eq. (4)   f21h = Ma +ukN2 – Mgsinθ         (18)            0.15 pts 
From eq. (8)   f31h = Ma +ukN3 – Mgsinθ         (19)            0.15 pts 
From eq. (18) and 19 :   
   5Mg sinθ - (Ma + ukN2 – Mg sinθ)- (Ma + ukN3 – Mg sinθ)=m1a  
 

     
M

NN
g

M
NNMg

a kkk

7
)(

sin
7

sin7 3232 +
−=

−−
=

µ
θ

µµθ
       (20)           0.2 pts 

 
θcos723 MgNN =+  

 
From the above two equations we get : 

θµθ cossina gg k−=                                   0.25 pts   
 
 
The Conditions for complete sliding: are the opposite of that of pure rolling 
 

 
32

3

3
22

2

2

3322

' a
R
I  and               ' a

R
I

'  and                   '

NN

NfNf

ss

ss

µµ

µµ

〉〉

〉〉
  (21)               0.2 pts 

 
Where N2’ and N3’ is calculated in case all cylinder in pure rolling.          0.1 pts  
 
 

l
h

l
h

s

s

s

s

11 41.05831.0

5.3 tan                     and                 
41.05831.0

5.3 tan

get Finally we

µ

µ
θ

µ

µ
θ

−
〉

+
〉          0.2 pts   

The left inequality finally become decisive. 
 
 
CASE  ONE CYLINDER IN PURE ROLLING AND ANOTHER IN SLIDING 
CONDITION 
 
{ For example R3 (front cylinders) pure rolling while R2 (Rear cylinders) sliding} 
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From equation (4)  we get  
  
     F21h = m2a+ ukN2-m2g sinθ      (22)               0.15 pts 
 
From equation (5)  we get  
  
     f31h = m3a+(I/R2)a -m3g sinθ     (23)               0.15 pts 
 
Then from eq. (1) , (22) and (23) we get 
 
 m1g sinθ - { m2a+ukN2-m2g sinθ}-{m3a+(I/R2)a -m3g sinθ}= m1a 
 
m1 g sinθ + m2g sinθ + m3 sinθ- ukN2 = (I/R2 +m3)a + m2 a + m1 a 
 
5Mg sinθ + Mg sinθ + Mg sinθ- ukN2 = (0.7M +M)a + Ma + 5Ma 
 

M
g

M
Mg

a
7.7
N

sin9091.0
7.7

Nsin7 2k2k µ
θ

µθ
−=

−
=                              (24)           0.2 pts 

 

θµ

θµθµ

θµ

sin4546.0)65.01(

)sin27.7/7.2sin9091.07.2(

)sin22(

1
23
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23

Mg
l
h

NN

MgNgMN
l
hNN

MgMaa
R
IN

l
h

NN

k

kk

k

=+−

−−×+=−

−++=−

 

θ=+ cos723 MgNN  
 
Therefore we get 
 

l
h
MgMgMgN

l
h
MgMgN

k

k

1
3

1
2

65.02

sin4546.0cos7cos7

65.02

sin4546.0cos7

µ

θθ
θ

µ

θθ

+

−−=

+

−=

   (25)     0.3 pts 

Then we can substitute the results above into equation (16) to get the following result 
 

l
h
ggg

M
ga

k
1

k2k

65.02

sin4546.0cos7
7.7

sin9091.0
7.7
N

sin9091.0
µ

θθµ
θ

µ
θ

+

−−=−=       (26)      

0.2 pts 
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The Conditions for this partial sliding is: 

 
3222

3322

 a
R
I  and                a

R
I

  and                   

NN

NfNf

ss

ss

′〉′≤

′〉′≤

µµ

µµ

   (27)     0.25 pts 

 where 2N ′  and 3N ′  are normal forces for pure rolling condition 
 
 
4. Assumed that after rolling d meter all cylinder start to sliding until reaching the end of 
incline road (total distant is s meter). Assummed that ηmeter is reached in t1 second.  
 

1
1

2
11

2
111

111111

2
2
1

2
1

0

a
dt

tatatvd

tataatvv

o

ot

=

=+=

=+=+=

 

         0.5 pts 

11 av t =
1

2
a
d

= θθ sin666.1sin833.022 1 dggdda ==                                      (28) 

 
The angular velocity after rolling d meters is same for front and rear cylinders: 
 

θω sin666.111
1 dg

RR
vt

t ==                                                                                      (29) 

         0.5 pts 
 
Then the vehicle sliding untill the end of declining  road. Assumed that the time needed 
by vehicle to move from d position to the end of the declining road is t2 second. 
 

)(2sin666.1

)(2
2
1

sin666.1

2
2
112

2

2
2
11

2

2
2221

222212

dsavvdgv

a
dsavv

t

tatvds

tadgtavv

ttt

tt

t

tt

−++−=

−++−
=

+=−

+=+=

θ

θ

   (30)           0.4 pts 

 
Inserting vt1 and a2  from the previous results we get the final results. 
 
For the angular velocity, while sliding they receive torsion: 
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)(2

sin666.11

2

2
2
11

212 a
dsavv
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I
NR

I

NR

ttk
tt

k

k
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=

µ
θαωω

µτ
α

µτ

(31) 

              0.6 pts 
 
 



SOLUTION EXPERIMENT I 
 
PART A 
 

1. [Total 0.5 pts] 
The experimental method chosen for the calibration of the arbitrary scale is a simple 

pendulum method [0.3 pts] 

 
Figure 1. Sketch of the experimental set up [0.2 pts] 

 
2. [Total 1.5 pts] 

The expression relating the measurable quantities: [0.5 pts] 
  

 
g
lTosc π 2 = ; 

g
lTosc

22  4 π=   

       
 Approximations :  
  θθ ≈sin  [0.5 pts] 
  mathematical pendulum (mass of the wire << mass of the steel ball,  
  the radius of the steel ball << length of the wire [0.5 pts]  
  flexibility of the wire, air friction, etc [0.1 pts, only when one of the two 

major points above is not given] 
 
 
 
 
 
 
 

θ 

Arbitrary scale 
mark 

mg 

l 

Vertical stand 

Steel ball 

Wire 



3. [Total 1.0 pts] Data sample from simple pendulum experiment  
# of cycle ≥ 20 [0.2 pts.] , difference in T ≥ 0.01 s  [0.4 pts], # of data ≥ 4 [0.4 pts]  

 
No. 

 

t(s) for 50 cycles Period, T (s) 

 

Scale marked on the 

wire (arbitrary scale) 

1 91.47 1.83 200 

2 89.09 1.78 150 

3 86.45 1.73 100 

4 83.8 1.68 50 

 
4. [Total 0.5 pts] 

No. Period, T (s) 
 

Scale marked on the wire 
(arbitrary scale) 

T
2
(s

2
) 

1 1.83 200 3.35 

2 1.78 150 3.17 

3 1.73 100 2.99 

4 1.68 50 2.81 

 
The plot of T2 vs scale marked on the wire: 

 

  
           Scale marked on the wire (arbitrary scale) 

 
5. Determination of the smallest unit of the arbitrary scale in term of mm [Total 1.5 

pts] 

1

2
2 4

1
L

g
Tosc

π=  ,       2

2
2 4

2
L

g
Tosc

π=  

( ) 21

2
22 4

21
LL

g
TT oscosc −=− π L

g
∆=

24π  

T
2
 (s

2
) 

 



( )22
2 214 oscosc TTgL −=∆

π
 or other equivalent expression 

 
No. 

 
 Calculated ∆L (m) 

 

∆L in arbitrary 
scale 

Values of smallest 
unit of arbitrary 

scale (mm) 

1. T1
2
-T2

2
 = 0.171893 s

2
 0.042626 50 0.85 

2. T1
2
-T3

2
 =0.357263 s

2
 0.088595 100 0.89 

3. T1
2
-T4

2
 =0.537728 s

2
 0.133347 150 0.89 

4. T2
2
-T3

2
 =0.18537 s

2
 0.045968 50 0.92 

5. T2
2
-T4

2
 =0.365835 s

2
 0.09072 100 0.91 

6. T3
2
-T4

2
 =0.180465 s

2
 0.044752 50 0.90 

 
The average value of smallest unit of arbitrary scale, l   = 0.89 mm  [0.5 pts] 
 
 
The estimated error induced by the measurement: [0.5 pts] 
 

No. Values of smallest 
unit of arbitrary 

scale (mm) 

)( ll −  2)( ll −  

1. 0.85 -0.04 0.0016 

2. 0.89 0 0 

3. 0.89 0 0 

4. 0.92 0.03 0.0009 

5. 0.91 0.02 0.0004 

6. 0.90 0.01 0.0001 

 
And the standard deviation is: 

mm02.0
5
003.0

1

)(
6

1

2

==
−

−
=∆
∑
=

N

ll
l i  

 
other legitimate methods may be used 
 

[0.5 pts] 



 
PART B 
 
1. The experimental set up:[Total 1.0 pts] 

 

 
 

2. Derivation of  equation relating the quantities time t, current I, and water level 
difference ∆h: :[Total 1.5 pts] 

 

     
t
QI
∆
∆=           

From the reaction: 2 H+ + 2 e                 H2, the number of molecules produced in the 
process (∆N) requires the transfer of electric change is ∆Q=2e ∆N :           [0.2 pts] 

 

 

   

h)(2
k
e              

T k
2
   )h( P

T k
2e
                    

T k N V 
t
2e N                  

2

B

B2

B

B

∆=∆

∆=∆

∆=

∆=∆
∆

∆=

T
rPtI

e
tIr

tI
P

I

π

π
 

 
 
 
 
 

A

Arbitrary scales 

- + 

Water 

Test tube 

Voltage source Power 
supply 

Ampere meter 

Weight 

Electrodes [0.2 pts] 

Container filled with 
water [0.2 pts] 

Water and  
electrode 
inside the 
glass  tube 
[0.2 pts] 

[0.5 pts] 

[0.5 pts] 

[0.2 pts] 

[0.1 pts] 

[0.2 pts] [0.2 pts] 



 
3. The experimental data: [ Total 1.0 pts] 

 
No. 

 

∆h (arbitrary 

scale) 

I (mA) ∆t (s) 

 

1 12 4.00 1560.41 

2 16 4.00 2280.61 

3 20 4.00 2940.00 

4 24 4.00 3600.13 

 
• The circumference φ, of the test tube = 46 arbitrary scale   [0.3 pts] 
• The chosen values for ∆h (≥ 4 scale unit) for acceptable error due to uncertainty 

of the water level reading and for I (≤ 4 mA)  for acceptable disturbance  [0.3 pts] 
• #  of  data ≥ 4            [0.4 pts] 

 
The surrounding condition (T,P) in which the experimental data given above taken: 

  T = 300 K 
  P = 1.00 105 Pa  
 

4. Determination the value of e/kB  [Total 1.5 pts] 
 

No. 

 

∆h (arbitrary 

scale) 

∆h (mm) 

 

I (mA) ∆t (s) 

 

I ∆t ( C ) 

1 12 10.68 4.00 1560.41 6241.64 

2 16 14.24 4.00 2280.61 9120.48 

3 20 17.80 4.00 2940.00 11760.00 

4 24 21.36 4.00 3600.13 14400.52 

 



 
Plot of  I∆t vs ∆h from the data listed above 

 

 
The slope obtained from the plot is 763.94; 
 

4
235

B

1028.1
)82.01089.023(102

30094.763
k
e ×=

×××××
××= −

π Coulomb K/J   

 [1.0 pts] 
 
 
Alternatively [the same credit points] 
 

No. ∆h (mm) I ∆t ( C ) Slope e/kb 

1 10.68 6241.64 584.4232 9774.74 

2 14.24 9120.48 640.4831 10712.37 

3 17.80 11760.00 660.6742 11050.07 

4 21.36 14400.52 674.1816 11275.99 

I ∆t 

∆h 



 
 
Average of e/kb = 1.07 × 104   Coulomb K/J      
 [1.0 pts] 
  

No. 

 

e/kb difference Square 

difference 

1 9774.74 -928.55 862205.5 

2 10712.37 9.077117 82.39405 

3 11050.07 346.7808 120256.9 

4 11275.99 572.6996 327984.9 

 
 
Estimated error          [0.5 pts] 
 
The standard deviation obtained is 0.66 × 103  Coulomb K/J,  
Other legitimate measures of estimated error may be also used    
  
 
 

 
 
 

 
 



SOLUTION OF EXPERIMENT PROBLEM 2 

 

1.  The optical components are [total 1.5 pts]: 

  no.1 Diffraction grating  [0.5 pts] 

  no.2 Diffraction grating  [0.5 pts] 

  no.3  Plan-parallel plate  [0.5 pts] 

 

 

2.  Cross section of the box [total 1.5 pts]: 

           

           

           

           

           

           

           

           

            

           no.1       no.3      no.2  
       [0.5 pts]       [0.5 pts]        [0.5 pts]   
 
 
 
 
 
 
 
 
 
 
 



3.  Additional information [total 1.0 pts]: 
 
           

           

           

           

           

           

           

           

            

           no.1       no.3      no.2  

   Distance of the grating (no.1)    Distance of the grating (no.2) 

   to the left wall is practically zero         to the right wall is practically zero 
   [0.2 pts]       [0.2 pts]        

   Lines of grating no.1 is at    Lines of grating no. 2 

   right angle to the slit     is parallel to the slit 
    [0.3 pts]      [0.3 pts] 
 
 
 
 
 
 
 
 
 
 
 
 
 



4.  Diffraction grating [total 2.0 pts]: 
 
      ∆ 
               drawing and labels  should be complete  
   d         [0.6 pts] 
     θ 
 
          θ 
 
 
 
 
  Path length difference: 

     ∆ =  d sin θ  ,             d = spacing of the grating 

  Diffraction order:   

     ∆ =  m λ ,      m = order number 

  Hence, for the first order (m = 1): 

      sin θ = λ / d      [0.4 pts] 
 

  Observation data: 

    tan θ  θ   sin θ 

    0.34    18.780 0.3219 

    0.32  17.740 0.3048               number of data ≥ 3 
    0.32  17.740 0.3048    [0.5 pts]  
  

Name of component no.1 Specification  

Diffraction grating Spacing = 2.16 µm 

Lines at right angle to the slit 

   [0.4 pts] 

   [0.1 pts] 

  

Note: true value of grating spacing is 2.0 µm, deviation of the result ≤ 10% 



5.  Diffraction grating [total 2.0 pts]: 

      For the derivation of the formula, see nr.4 above. 

           [1.0 pts] 

      Observation data: 

   tanθ  θ   sinθ 

   1.04  46.120 0.7208 

   0.96  43.830 0.6925                number of data ≥ 3 

   1.08  47.200 0.7330    [0.5 pts] 
   

Name of component no.2 Specification  

Diffraction grating Spacing = 0.936 µm 

Lines parallel to the slit 

    [0.4 pts] 

    [0.1 pts] 

  

Note: true value of grating spacing is 1.0 µm, deviation of the result ≤ 10% 

 

 
 

 

 

 

 

 

 

 

 

 

 



6.  Plan-parallel plate [total 2.0 pts]: 

 

 

         ϕ    A              D 

        ϕ′ 
                C 

          B           

           n           drawing and labels should be complete    
            [0.4 pts] 

        90°−ϕ 

      Snell’s law: 
      sin ϕ  =  n sin ϕ′   ,          ϕ′  =  ∠ BAC 

      Path length inside the plate: 
   AC  =  AB / cos ϕ′  ,   AB  =  h  =  plate thickness 

      Beam displacement: 
   CD  =  t  =  AC sin ∠ CAD  ,    ∠ CAD  =  ϕ − ϕ′ 
      Hence: 
    t  =  h sin ϕ  [ 1 − cos ϕ / (n2 − sin2 ϕ)1/2 ]   [0.6 pts] 

      Observation data: 
      ϕ   t 
      0  0  (angle between beam and axis 49°) 

      490  7.3 arbitrary scale    [0.5 pts] 
 

Name of component no.3 Specification  

Plane-parallel plate Thickness = 17.9 mm 

Angle to the axis of the box 49° 

 [0.2 pts] 

 [0.3 pts] 

Note: - true value of plate thickness is 20 mm   
  - true value of angle to the axis of the box is 52°  
  - deviation of the results ≤ 20%. 
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Theoretical Question 1 
 

A Swing with a Falling Weight 
A rigid cylindrical rod of radius R is held horizontal above the ground. With a string of 

negligible mass and length L ( RL π2> ), a pendulum bob of mass m is suspended from point 
A at the top of the rod as shown in Figure 1a. The bob is raised until it is level with A and then 
released from rest when the string is taut. Neglect any stretching of the string. Assume the 
pendulum bob may be treated as a mass point and swings only in a plane perpendicular to the 
axis of the rod. Accordingly, the pendulum bob is also referred to as the particle. The 
acceleration of gravity is g . 
 

 

 

 

 

 

 

 

 

 

 

Let O be the origin of the coordinate system. When the particle is at point P, the string 
is tangential to the cylindrical surface at Q. The length of the line segment QP is called s. 
The unit tangent vector and the unit radial vector at Q are given by t̂  and r̂ , respectively. 
The angular displacement θ  of the radius OQ, as measured counterclockwise from the 
vertical x-axis along OA, is taken to be positive.  

When 0=θ , the length s is equal to L and the gravitational potential energy U of the 
particle is zero. As the particle moves, the instantaneous time rates of change of θ  and s are 
given by θ  and s , respectively. 

Unless otherwise stated, all the speeds and velocities are relative to the fixed point O. 
 
Part A 

In Part A, the string is taut as the particle moves. In terms of the quantities introduced 
above (i.e., s, θ, s ,θ , R, L, g, t̂ and r̂ ), find: 
(a) The relation between θ  and s .                              (0.5 point) 

(b) The velocity Qv  of the moving point Q relativeto O. (0.5 point) 

(c) The particle’s velocity v ′  relative to the moving point Q when it is at P (0.7 point) 
(d) The particle’s velocity v  relative to O when it is at P. (0.7 point) 

m 

R 

θ  

Figure 1a      

s 

x 

O 

A L 

Q 

P 

r̂  

t̂  
g  
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(e) The t̂ -component of the particle’s acceleration relative to O when it is at P. (0.7 point) 
(f) The particle’s gravitational potential energy U when it is at P. (0.5 point) 
(g) The speed vm

 
 of the particle at the lowest point of its trajectory. (0.7 point) 

Part B 
In Part B, the ratio L to R has the following value: 

886.6352.3534.3
16

cot
3
2

8
9 =+=+= ππ

R
L  

(h) What is the speed sv  of the particle when the string segment from Q to P is both straight 
and shortest in length? (in terms of g and R) (2.4 points) 

(i) What is the speed Hv  of the particle at its highest point H when it has swung to the other 
side of the rod? (in terms of g and R) (1.9 points) 

 
Part C 

In Part C, instead of being suspended from A, the pendulum bob of mass m is 
connected by a string over the top of the rod to a heavier weight of mass M, as shown in 
Figure 1b. The weight can also be treated as a particle. 
 
 
 
 
 
 
 
 

Initially, the bob is held stationary at the same level as A so that, with the weight 
hanging below O, the string is taut with a horizontal section of length L. The bob is then 
released from rest and the weight starts falling. Assume that the bob remains in a vertical 
plane and can swing past the falling weight without any interruption. 

The kinetic friction between the string and the rod surface is negligible. But the static 
friction is assumed to be large enough so that the weight will remain stationary once it has 
come to a stop (i.e. zero velocity). 
(j) Assume that the weight indeed comes to a stop after falling a distance D and 

that ( ) RDL >>− . If the particle can then swing around the rod to θ  = 2π while both 
segments of the string free from the rod remain straight, the ratio α = D /L must not be 
smaller than a critical value α c. Neglecting terms of the order R /L or higher, obtain an 
estimate on α c in terms of  M /m. (3.4 points) 

A 

M 

m 

L 

R 

Figure 1b 

x 

θ  

O 
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Answer Sheet           Theoretical Question 1 
A Swing with a Falling Weight 

 
(a) The relation between θ  and s  is 
 
 
(b) The velocity of the moving point Q relative to O is 
 
 
 
(c) When at P, the particle’s velocity  relative to the moving point Q is 
 
 
(d) When at P, the particle’s velocity relative to O is 
 
 
(e) When at P, the t̂ -component of the particle’s acceleration relative to O is 
 
 
(f) When at P, the particle’s gravitational potential energy is 
 
 
(g) The particle’s speed  when at the lowest point of its trajectory is 
 
 
 
(h) When line segment QP is straight with the shortest length, the particle‘s speed  is 

(Give expression and value in terms of g and R ) 
 
 
 
(i) At the highest point, the particle’s speed  is (Give expression and value in terms of g and R) 
 
 
(j) In terms of the mass ratio M /m,  the critical value α c of the ratio D /L is 

 

 

Qv  = 

v ′  = 

v  = 

 

U = 

mv  = 

sv  = 

Hv  = 

α c  = 
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Theoretical Question 2 
 

A Piezoelectric Crystal Resonator under an Alternating Voltage 
 

Consider a uniform rod of unstressed length ℓ and cross-sectional area A (Figure 2a). 
Its length changes by ∆ℓ when equal and opposite forces of magnitude F are applied to its 
ends faces normally. The stress T on the end faces is defined to be F/A. The fractional 
change in its length, i.e., ∆ℓ/ℓ, is called the strain S of the rod. In terms of stress and strain, 
Hooke’s law may be expressed as 

SYT =   or  


∆Y
A
F =                       (1) 

where Y is called the Young’s modulus of the rod material. Note that a compressive stress T 
corresponds to F < 0 and a decrease in length (i.e., ∆ℓ < 0). Such a stress is thus negative in 
value and is related to the pressure p by T = –p. 

For a uniform rod of density ρ, the speed of propagation of longitudinal waves (i.e., 
sound speed) along the rod is given by 

ρ/Yu =                                  (2) 

 
 
 
 
 

 The effect of damping and dissipation can be ignored in answering the following 
questions. 

Part A: mechanical properties 
A uniform rod of semi-infinite length, extending from x = 0 to ∞ (see Figure 2b), has a 

density ρ. It is initially stationary and unstressed. A piston then steadily exerts a small 
pressure p on its left face at x = 0 for a very short time ∆t, causing a pressure wave to 
propagate with speed u to the right. 
 
 
 
 
 
 
(a) If the piston causes the rod’s left face to move at a constant velocity v (Figure 2b), what are 

y 

x 
ℓ 

F 

z 

F 

Figure 2a 
∆ℓ 

A 

x 

Figure 2c 

ξ 

p v 

unstressed 

wave motion 

Figure 2b 
∞ x = 0 

p p 
v 

compressed unstressed 
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the strain S and pressure p at the left face during the time ∆t? Answers must be given in 
terms of ρ, u, and v only.   (1.6 points) 

(b) Consider a longitudinal wave traveling along the x direction in the rod. For a cross section 
at x when the rod is unstressed (Figure 2c), let ξ(x, t) be its displacement at time t and 
assume 

)(sin),( 0 tuxktx −= ξξ                     (3) 
where ξ 0

Part B: electromechanical properties (including piezoelectric effect) 

 and k are constants. Determine the corresponding velocity v(x, t), strain S(x, t), 
and pressure p(x, t) as a function of x and t.              (2.4 points) 

Consider a quartz crystal slab of length b, thickness h, and width w (Figure 2d). Its 
length and thickness are along the x-axis and z-axis. Electrodes are formed by thin metallic 
coatings at its top and bottom surfaces. Electrical leads that also serve as mounting support 
(Figure 2e) are soldered to the electrode’s centers, which may be assumed to be stationary for 
longitudinal oscillations along the x direction. 
 
 
 
 
 
 
 
 

The quartz crystal under consideration has a density ρ of 2.65×103 kg/m3 and Young’s 
modulus Y of  7.87×1010 N/m2

For a standing wave of frequency f =ω / 2π, the displacement ξ (x, t) at time t of a cross 
section of the slab with equilibrium position x may be written as 

. The length b of the slab is 1.00 cm and the width w and height 
h of the slab are such that h << w and w << b. With switch K left open, we assume only 
longitudinal modes of standing wave oscillation in the x direction are excited in the quartz 
slab. 

txgtx ωξξ cos)(2),( 0= ,    )0( bx ≤≤                  (4a) 

where ξ 0







 −+






 −=

2
cos

2
sin)( 21

bxkBbxkBxg

 is a positive constant and the spatial function g(x) is o f  t h e  f o rm 

          (4b) 

g(x) has the maximum value of one and k=ω/u. Keep in mind that the centers of the electrodes 
are stationary and the left and right faces of the slab are free and must have zero stress (or 
pressure). 
 

y 

x 
b 

− 

+ h w 

z K 

)(tV  

Figure 2d 

b/2 

x 

z electrodes 

b/2 

h 

Figure 2e 

quartz 
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(c) Determine the values of B1 and B2

(d) What are the two lowest frequencies at which longitudinal standing waves may be excited 
in the quartz slab?                                  (1.2 point) 

 in Eq. (4b) for a longitudinal standing wave in the 
quartz slab. (1.2 point) 

 
The piezoelectric effect is a special property of a quartz crystal. Compression or 

dilatation of the crystal generates an electric voltage across the crystal, and conversely, an 
external voltage applied across the crystal causes the crystal to expand or contract depending 
on the polarity of the voltage. Therefore, mechanical and electrical oscillations can be coupled 
and made to resonate through a quartz crystal. 

To account for the piezoelectric effect, let the surface charge densities on the upper and 
lower electrodes be –σ and +σ, respectively, when the quartz slab is under an electric field E 
in the z direction. Denote the slab’s strain and stress in the x direction by S and T, respectively. 
Then the piezoelectric effect of the quartz crystal can be described by the following set of 
equations: 

EdTYS p+= )/1(                           (5a) 
ETd Tp εσ +=                           (5b) 

where 1/Y = 1.27×10 −11 m2/N is the elastic compliance (i.e., inverse of Young’s modulus) at 
constant electric field and εT = 4.06×10 −11 F/m is the permittivity at constant stress, while dp 
= 2.25×10 −12

Let switch K in Fig. 2d be closed. The alternating voltage V(t) = V
 m/V is the piezoelectric coefficient. 

m 

With E being uniform, the wavelength λ and the frequency f of a longitudinal standing 
wave in the slab are still related by λ = u / f with u given by Eq. (2). But, as Eq. (5a) shows, T 
= Y S is no longer valid, although the definitions of strain and stress remain unchanged and the 
end faces of the slab remain free with zero stress. 

cos ω t now acts 
across the electrodes and a uniform electric field E(t) = V(t)/h in the z direction appears in the 
quartz slab. When a steady state is reached, a longitudinal standing wave oscillation of 
angular frequency ω appears in the slab in the x direction. 

(e) Taking Eqs. (5a) and (5b) into account, the surface charge density σ  on the lower 
electrode as a function of x and t is of the form, 

h
tVDbxkDtx )(

2
cos),( 21 








+






 −=σ  

   where k =ω /u. Find the expressions for D1 and D2

(f) The total surface charge Q(t) on the lower electrode is related to V(t) by 
.  (2.2 points) 

)(1
2

tan21)( 0
2 tVCkb

kb
tQ 














 −+= α                    (6) 

Find the expression for C0 and the expression and numerical value of α 2.    (1.4 points)                                        
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 [Answer Sheet]        Theoretical Question 2 
 

A Piezoelectric Crystal Resonator under an Alternating Voltage 
 
Wherever requested, give each answer as analytical expressions followed by 
numerical values and units. For example: area of a circle A = π r 2 = 1.23 m2. 

 
(a) The strain S and pressure p at the left face are (in terms of ρ, u, and v) 

 S = 

 p = 

(b) The velocity v(x, t), strain S(x, t), and pressure p(x, t) are 

 v(x, t) = 

 S(x, t) = 

 p(x, t) = 

(c) The values of B1 and B2 are 
 B1 = 

B2= 
(d) The lowest two frequencies of standing waves are (expression and value) 

 The Lowest 

 The Second Lowest 

(e) The expressions of D1 and D2 are 
 D 1 =  
 D 2 = 

(f) The constants α 2 (expression and value) and C0 are (expression only) 

  α 2 = 

 C0 = 
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Theoretical Question 3 
Part A 

Neutrino Mass and Neutron Decay 
 

A free neutron of mass mn decays at rest in the laboratory frame of reference into three 
non-interacting particles: a proton, an electron, and an anti-neutrino. The rest mass of the 
proton is mp, while the rest mass of the anti-neutrino mv is assumed to be nonzero and much 
smaller than the rest mass of the electron me. Denote the speed of light in vacuum by c. The 
measured values of mass are as follows: 

mn＝939.56563 MeV/c2, mp＝ 938.27231 MeV/c2, me＝0.5109907 MeV/c2 
In the following, all energies and velocities are referred to the laboratory frame. Let E be the 
total energy of the electron coming out of the decay. 
(a) Find the maximum possible value Emax of E and the speed vm of the anti-neutrino when E 

= Emax. Both answers must be expressed in terms of the rest masses of the particles and the 
speed of light. Given that mv < 7.3 eV/c2, compute Emax and the ratio vm /c to 3 significant 
digits.                                (4.0 points) 
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Part B 
Light Levitation 

 

A transparent glass hemisphere with radius R and mass m has an index of refraction n. In 
the medium outside the hemisphere, the index of refraction is equal to one. A parallel beam of 
monochromatic laser light is incident uniformly and normally onto the central portion of its 
planar surface, as shown in Figure 3. The acceleration of gravity g  is vertically downwards. 
The radius δ  of the circular cross-section of the laser beam is much smaller than R . Both the 
glass hemisphere and the laser beam are axially symmetric with respect to the z-axis. 

The glass hemisphere does not absorb any laser light. Its surface has been coated with a 
thin layer of transparent material so that reflections are negligible when light enters and leaves 
the glass hemisphere. The optical path traversed by laser light passing through the 
non-reflecting surface layer is also negligible. 
(b) Neglecting terms of the order (δ /R)3 or higher, find the laser power P needed to balance 

the weight of the glass hemisphere.                      (4.0 points) 
Hint: 2/1cos 2θθ −≈ when θ is much smaller than one. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 

R 

glass hemisphere 

laser beam 

z 

n 

2δ 

g  
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 [Answer Sheet]        Theoretical Question 3 
 

Wherever requested, give each answer as analytical expressions followed by numerical 
values and units. For example: area of a circle A = π r 2 = 1.23 m2. 

 
Neutrino Mass and Neutron Decay 

 
(a) (Give expressions in terms of rest masses of the particles and the speed of light) 

The maximum energy of the electron is (expression and value) 
 
 
 
 
 
 
The ratio of anti-neutrino’s speed at E = Emax to c is (expression and value) 
 
 
 
 
 
 

 
 

Light Levitation 
 

(b) The laser power needed to balance the weight of the glass hemisphere is 
 

 
 
 Emax = 
 
 

 
 
 vm /c = 
 
 

 
 P = 
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Taipei, Taiwan 
  

Experimental Competition 
 

Wednesday, August 6, 2003 
 

Time Available : 5 hours 
 
Please Read This First: 
 
1. Use only the pen provided. 
2. Use only the front side of the answer sheets and paper. 
3. In your answers please use as little text as possible; express yourself primarily 

in equations, numbers and figures. If the required result is a numerical 
number, underline your final result with a wavy line. 

4. Write on the blank sheets of paper the results of your measurements and 
whatever else you consider is required for the solution of the question and that 
you wish to be marked. 

5. It is absolutely essential that you enter in the boxes at the top of each sheet of 
paper used your Country and your student number [Student No.]. In addition, 
on the blank sheets of paper used for each question, you should enter the 
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wish to be marked for each question [Total No. of pages]. If you use some 
blank sheets of paper for notes that you do not wish to be marked, put a large 
cross through the whole sheet and do not include them in your numbering. 

6. At the end of the exam please put your answer sheets and graphs in order. 
7. Error bars on graphs are only needed in part A of the experiment. 
8. Caution: Do not look directly into the laser beam. You can damage your 

eyes!! 
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Apparatuses and materials 
1. Available apparatuses and materials are listed in the following table: 
 

Item Apparatus & material Quantity 

 

Item Apparatus & material Quantity 

A Photodetector (PD) 1 I Batteries 2 

B 
Polarizers with 
Rotary mount 

2 J Battery box 1 

C 
90 TN-LC cell (yellow 

wires) with rotary LC mount 
1 K Optical bench 1 

D Function generator 1 L Partially transparent papers 2 

E Laser diode (LD) 1 M Ruler 1 

F Multimeters 2 N 
White tape * 
(for marking on apparatus) 

1 

G 
Parallel LC cell  
(orange wires) 

1 O Scissors 1 

H Variable resistor 1 P Graph papers 10 

* Do not mark directly on apparatus. When needed, stick a piece of the white tape on the parts 
and mark on the white tape.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 1 

A 
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H 
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ON 
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2. Instructions for the multimeter: 
 

‧“DC/AC” switch for selecting DC or AC measurement. 
‧Use the “VΩ” and the “COM” inlets for voltage and resistance measurements. 
‧Use the “mA” and the “COM” inlets for small current measurements. The display then 

shows the current in milliamperes. 
‧Use the function dial to select the proper function and measuring range.  “V” is for 

voltage measurement, “A” is for current measurement and “Ω”is for resistance 
measurement.  

 
 

 

Common  
port 

Voltage & 
Resistance  
port 

Current 
port (mA) 

 

Current 
range 

Voltage 
range 

DC/AC  
switch 

Function 
dial 

Current 
port (mA) 

Resistance 
range 

Common  
port 

Voltage & 
Resistance  
port 

Fig. 2 
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3. Instructions for the Function Generator: 
‧The power button may be pressed for “ON” and pressed again for “OFF” 
‧Select the frequencies range, and press the proper button. 
‧The frequency is shown on the digital display. 
‧Use the coarse and the fine frequency adjusting knobs to tune the proper frequency. 
‧Select the square-wave form by pressing the left most waveform button. 
‧Use the amplitude-adjusting knob to vary the output voltage. 
 

 

Output 
Amplitude 
Adjusting 
knob 

Waveform 
buttons 

Frequency 
Range 
buttons 

Frequency  
display 

Frequency 
Coarse 
Adjusting
knob 

Frequency 
Fine 
Adjusting
knob 

Power 
On/Off 
button 

Output 
connector 

Fig.3 
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Part A: Optical Properties of Laser Diode  
 

I. Introduction 
 
1. Laser Diode 

The light source in this experiment is a laser diode which emits laser light with 
wavelength 650 nm. When the current of the laser diode (LD) is greater than the threshold 
current, the laser diode can emit monochromatic, partially polarized and coherent light. 
When the current in the laser diode is less than the threshold, the emitted light intensity is 
very small. At above the threshold current, the light intensity increases dramatically with 
the current and keeps a linear relationship with the current. If the current increases further, 
then the increasing rate of the intensity with respect to the current becomes smaller because 
of the higher temperature of the laser diode. Therefore, the optimal operating current range 
for the laser diode is the region where the intensity is linear with the current. In general, the 
threshold current Ith is defined as the intersection point of the current axis with the 
extrapolation line of the linear region. 
Caution: Do not look directly into the laser beam. You can damage your eyes!! 

 
2. Photodetector 

The photodetector used in this experiment consists of a photodiode and a current 
amplifier. When an external bias voltage is applied on the photodiode, the photocurrent is 
generated by the light incident upon the diode. Under the condition of a constant 
temperature and monochromatic incident light, the photocurrent is proportional to the light 
intensity. On the other hand, the current amplifier is utilized to transfer the photocurrent 
into an output voltage. There are two transfer ratios in our photodetector – high and low 
gains. In our experiment, only the low gain is used. However, because of the limitation of 
the photodiode itself, the output voltage would go into saturation at about 8 Volts if the 
light intensity is too high and the photodiode cannot operate properly any more. Hence the 
appropriate operating range of the photodetector is when the output voltage is indeed 
proportional to the light intensity. If the light intensity is too high so that the photodiode 
reaches the saturation, the reading of the photodetector can not correctly represent the 
incident light intensity. 

 
 
II. Experiments and procedures 
 
Characteristics of the laser diode & the photodetector 
 

In order to make sure the experiments are done successfully, the optical alignment of 
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light rays between different parts of an experimental setup is crucial. Also the light source 
and the detector should be operated at proper condition. Part A is related to these questions 
and the question of the degree of polarization. 

 

1. Mount the laser diode and photodetector in a horizontal line on the optical bench, as shown 
in Fig. 4. Connect the variable resistor, battery set, ampere meter, voltage meter, laser 
diode and photodetector according to Fig. 5. Adjust the variable resistor so that the current 
passing through LD is around 25 mA and the laser diode emits laser light properly. Choose 
the low gain for the photodetector. Align the laser diode and the photodetector to make the 
laser light level at the small hole on the detector box and the reading of the photodetector 
reaches a maximum value. 
Caution: Do not let the black and the red leads of the battery contact with each other 
to avoid short circuit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
2. Use the output voltage of the photodetector to represent the laser light intensity J. Adjust 

the variable resistor to make the current I of the laser diode varying from zero to a 
maximum value and measure the J as I increases. Be sure to choose appropriate current 
increment in the measurement. 

 

~60cm 

LD PD 

Fig. 4  Optical setup (LD：laser diode; PD：photodetector). 
 

Fig. 5  Equivalent circuit for the connection of the laser diode. 
 

3V 
 

A 
I 

100Ω LD PD 

V 
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Question A-(1) (1.5 point) 
Measure, tabulate, and plot the J vs. I curve.  

 
Question A-(2) (3.5 points) 
Estimate the maximum current Im with uncertainty in the linear region of the 
J vs. I curve. Mark the linear region on the J - I curve figure by using arrows (↓) and 
determine the threshold current Ith with uncertainty. 

 
3. Choose the current of the laser diode as Ith + 2(Im – Ith)/3 to make sure the laser diode and 

photodetector are operated well. 
4. To prepare for the part B experiment: Mount a polarizer on the optical bench close to the 

laser diode as shown in Fig. 6. Make sure the laser beam passing through the center portion 
of the polarizer. Adjust the polarizer so that the incident laser beam is perpendicular to the 
plane of the polarizer. (Hint: You can insert a piece of partially transparent paper as a test 
screen to check if the incident and reflected light spots coincide with each other.) 

 
 
 
 
 
 
 
 
 

5. Keep the current of the laser diode unchanged, mount a second piece of polarizer on the 
optical bench and make sure proper alignment is accomplished, i.e., set up the source, 
detector and polarizers in a straight line and make sure each polarizer plane is 
perpendicular to the light beam. 

LD PD P 

Fig. 6  Alignment of the polarizer (P：polarizer). 
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 Part B  Optical Properties of Nematic Liquid Crystal : 
Electro-optical switching characteristic of 90o TN LC cell 

 
I. Introduction 
 
1. Liquid Crystal 

Liquid crystal (LC) is a state of matter that is intermediate between the crystalline 
solid and the amorphous liquid. The nematic LCs are organic compounds consist of 
long-shaped needle-like molecules. The orientation of the molecules can be easily aligned 
and controlled by applying an electrical field. Uniform or well prescribed orientation of the 
LC molecules is required in most LC devices. The structure of the LC cell used in this 
experiment is shown in Fig 7. Rubbing the polyimide film can produce a well-aligned 
preferred orientation for LC molecules on substrate surfaces, thus due to the molecular 
interaction the whole slab of LC can achieve uniform molecular orientation. The local 
molecular orientation is called the director of LC at that point.  

The LC cell exhibits the so-called double refraction phenomenon with two principal 
refractive indices. When light propagates along the direction of the director, all polarization 
components travel with the same speed 0/ ncvo = , where no is called the ordinary index of 
refraction. This propagation direction (direction of the director) is called the optic axis of 
the LC cell. When a light beam propagates in the direction perpendicular to the optic axis, 
in general, there are two speeds of propagation. The electric field of the light polarized 
perpendicular (or parallel) to the optic axis travels with the speed of 0/ ncvo = (or 

ee ncv /= , where ne is called the extraordinary index of refraction). The birefringence 
(optical anisotropy) is defined as the difference between the extraordinary and the ordinary 
indices of refraction oe nnn −≡∆ . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Glass Substrate 

ITO Electrode 

Glass Substrate 

PI alignment Film 

LC Layer ITO Electrode 

Fig. 7  LC cell structure 
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2. 90o Twisted Nematic LC Cell 
In the 90o twisted nematic (TN) cell shown in Fig. 8, the LC director of the back 

surface is twisted 90o with respect to the front surface. The front local director is set 
parallel to the transmission axis of the polarizer. An incident unpolarized light is converted 
into a linearly polarized light by the front polarizer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When a linearly polarized light traverses through a 90o TN cell, its polarization 

follows the twist of the LC directors (polarized light sees ne only) so that the output beam 
remains linearly polarized except for that its polarization axis is rotated by 90o (it’s called 
the polarizing rotary effect by ne; similarly we can also find polarizing rotary effect by no). 
Thus, for a normally black (NB) mode using a 90o TN cell, the analyzer’s (a second 
polarizer) transmission axis is set to be parallel to the polarizer’s transmission axis, as 
shown in Fig. 9. However, when the applied voltage V across the LC cell exceeds a critical 
value Vc, the director of LC molecules tends to align along the direction of applied external 
electrical field which is in the direction of the propagation of light. Hence, the polarization 
guiding effect of the LC cell is gradually diminishing and the light leaks through the 
analyzer. Its electro-optical switching slope γ is defined as (V90–V10)/V10, where V10 and 
V90 are the applied voltages enabling output light signal reaches up to 10% and 90% of its 
maximum light intensity, respectively.  

 
 
 
 
 

 

PI  Polarizer PI  Analyzer 

LC molecules 

Light 
Propagation 
Direction 

Fig. 8  90o TN LC cell 
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II. Experiments and procedures 
 
1. Setup a NB 90o TN LC mode between two polarizers with parallel transmission axes and 

apply 100 Hz square wave voltage using a function generator onto the ITO portions of two 
glass substrates and vary the applied voltage (Vrms) from 0 to 7.2 Volts.  
* In the crucial turning points, take more data if necessary. 

 
Question B-(1) (5.0 points) 
Measure, tabulate, and plot the electro-optical switching curve (J  vs. Vrms curve) of the 
NB 90o TN LC, and find its switching slope γ, where γ is defined as (V90–V10)/V10. 

 
 

Question B-(2) (2.5 points) 
Determine the critical voltage Vc of this NB 90o TN LC cell.  Show explicitly with graph 
how you determine the value Vc.  
Hint:* When the external applied voltage exceeds the critical voltage, the light 
transmission increases rapidly and abruptly.  

Fig. 9  NB mode operation of a 90o TN cell 

NB operation 

Z 

Polarizer 90o TN-LC 

E 

Analyzer 
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Part C  Optical Properties of Nematic Liquid Crystal : 
Electro-optical switching characteristic of parallel aligned LC cell 

 
I. Introduction 

Homogeneous Parallel-aligned LC Cell 
For a parallel-aligned LC cell, the directors in the front and back substrates are 

parallel with each other, as shown in Fig. 10. When a linearly polarized light impinges on a 
parallel-aligned cell with its polarization parallel to the LC director (rubbing direction), a 
pure phase modulation is achieved because the light behaves only as an extraordinary ray.  

 
 
 
 
 
 
 

 
 
 

 
On the other hand, if a linearly polarized light is normally incident onto a parallel 

aligned cell but with its polarization making o45=θ  relative to the direction of the 
aligned LC directors (Fig. 11), then phase retardation occurs due to the different 
propagating speed of the extraordinary and ordinary rays in the LC medium. In this 

o45=θ  configuration, when the two polarizers are parallel, the normalized transmission 
of a parallel aligned LC cell is given by 

2
cos2

||

δ
=T  

The phase retardation δ is expressed as  

λλπδ /),(2 Vnd ∆=  

where d is the LC layer thickness,  λ is the wavelength of light in air, V is the root mean 
square of applied AC voltage, and Δn, a function of λ and V, is the LC birefringence. It 
should be also noted that, at V = 0,  Δn (= ne–no) has its maximum value, so does δ. Also 
Δn decreases as V increases. 

In the general case, we have 

2
sin2sin1 22

//
δθ−=T  

LC molecule 

Glass substrate (ITO+PI) 

Fig. 10  Homogeneous parallel aligned LC 
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2
sin2sin 22 δθ=⊥T  

where // and ⊥  represent that the transmission axis of analyzer is parallel and 
perpendicular to that of the polarizer, respectively. 

 
II. Experiments and procedures 
 

1. Replace NB 90o TN LC cell with parallel-aligned LC cell. 
2. Set up θ= 45o configuration at V = 0 as shown in Fig. 11. Let the analyzer’s transmission 

axis perpendicular to that of the polarizer, then rotate the parallel-aligned LC cell until the 
intensity of the transmitted light reaches the maximum value ( ⊥T ). This procedure 
establishes the θ = 45o configuration. Take down ⊥T value, then, measure the intensity of 
the transmitted light ( //T ) of the same LC cell at the analyzer’s transmission axis parallel to 

that of the polarizer (also at V = 0). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Question C-(1) (2.5 points) 
Assume that the wavelength of laser light 650 nm, LC layer thickness 7.7 μm, and 
approximate value of Δn ≈ 0. 25 are known. From the experimental data T⊥  and 

T‖obtained above, calculate the accurate value of the phase retardation δ and accurate 
value of birefringence Δn of this LC cell at V=0.  

 

Fig. 11  Schematic diagram of experimental setup 
(The arrow L is the alignment direction.) 

Homogeneous 
Parallel Aligned  
LC cell        
    

λ VAC 

For T// 

For T⊥ Analyzer 

Polarizer 

θ 

L 

d 
 

P 

Fig
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3. Similar to the above experiment (1), in the θ= 45o configuration, apply 100 Hz square 
wave voltage using a function generator onto the ITO portions of two glass substrates, vary 
the applied voltage (Vrms) from 0 to 7 Volts and measure the electro-optical switching 
curve (T‖) at the analyzer’s transmission axis parallel to the polarizer’s transmission axis. 
(Hint: Measuring the T⊥ switching curve is helpful to increase the data accuracy of the 
above T‖ measurement; the data of T⊥ are not needed in the following questions. ) 
* In the crucial turning points, take more data if necessary (especially in the range of 

0.5-4.0 Volts). 
 

Question C-(2) (3.0 points) 
Measure, tabulate, and plot the electro-optical switching curve for T‖ of this parallel 
aligned LC cell in the θ = 45o configuration. 

 
Question C-(3) (2.0 points) 
From the electro-optical switching data, find the value of the external applied voltage Vπ. 
Hint: * Vπ is the applied voltage which enables the phase retardation of this anisotropic 

LC cell become π (or 180o). 
* Remember that Δn is a function of applied voltage, and Δn decreases as V 

increases.  
* Interpolation is probably needed when you determine the accurate value of this Vπ. 
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Solution to Theoretical Question 1 
 

A Swing with a Falling Weight 

Part A 
(a) Since the length of the string θRsL +=  is constant, its rate of change must be zero. 

Hence we have 
0=+ θ Rs                              (A1) 

(b) Relative to O, Q moves on a circle of radius R with angular velocity θ , so 

tstRvQ
ˆˆ




 −== θ                           (A2) 

(c) Refer to Fig. A1. Relative to Q, the displacement of P in a time interval ∆t 
is ttsrstsrsr ∆+−=∆+−∆=′∆ ]ˆ)ˆ)([(ˆ)()ˆ)(( 



 θθ . It follows 

tsrsv ˆˆ 



 +−=′ θ                            (A3) 

 
 
 
 
 
 
 
 
 
 
(d) The velocity of the particle relative to O is the sum of the two relative velocities given in 

Eqs. (A2) and (A3) so that 

rstRtsrsvvv Q ˆˆ)ˆˆ( θθθ 





 −=++−=+′=                (A4) 

(e) Refer to Fig. A2. The ( t̂− )-component of the velocity change v∆  is given 
by tvvvt ∆=∆=∆⋅− θθ 

)ˆ( . Therefore, the t̂ -component of the acceleration tva ∆∆= /  
is given by θvat −=⋅ ˆˆ . Since the speed v of the particle is θs  according to Eq. (A4), 
we see that the t̂ -component of the particle’s acceleration  at P is given by 

2)(ˆ θθθθ 

 ssvta −=−=−=⋅                        (A5) 

 
 
 
 
 
 

t̂  

Q 

r̂−  

s 

s+∆s ∆θ 

s∆θ 
P 

Figure A1 

r ′∆  
s+∆s 

t̂−  

Q 

r̂−  

v  
∆θ 

P 

θ∆v  

Figure A2 O 

∆θ 

v∆  
vv  ∆+  

∆v 

v 
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Note that, from Fig. A2, the radial component of the acceleration may also be obtained as 

dtsddtdvra /)(/ˆ θ −=−=⋅ . 

(f) Refer to Fig. A3. The gravitational potential energy of the particle is given by mghU −= . 
It may be expressed in terms of s and θ  as 

]sin)cos1([)( θθθ sRmgU +−−=                  (A6) 
 
 
 
 
 
 
 
 
 
(g) At the lowest point of its trajectory, the particle’s gravitational potential energy  U must 

assume its minimum value Um

mθ
. By differentiating Eq. (A6) with respect to θ and using 

Eq. (A1), the angle  corresponding to the minimum gravitational energy can be 
obtained. 

[ ]
θ

θθθ

θθ
θ

θ
θ

cos
cossin)(sin

cossinsin

mgs
sRRmg

s
d
dsRmg

d
dU

−=
+−+−=







 ++−=

 

At mθθ = , 0=
m

d
dU

θθ
. We have

2
πθ =m . The lowest point of the particle’s trajectory is 

shown in Fig. A4 where the length of the string segment of QP is s = L−πR /2. 
 
 
 
 
 
 
 
 
 
 

From Fig. A4 or Eq. (A6), the minimum potential energy is then 
( ) )]2/([2/ RLRmgUUm ππ −+−==                  (A7) 

Initially, the total mechanical energy E is 0. Since E is conserved, the speed  vm of the 
particle at the lowest point of its trajectory must satisfy 

R 

x 

O 

s 

A 

Q 

P  Figure A4 

2
π  

R 
θ  

x 

O 
s 

A 

Q 

s sinθ 

R−R cosθ 

P 

R cosθ 

Figure A3 

h 
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mm UmvE +== 2
2
10                           (A8) 

From Eqs. (A7) and (A8), we obtain 

)]2/([2/2 RLRgmUv mm π−+=−=                 (A9) 

 

Part B 
(h) From Eq. (A6), the total mechanical energy of the particle may be written as 

]sin)cos1([
2
1)(

2
10 22 θθθ sRmgmvUmvE +−−=+==          (B1) 

From Eq. (A4), the speed v is equal to θs . Therefore, Eq. (B1) implies 

]sin)cos1([2)( 22 θθθ sRgsv +−==                   (B2) 

Let T be the tension in the string. Then, as Fig. B1 shows, the t̂ -component of the net 
force on the particle is –T + mg sin θ . From Eq. (A5), the tangential acceleration of the 
particle is )( 2θs− . Thus, by Newton’s second law, we have 

θθ sin)( 2 mgTsm +−=−                          (B3) 
 
 
 
 
 
 
 
 
 
 
 
 

According to the last two equations, the tension may be expressed as 

))(sin(2

)sin)]((
2
3

2
[tan2

]sin3)cos1(2[)sin(

21

2

θ

θθθ

θθθθ

yy
s

mgR
R
L

s
mgR

sR
s

mggsmT

−=

−−=

+−=+= 

          (B4) 

 
The functions )2/tan(1 θ=y  and 2/)/(32 RLy −= θ  are plotted in Fig B2. 

 
 

R 

θ  

x 

O 
s 

A 

Q 

P 

mg Figure B1 

T 

mg sinθ 

θ  

θ  
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From Eq. (B4) and Fig. B2, we obtain the result shown in Table B1. The angle at 
which .y2 = y1 sθ is called ( πθπ 2<< s ) and is given by 

2
tan)(

2
3 s

s R
L θ

θ =−                          (B5) 

or, equivalently, by 

2
tan

3
2 s

sR
L θ

θ −=                           (B6) 

Since the ratio L/R is known to be given by 

)
8

(
2
1tan

3
2)

8
(

16
cot

3
2

8
9 ππππππ +−+=+=

R
L               (B7) 

one can readily see from the last two equations that 8/9πθ =s . 

 
Table B1 shows that the tension T must be positive (or the string must be taut and straight) 
in the angular range 0<θ  < θ s. Once θ  reaches θ s, the tension T becomes zero and the 
part of the string not in contact with the rod will not be straight afterwards. The shortest 
possible value smin sθθ = for the length s of the line segment QP therefore occurs at and 
is given by 

Table B1 

 )( 21 yy −  θsin   tension T 

πθ <<0  positive positive positive 
πθ =  + ∞ 0 positive 

sθθπ <<  negative negative positive 

sθθ =  zero negative zero 
πθθ 2<<s  positive negative negative 

Figure B2 
y 

0 π 3 π / 2  2π 3π 

θ  

sθ  

-30 

-20 

-10 

0 

10 

20 

30 

5 π / 2  

2
tan1

θ=y  2
tan1

θ=y  

)(
2
3

2 R
Ly −= θ  

π / 2  
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RRRRLs s 352.3
16

cot
3

2)
8

9
16

cot
3
2

8
9(min ==−+=−= ππππθ         (B8) 

When sθθ = , we have T = 0 and Eqs. (B2) and (B3) then leads to ss gsv θsinmin
2 −= . 

Hence the speed  v s

gR

gRgRgsv ss

133.1
16

cos
3

4
8

sin
16

cot
3

2sinmin

=

==−= πππθ

 is 

         (B9) 

 
(i) When sθθ ≥ , the particle moves like a projectile under gravity. As shown in Fig. B3, it is 

projected with an initial speed  v s ),( ss yxP = from the position  in a direction making 
an angle )2/3( sθπφ −= with the y-axis. 
The speed Hv of the particle at the highest point of its parabolic trajectory is equal to the 
y-component of its initial velocity when projected. Thus, 

gRgRvv ssH 4334.0
8

sin
16

cos
3

4)sin( ==−= πππθ          (B10) 

The horizontal distance H traveled by the particle from point P to the point of maximum 
height is 

R
g

v
g

v
H sss 4535.0

4
9sin

22
)(2sin 22

==
−

= ππθ
              (B11) 

 
 
 
 
 
 
 
 
 
 
 

The coordinates of the particle when sθθ = are given by 

RsRsRx sss 358.0
8

sin
8

cossincos minmin =+−=−= ππθθ         (B12) 

RsRsRy sss 478.3
8

cos
8

sincossin minmin −=−−=+= ππθθ        (B13) 

Evidently, we have )(|| HRys +> . Therefore the particle can indeed reach its maximum 
height without striking the surface of the rod. 

 
 

m 

R 
θ  

L 

s mins  

x 

O 

πθ −s  

sv  
Hv  

sθ  

Figure B3 

y 

Q 

φ  

),( ss yxP =

 
H 
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Part C 
(j) Assume the weight is initially lower than O by h as shown in Fig. C1. 
 
 
 
 
 
 
 
 
 

When the weight has fallen a distance D and stopped, the law of conservation of total 
mechanical energy as applied to the particle-weight pair as a system leads to 

)( DhMgEMgh +−′=−                         (C1) 
where E′ is the total mechanical energy of the particle when the weight has stopped. It 
follows 

MgDE =′                               (C2) 
Let Λ be the total length of the string. Then, its value at θ = 0 must be the same as at any 
other angular displacement θ. Thus we must have 

)()
2

(
2

DhRshRL ++++=++= πθπΛ                 (C3) 

Noting that D = α L and introducing ℓ = L−D, we may write 
LDL )1( α−=−=                              (C4) 

From the last two equations, we obtain 
θθ RRDLs −=−−=                            (C5) 

After the weight has stopped, the total mechanical energy of the particle must be 
conserved. According to Eq. (C2), we now have, instead of Eq. (B1), the following 
equation: 

[ ]θθ sin)cos1(
2
1 2 sRmgmvMgDE +−−==′              (C6) 

The square of the particle’s speed is accordingly given by 





 +−+== θθθ sin)cos1(22)( 22

R
sgR

m
MgDsv              (C7) 

Since Eq. (B3) stills applies, the tension T of the string is given by 

)(sin 2θθ smmgT −=+−                        (C8) 
From the last two equations, it follows 

A 

h 

M 

m 

L 

R 

Figure C1 

x 

θ  

O 
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













 −+−+=





 +−+=

+=

θθθ

θθ

θθ

sin
2
3)cos1(2

sin3)cos1(22
)sin( 2

RmR
MD

s
mgR

sRD
m
M

s
mg

gsmT





             (C9) 

where Eq. (C5) has been used to obtain the last equality. 
We now introduce the function 

θθθθ sin
2
3cos1)( 






 −+−=

R
f                      (C10) 

From the fact RDL >>−= )( , we may write 

)sin(1cossin
2
31)( φθθθθ −+=−+≈ A

R
f                (C11) 

where we have introduced 
2)

2
3(1

R
A +=  ,  






= −

3
2tan 1 Rφ                   (C12) 

From Eq. (C11), the minimum value of f(θ) is seen to be given by 
2

min 2
3111 






+−=−=

R
Af                       (C13) 

Since the tension T remains nonnegative as the particle swings around the rod, we have 
from Eq. (C9) the inequality 

0
2
311)( 2

min ≥





+−+

−
=+

RmR
LMf

mR
MD                (C14) 

or 







+






≈






++






≥+








RmR
M

RmR
M

mR
ML

2
3

2
311

2
            (C15) 

From Eq. (C4), Eq. (C15) may be written as 

)1(
2
31 α−






 +≥+








R
L

mR
ML

mR
ML                     (C16) 

Neglecting terms of the order (R/L) or higher, the last inequality leads to 

m
M

m
M

L
R

R
L

mR
ML

R
L

R
L

mR
ML

mR
ML

3
21

1

1
3
2

3
21

2
3

1
2
3

2
3

1
1

+
≈

+

−
=

+

−
=







 +

+







−≥α           (C17) 

The critical value for the ratio D/L is therefore 

m
Mc

3
21

1

+
=α                            (C18) 
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Marking Scheme 
 

Theoretical Question 1 
A Swing with a Falling Weight 

Total 
Scores 

Sub 
Scores Marking Scheme for Answers to the Problem 

Part A 
 

4.3 pts. 

(a) 
 

0.5 

Relation between θ and s .  ( θ Rs −= )            
 0.2 for θ∝ s . 
 0.3 for proportionality constant (-R). 

(b) 
 

0.5 

Velocity  of Q relative to O.  ( tRvQ
ˆθ = )            

 0.2 for magnitude Rθ . 
 0.3 for direction t̂ . 

(c) 
 

0.7 

Particle’s velocity  at P relative to Q. ( tsrsv ˆˆ 



 +−=′ θ )    
 0.2+0.1 for magnitude and direction of r̂ -component. 
 0.3+0.1 for magnitude and direction of t̂ -component. 

(d) 
0.7 

Particle’s velocity  at P relative to O.  ( rsvvv Q ˆθ −=+′= ) 
 0.3 for vector addition of v ′  and Qv . 
 0.2+0.2 for magnitude and direction of v . 

(e) 
 

0.7 

t̂ -component of particle’s acceleration at P. 
 0.3 for relating a  or ta ˆ⋅  to the velocity in a way that implies 

svta /|ˆ| 2=⋅ . 
 0.4 for 2ˆ θ sta −=⋅  (0.1 for minus sign.) 

(f) 
 

0.5 

Potential energy U. 
 0.2 for formula mghU −= . 
 0.3 for θθ sin)cos1( sRh +−=  or U as a function of θ, s, and R. 

(g) 
 

0.7 

Speed at lowest point vm.  
 0.2 for lowest point at 2/πθ =  or U equals minimum Um. 
 0.2 for total mechanical energy 02/2 =+= mm UmvE . 

 0.3 for )]2/([2/2 RLRgmUv mm π−+=−= . 
Part B 

 
4.3 pts. 

(h) 
 

2.4 

Particle’s speed  vs when QP is shortest. 
 0.4 for tension T becomes zero when QP is shortest. 

 0.3 for equation of motion )(sin 2θθ smmgT −=+− . 

 0.3 for ]sin)cos1([2/)(0 2 θθθ sRmgsmE +−−==  . 

 0.4 for 
2

tan)(
2
3 s

s R
L θ

θ =− . 

 0.5 for 8/9πθ =s . 

 0.3+0.2  for gRgRvs 133.116/cos3/4 == π  
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(i) 
 

1.9 

The speed vH of the particle at its highest point. 
 0.4 for particle undergoes projectile motion when sθθ ≥ . 
 0.3 for angle of projection )2/3( sθπφ −= . 
 0.3 for Hv  is the y-component of its velocity at sθθ = . 
 0.4 for noting particle does not strike the surface of the rod. 
 0.3+0.2 for 

gRgRvH 4334.0)8/sin()16/cos(3/4 == ππ . 
Part C 

 
3.4 pts 

(j) 
 

3.4 

The critical value cα  of the ratio D/L. 
 0.4 for particle’s energy MgDE =′  when the weight has stopped. 
 0.3 for θRDLs −−= . 
 0.3 for ]sin)cos1([2/2 θθ sRmgmvMgDE +−−==′ . 

 0.3 for )(sin 2θθ smmgT −=+− . 
 0.3 for concluding T must not be negative. 
 0.6 for an inequality leading to the determination of the range of D/L. 
 0.6 for solving the inequality to give the range of α = D/L. 
 0.6 for )3/21( mMc +=α . 
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Solution to Theoretical Question 2 
 

A Piezoelectric Crystal Resonator under an Alternating Voltage 

Part A 
(a) Refer to Figure A1. The left face of the rod moves a distance v∆t while the pressure wave 

travels a distance u∆t with ρ/Yu = . The strain at the left face is 

u
v

tu
tvS −=−==

∆
∆∆



                         (A1a) 

From Hooke’s law, the pressure at the left face is 

uv
u
vYYSp ρ==−=                         (A1b) 

 
 
 
 
 
 
 
 
 
 
(b) The velocity v is related to the displacement ξ as in a simple harmonic motion (or a 

uniform circular motion, as shown in Figure A2) of angular frequency ku=ω . Therefore, 
if )(sin),( 0 tuxktx −= ξξ , then 

)(cos),( 0 tuxkkutxv −−= ξ .                          (A2) 
The strain and pressure are related to velocity as in Problem (a). Hence, 

)(cos/),(),( 0 tuxkkutxvtxS −=−= ξ                   (A3) 

)(cos),(
)(cos),(),(

0

0
2

tuxkkYtxYS
tuxkuktxuvtxp

−−=−=
−−==

ξ
ξρρ               (A4) 

--------------------------------------------------------------------------- 
Alternatively, the answers may be obtained by differentiations: 

)(cos),( 0 tuxkku
t

txv −−== ξ
∆
ξ∆ , 

)(cos),( 0 tuxkk
x

txS −== ξ
∆

ξ∆ , 

)(cos),( 0 tuxkkY
x

Ytxp −−=−= ξ
∆

ξ∆ . 

------------------------------------------------------------------------------ 

p 

u∆t 

t=0 

∆t/2 p p Figure A1 

v∆t 

∆t p p 

ξ 
kx−ω t 

v 

x 

0ξ  

Figure A2 
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Part B 
(c) Since the angular frequency ω and speed of propagation u are given, the wavelength  is 

given by λ = 2π / k with k = ω / u. The spatial variation of the displacement ξ is therefore 
described by 







 −+






 −=

2
cos

2
sin)( 21

bxkBbxkBxg                  (B1) 

Since the centers of the electrodes are assumed to be stationary, g(b/2) = 0. This leads to 
B2 = 0. Given that the maximum of g(x) is 1, we have B1







 −±=

2
sin)( bx

u
xg ω

 = ±1 and 

                         (B2) 

Thus, the displacement is 

tbx
u

tx ωωξξ cos
2

sin2),( 0 





 −±=                   (B3) 

 
(d) Since the pressure p (or stress T ) must vanish at the end faces of the quartz slab (i.e., x = 0 

and x = b), the answer to this problem can be obtained, by analogy, from the resonant 
frequencies of sound waves in an open pipe of length b. However, given that the centers 
of the electrodes are stationary, all even harmonics of the fundamental tone must be 
excluded because they have antinodes, rather than nodes, of displacement at the bisection 
plane of the slab. 

Since the fundamental tone has a wavelength  λ = 2b, the fundamental frequency is 
given by )2/(1 buf = . The speed of propagation u is given by 

3
3

10
1045.5

1065.2
1087.7 ×=

×
×==

ρ
Yu m/s                 (B4) 

and, given that b =1.00×10-2

)kHz(273
21 ==
b

uf

 m, the two lowest standing wave frequencies are 

, )kHz(818
2
33 13 ===
b
uff           (B5) 

-------------------------------------------------------------------------------------------------------------- 
[Alternative solution to Problems (c) and (d)]: 

A longitudinal standing wave in the quartz slab has a displacement node at x = b/2. It 
may be regarded as consisting of two waves traveling in opposite directions. Thus, its 
displacement and velocity must have the following form 

tbxk

utbxkutbxktx

m

m

ωξ

ξξ

cos
2

sin2

2
sin

2
sin),(







 −=















 +−+






 −−=

               (B6) 

tbxk

utbxkutbxkkutxv

m

m

ωωξ

ξ

sin
2

sin2

2
cos

2
cos),(







 −−=















 +−−






 −−−=

           (B7) 

where ω  = k u and the first and second factors in the square brackets represent waves 
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traveling along the +x and –x directions, respectively. Note that Eq. (B6) is identical to Eq. 
(B3) if we set ξ m = ±ξ 0

For a wave traveling along the –x direction, the velocity v must be replaced by –v in 
Eqs. (A1a) and (A1b) so that we have 

. 

u
vS −=  and uvp ρ=     (waves traveling along +x)       (B8) 

u
vS =   and uvp ρ−=    (waves traveling along –x)       (B9) 

As in Problem (b), the strain and pressure are therefore given by 

tbxkk

utbxkutbxkktxS

m

m

ωξ

ξ

cos
2

cos2

2
cos

2
cos),(







 −=















 +−−






 −−−−=

          (B10) 

tbxku

utbxkutbxkutxp

m

m

ωωξρ

ωξρ

cos
2

cos2

2
cos

2
cos),(







 −−=















 +−+






 −−−=

        (B11) 

Note that v, S, and p may also be obtained by differentiating ξ as in Problem (b). 
The stress T or pressure p must be zero at both ends (x = 0 and x = b) of the slab at all 

times because they are free. From Eq. (B11), this is possible only if 0)2/cos( =kb or 

,5,3,1,2
==== nnb

f
fb

u
kb π

λ
πω           (B12) 

In terms of wavelength λ, Eq. (B12) may be written as 

,5,3,1,2 == n
n
bλ .                     (B13) 

The frequency is given by 

,5,3,1,
22

==== nY
b
n

b
nuuf

ρλ
.          (B14) 

This is identical with the results given in Eqs. (B4) and (B5). 
-------------------------------------------------------------------------------------------------------------- 

 
(e) From Eqs. (5a) and (5b) in the Question, the piezoelectric effect leads to the equations 

)( EdSYT p−=                              (B15) 

E
d

YSYd
T

p
Tp 










−+=

ε
εσ

2

1                     (B16) 

Because x = b/2 must be a node of displacement for any longitudinal standing wave in the 
slab, the displacement ξ and strain S must have the form given in Eqs. (B6) and (B10), i.e., 
with ku=ω , 

)cos(
2

sin),( φωξξ +





 −= tbxktx m                    (B17) 
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)cos(
2

cos),( φωξ +





 −= tbxkktxS m                   (B18) 

where a phase constant φ is now included in the time-dependent factors. 
By assumption, the electric field E between the electrodes is uniform and depends only 

on time: 

h
tV

h
tVtxE m ωcos)(),( ==                       (B19) 

Substituting Eqs. (B18) and (B19) into Eq. (B15), we have 









−+






 −= tV

h
d

tbxkkYT m
p

m ωφωξ cos)cos(
2

cos           (B20) 

The stress T must be zero at both ends (x = 0 and x = b) of the slab at all times because they 
are free. This is possible only if φ  = 0 and 

h
Vdkbk m

pm =
2

cosξ                          (B21) 

Since φ  = 0, Eqs. (B16), (B18), and (B19) imply that the surface charge density must have 
the same dependence on time t and may be expressed as 

txtx ωσσ cos)(),( =                         (B22) 
with the dependence on x given by 

h
Vd

Ybxkkb
d

Y

h
Vd

YbxkkYdx

m

T

p
T

p

m

T

p
Tmp


















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




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
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



 −=











−+






 −=

ε
ε

ε
εξσ

22

2

1
2

cos

2
cos

1
2

cos)(

            (B23) 

 
(f) At time t, the total surface charge Q(t) on the lower electrode is obtained by integrating 

),( txσ in Eq. (B22) over the surface of the electrode. The result is 


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Y
h

bw

dx
d
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d
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          (B24) 

where  

h
bwC Tε=0 ,   3

222
2 1082.9

06.427.1
10)25.2( −

−

×=
×

×
==

T

pd
Y

ε
α         (B25) 

(The constant α is called the electromechanical coupling coefficient.) 



 

 25 

Note: The result C 0 = ε T 

xx ≈tan
bw/ h can readily be seen by considering the static limit k = 0 

of Eq. (5) in the Question. Since  when x << 1, we have 

0
22

0
0

)]1([)(/)(lim CCtVtQ
k

=−+≈
→

αα                (B26) 

Evidently, the constant C 0 is the capacitance of the parallel-plate capacitor formed by the 
electrodes (of area bw) with the quartz slab (of thickness h and permittivity ε T) serving as 
the dielectric medium. It is therefore given by ε T bw / h. 
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Marking Scheme 
 

Theoretical Question 2 
A Piezoelectric Crystal Resonator under an Alternating Voltage 

Total 
Scores 

Sub 
Scores Marking Scheme for Answers to the Problem 

Part A 
 

4.0 pts. 

(a) 
 

1.6 

The strain S and pressure p on the left face. 
 0.4 for |∆ℓ| = v∆t and ℓ = u∆t. 
 0.4 for S = -v/u.                    (0.1 for sign) 
 0.4 for relating p to S as p = −YS.      (0.1 for sign) 
 0.4 for p = ρu v .                    (0.1 for sign) 

(b) 
 

2.4 

The velocity v(x, t), strain S(x, t), and pressure p(x, t). 
 0.3×3 sinusoidal variation with correct phase constant. (0.2 for phase 

constant.) 
 0.3×3 for amplitude. 
 0.2×3 for dependence on x and t as (kx- ku t). 

Part B 
 

6.0 pts 

(c) 
 

1.2 

The function g(x) for a standing wave of angular frequency ω. 
 0.4 for g(b/2) = 0. 
 0.3+0.1 for B1=±1 (0.1 for both signs) 
 0.4 for B2 = 0  

(d) 
 

1.2 

The two lowest standing wave frequencies. 
 0.2 for wavelength of fundamental tone λ = 2b. 
 0.2 for excluding even harmonics. 
 (0.3+0.1) for f1 = u/2b = 273 kHz.      (0.1 for value) 
 (0.3+0.1) for f3 = 3u/2b = 818 kHz.     (0.1 for value) 

(e) 
 

2.2 

The surface charge density σ  as a function of x and t. 
 0.1×2 for ξ  and S, each a separable function of x and t. 
 0.1×2 for ξ and S, each depends on time as cos ω t with φ = 0. 
 0.3 for spatial part )2/(sin)( bxkx m −= ξξ . 
 0.3 for spatial part )2/(cos)( bxkkxS m −= ξ . 
 0.3 for YhVdbxkkxT mpm ]/)2/(cos[)( −−= ξ . 
 0.3 for hVdkbk mpm /)2/cos( =ξ . 
 0.6 for D1 (0.3) and D2 (0.3) in )(xσ . 

(f) 
 

1.4 

The constants C0 and 2α . 
 0.2 for relation between σ and Q as 

Q(t) = ( ∫
b dxwx0 )(σ ) cos ω t. 

 0.3 for noting Q(t)/V(t) ≈ C0 as k → 0. 
 0.4 for C0 = ε T bw / h. 
 0.4+0.1 for 322 1082.9/ −×== TpYd εα . (0.1 for value) 
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Solution toTheoretical Question 3 
Part A 

Neutrino Mass and Neutron Decay 
 

(a) Let ),( 2
ee qcEc  , ),( 2

pp qcEc  , and ),( 2
vv qcEc  be the energy-momentum 4-vectors of the 

electron, the proton, and the anti-neutrino, respectively, in the rest frame of the neutron. 
Notice that νν qqqEEE pepe

 ,,,,,  are all in units of mass. The proton and the anti-neutrino 

may be considered as forming a system of total rest mass cM , total energy cEc2 , and 
total momentum cqc . Thus, we have 

vpc EEE += ,     vpc qqq  += ,     222
ccc qEM −=           (A1) 

Note that the magnitude of the vector cq  is denoted as qc. The same convention also 
applies to all other vectors. 

Since energy and momentum are conserved in the neutron decay, we have 

nec mEE =+                              (A2) 

ec qq  −=                               (A3) 
When squared, the last equation leads to the following equality 

2222
eeec mEqq −==                           (A4) 

From Eq. (A4) and the third equality of Eq. (A1), we obtain 

2222
eecc mEME −=−                          (A5) 

With its second and third terms moved to the other side of the equality, Eq. (A5) may be 
divided by Eq. (A2) to give 

)(1 22
ec

n
ec mM

m
EE −=−                       (A6) 

As a system of coupled linear equations, Eqs. (A2) and (A6) may be solved to give 

)(
2

1 222
cen

n
c Mmm

m
E +−=                      (A7) 

)(
2

1 222
cen

n
e Mmm

m
E −+=                      (A8) 

Using Eq. (A8), the last equality in Eq. (A4) may be rewritten as 

))()()((
2

1

)2()(
2

1 22222

cencencencen
n

encen
n

e

MmmMmmMmmMmm
m

mmMmm
m

q

−−+−−+++=

−−+=
    (A9) 

Eq. (A8) shows that a maximum of eE  corresponds to a minimum of 2
cM . Now the 

rest mass cM  is the total energy of the proton and anti-neutrino pair in their center of 

mass (or momentum) frame so that it achieves the minimum 
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( ) vpc mmMM +==min                       (A10) 

when the proton and the anti-neutrino are both at rest in the center of mass frame. Hence, 
from Eqs. (A8) and (A10), the maximum energy of the electron E = c2Ee is 

[ ] MeV29.1MeV292569.1)(
2

222
2

max ≈≈+−+= vpen
n

mmmm
m
cE      (A11) 

When Eq. (A10) holds, the proton and the anti-neutrino move with the same velocity vm 
of the center of mass and we have 

 
vpc mmMc

e

EEc

c

EEp

p

EEv
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E
q

E
q

E
q

E
q

c
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+====








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






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




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






=

maxmaxmax

      (A12) 

where the last equality follows from Eq. (A3). By Eqs. (A7) and (A9), the last expression 
in Eq. (A12) may be used to obtain the speed of the anti-neutrino when E = Emax. Thus, 
with M = mp+mv, we have 

00127.000126538.0

))()()((
222

≈≈
+−

−−+−−+++
=

Mmm

MmmMmmMmmMmm
c

v

en

enenenenm
     (A13) 

------------------------------------------------------------------------------------------------------ 
[Alternative Solution] 

Assume that, in the rest frame of the neutron, the electron comes out with momentum 

eqc  and energy c2Ee, the proton with pqc  and pEc2 , and the anti-neutrino with vqc  and 

vEc2 . With the magnitude of vector αq  denoted by the symbol qα, we have 

222
ppp qmE += ,   222

vvv qmE += ,   222
eee qmE +=             (1A) 

Conservation of energy and momentum in the neutron decay leads to 

envp EmEE −=+                            (2A) 

 evp qqq  −=+                              (3A) 

When squared, the last two equations lead to 

222 )(2 envpvp EmEEEE −=++                       (4A) 

22222 2 eeevpvp mEqqqqq −==⋅++                       (5A) 

Subtracting Eq. (5A) from Eq. (4A) and making use of Eq. (1A) then gives 

enenvpvpvp EmmmqqEEmm 2)(2 2222 −+=⋅−++                (6A) 

or, equivalently, 
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)(22 2222
vpvpvpenen qqEEmmmmEm  ⋅−−−−+=                (7A) 

If θ  is the angle between pq  and vq , we have vpvpvp qqqqqq ≤=⋅ θcos  so that Eq. (7A) 
leads to the relation 

)(22 2222
vpvpvpenen qqEEmmmmEm −−−−+≤               (8A) 

Note that the equality in Eq. (8A) holds only if θ = 0, i.e., the energy of the electron c2Ee takes 
on its maximum value only when the anti-neutrino and the proton move in the same direction. 

Let the speeds of the proton and the anti-neutrino in the rest frame of the neutron be 
pcβ  and vcβ , respectively. We then have ppp Eq β=  and vvv Eq β= . As shown in Fig. 

A1, we introduce the angle φ v ( 2/0 πφ <≤ v ) for the antineutrino by 

vvv mq φtan= ,   vvvvv mqmE φsec22 =+= ,   vvvv Eq φβ sin/ ==      (9A) 

 
 
 
 
 

Similarly, for the proton, we write, with 2/0 πφ <≤ p , 

ppp mq φtan= ,  ppppp mqmE φsec22 =+= ,  pppp Eq φβ sin/ ==    (10A) 

Eq. (8A) may then be expressed as 
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
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−−−+≤
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vpvpenen mmmmmmEm
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φφ

coscos
sinsin1

22 2222            (11A) 

The factor in parentheses at the end of the last equation may be expressed as 
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   (12A) 

and clearly assumes its minimum possible value of 1 when φp = φ v, i.e., when the 
anti-neutrino and the proton move with the same velocity so that β p = β v. Thus, it follows 
from Eq. (11A) that the maximum value of Ee is 

[ ]222
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vpen
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                (13A) 

and the maximum energy of the electron E = c2Ee is 

MeV29.1MeV292569.1)( max
2

max ≈≈= eEcE               (14A) 
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φ v Figure A1 
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When the anti-neutrino and the proton move with the same velocity, we have, from Eqs. 
(9A), (10A), (2A) ,(3A), and (1A), the result 
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ββ            (15A) 

Substituting the result of Eq. (13A) into the last equation, the speed vm of the anti-neutrino 
when the electron attains its maximum value Emax is, with M = mp+mv, given by 

00127.000126538.0

))()()((

)(2

4)(
)(

)(
)(

222

2222

222222

max

22
max

max

≈≈
+−

−−+−−+++
=

−+−

−−+
=

−
−

==

Mmm

MmmMmmMmmMmm

Mmmm

mmMmm
Em

mE
c

v

en

enenenen

enn

enen

en

ee
Ev

m
e

β

     (16A) 

------------------------------------------------------------------------------------------------------ 
Part B 

Light Levitation 
 

(b) Refer to Fig. B1. Refraction of light at the spherical surface obeys Snell’s law and leads to 

tin θθ sinsin =                            (B1) 

Neglecting terms of the order (δ /R)3or higher in sine functions, Eq. (B1) becomes 
tin θθ ≈                               (B2) 

For the triangle ∆FAC in Fig. B1, we have 
 

iiiit nn θθθθθβ )1( −=−≈−=        (B3) 
 

Let 0f  be the frequency of the incident light. If pn  
is the number of photons incident on the plane surface per 
unit area per unit time, then the total number of photons 
incident on the plane surface per unit time is 2πδpn . The 
total power P of photons incident on the plane surface is 

))(( 0
2 hfn pπδ , with h being Planck’s constant. Hence, 

0
2hf
Pn p

πδ
=               (B4) 

The number of photons incident on an annular disk of 
inner radius r and outer radius r +dr on the plane surface 
per unit time is )2( rdrn p π , where ii RRr θθ ≈= tan . 

Therefore, 

iipp dRnrdrn θθππ )2()2( 2≈                        (B5) 

The z-component of the momentum carried away per unit time by these photons when 
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refracted at the spherical surface is 
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so that the z-component of the total momentum carried away per unit time is 
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where imim R
θδθ ≈=tan . Therefore, by the result of Eq. (B5), we have 
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The force of optical levitation is equal to the sum of the z-components of the forces exerted 
by the incident and refracted lights on the glass hemisphere and is given by 
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Equating this to the weight mg of the glass hemisphere, we obtain the minimum laser 
power required to levitate the hemisphere as 
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4

δ−
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Marking Scheme 
 

Theoretical Question 3 
Neutrino Mass and Neutron Decay 

Total 
Scores 

Sub 
Scores Marking Scheme for Answers to the Problem 

Part A 
 

4.0 pts. 

(a) 
 

4.0 

The maximum energy of the electron and the corresponding speed of the 
anti-neutrino. 
 0.5 use energy-momentum conservation and can convert it into 

equations. 
 0.5 obtain an expression for eE  that allows the determination of its 

maximum value. 
 (0.5+0.2) for concluding that proton and anti-neutrino must move 

with the same velocity when eE  is maximum. (0.2 for the same 
direction) 

 0.6 for establishing the minimum value of )( vpvp qqEE 

⋅−  to be 

vpmm  or a conclusion equivalent to it. 
 (0.5+0.1) for expression and value of Emax. 

 0.5 for concluding )/(22
eneev EmmE −−=β . 

 (0.5+0.1) for expression and value of vm /c. 
 
 
 

Light Levitation 
Part B 

 
4.0 pts 

(b) 
 

4.0 

Laser power needed to balance the weight of the glass hemisphere. 
 0.3 for law of refraction tin θθ sinsin = . 
 0.3 for making the linear approximation tin θθ ≈ . 
 0.4 for relation between angles of deviation and incidence. 
 0.3 for photon energy ε = hν. 
 0.3 for photon momentum p = ε /c. 
 0.3 for momentum of incident photons per unit time = P/c. 
 0.6 for momentum of photons refracted per unit time as a function of 

the angle of incidence. 
 0.4 for total momentum of photons refracted per unit time = 

[1-(n-1)2δ 2/(4R2)]P/c. 
 0.4 for force of levitation = sum of forces exerted by incident and 

refracted photons. 
 0.4 for force of levitation = (n-1)2δ 2P/(4cR 2). 
 0.3 for the needed laser power P = 4mgcR 2/(n-1)2δ 2. 
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Solutions to Experimental Problems 
 
Part A: Optical Properties of Laser Diode  
 

 
 

 
 
a. Data (0.3 pts.) : Proper data table marked with variables and units.  
Table A-(1): Data for J vs. I. 

I (mA) 9.2 15.2 19.5 21.6 22.2 22.7 23.0 23.4 23.8 

J (V) 0.00 0.01 0.02 0.03 0.05 0.06 0.09 0.12 0.30 

I (mA) 24.2 24.6 25.0 25.4 25.8 26.2 26.6 27.0 27.4 

J (V) 0.66 1.02 1.41 1.88 2.23 2.64 3.04 3.36 3.78 

I (mA) 27.8 28.2 28.6 29.0 29.4 29.8 30.2 30.5 31.0 

J (V) 4.12 4.48 4.79 5.13 5.44 5.72 6.05 6.25 6.55 

I (mA) 31.4 31.8 32.2 32.6 33.0 33.4 33.8 34.2 34.6 

J (V) 6.75 6.99 7.22 7.40 7.60 7.78 7.93 8.07 8.14 

I (mA) 35.0 35.5 36.0 36.5 37.0 37.6 38.0 38.6  

J (V) 8.18 8.20 8.22 8.24 8.24 8.25 8.26 8.27  

 
Current error : ±0.1 mA; Voltage error : ±0.01 V  
 

Question A-(1) (Total 1.5 point) 
Measure, tabulate, and plot the J vs. I curve. 
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b. Plotting (0.3 pts.): Proper sizes of scales, and units for abscissa and ordinate that bear 
relation to the accuracy and range of the experiment. 

c. Curve (0.9 pts.): Proper data and adequate line shape  
 ‧ As shown in Fig. A-1. Start ~0 → Threshold → Linear → Saturate.  
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Im ± ∆ Im 

Fig. A-1  Graph of light intensity J versus current I 
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a. Linear region marking (0.5 pts.) in Fig. A-1. 
b. Least-square method or eye-balling with ruler and error analysis (1.5 pt.) 

  
  Least-square fitting Eye-balling with ruler 
Error bar in graph 0.0x mA (0.5 pts) Error bar in graph 0.x mA (0.5 pts) 
Least-square method (0.5 pts) Expanded scale graph (0.5 pts)  
Error analysis (0.5 pts) draw three lines for error analysis(0.5 pts) 

 
c. Im ± ∆ Im (0.5 pts.): Adequate value of Im (0.3 pts.) and error(± ∆ Im ) (0.2 pts.) from the 

linear region of J-I curve. 
d. Adequate value of Ith with error (1.0 pts.) 

Ith = (21~26) ± (0.01 or 0.2 for single value) mA 

  Adequate value of Ith (0.5 pts.) and error (± ∆ Ith ) (0.5 pts.) 

 

Question A-(2) ( Total 3.5 points) 
Estimate the maximum current Im with uncertainty in the linear region of the J - I. Mark 
the linear region on the J - I curve figure by using arrows (↓) and determine the threshold 
current Ith with detailed error analysis. 
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Fig. A-2  Straight lines and extrapolations 
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Appendix： 

◎A1-1 
● Least-Square Method： 
I = mJ +b  →  b = Ith  
For y = mx +b 

 y: I(mA) x: J xy x2 y(x) = mx+b (y-y(x))2 

1 23.8 0.30 7.14 0.090 23.7937 3.969E-05 

2 24.2 0.66 15.972 0.4356 24.17134 0.000821 

3 24.6 1.02 25.092 1.0404 24.54898 0.00260 

4 25.0 1.41 35.25 1.9881 24.95809 0.00176 

5 25.4 1.88 47.752 3.5344 25.45112 0.00261 

6 25.8 2.23 57.534 4.9729 25.81827 0.000334 

7 26.2 2.64 69.168 6.9696 26.24836 0.00234 

8 26.6 3.04 80.864 9.2416 26.66796 0.00462 

9 27.0 3.36 90.72 11.2896 27.00364 1.325E-05 

10 27.4 3.78 103.572 14.2884 27.44422 0.00196 

11 27.8 4.12 114.536 16.9744 27.80088 7.744E-07 

12 28.2 4.48 126.336 20.0704 28.17852 0.000461 

13 28.6 4.79 136.994 22.9441 28.50371 0.00927 

 
Σy = 

340.6 

Σx =  
33.71 

Σxy =  
910.93 

Σx2 = 
113.840 

 
Σ (y-y(x))2 =  

0.0268 
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03.048.23 ±=thI  mA 

 
◎A1-2 
● Eye-balling Method： 
I =mJ +b  →  b = Ith  
For y = mx+b 
Line 1: y = 1.00 x + 23.66 
Line 2: y = 1.05 x+ 23.48  
Line3: y = 1.13 x + 23.31 
Ith(av.) = 23.48 
Ith(std.) = 0.18 

2.05.23 ±=thI  mA 
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 Part B: Optical Properties of Nematic Liquid Crystal  
Electro-optical switching characteristic of 90o TN LC cell 

 
Question B-(1) (5.0 points) 
Measure, tabulate, and plot the electro-optical switching curve (J vs. Vrms curve) of the NB 
90o TN LC, and find its switching slope γ, where γ is defined as (V90–V10)/V10. 

 
a. Proper data table marked with variables and units. (0.3 pts)                                 

Applied voltage 
(Volts) 

Light intensity 
(Volts) 

Applied voltage 
(Volts) 

Light intensity 
(Volts) 

0.00 0.00 2.44 1.22 
0.10 0.00 2.50 1.26 
0.20 0.00 2.55 1.27 
0.30 0.00 2.60 1.29 
0.40 0.00 2.67 1.32 
0.50 0.00 2.72 1.33 
0.60 0.00 2.85 1.36 
0.70 0.00 2.97 1.37 
0.80 0.00 3.11 1.38 
0.90 0.00 3.20 1.39 
1.00 0.00 3.32 1.39 
1.10 0.02 3.41 1.39 
1.20 0.04 3.50 1.40 
1.24 0.04 3.60 1.39 
1.30 0.04 3.70 1.40 
1.34 0.03 3.80 1.40 
1.38 0.02 4.03 1.40 
1.45 0.01 4.22 1.40 
1.48 0.01 4.40 1.39 
1.55 0.02 4.61 1.39 
1.59 0.03 4.78 1.40 
1.64 0.05 5.03 1.39 
1.71 0.11 5.20 1.39 
1.78 0.21 5.39 1.38 
1.81 0.26 5.61 1.39 
1.85 0.33 5.81 1.38 
1.90 0.44 6.02 1.38 
1.96 0.57 6.21 1.38 
2.03 0.70 6.40 1.38 
2.08 0.80 6.63 1.38 
2.15 0.92 6.80 1.38 
2.21 1.02 7.02 1.38 
2.28 1.10 7.20 1.38 
2.33 1.14   
2.39 1.19   
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b. Properly choose the size of scales and units for abscissa and ordinate that bears the 
relation to the accuracy and range of the experiment. (0.3 pts) 

c. Correct measurement of the light intensity (J) as a function of the applied voltage (Vrms) 
and adequate J - Vrms curve plot. 
 The intensity of the transmission light is smaller than 0.05 Volts in the normally 

black mode. (0.4 pts) 
 There is a small optical bounce before the external applied voltage reaches the 

critical voltage. (0.8 pts) 
 The intensity of the transmission light increases rapidly and abruptly when the 

external applied voltage exceeds the critical voltage. (0.4 pts) 
 The intensity of the transmission light displays the plateau behavior as the external 

applied voltage exceeds 3.0 Volts. (0.4 pts) 
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d. Adequate value of γ with error. 
 Find the maximum value of the light intensity in the region of the applied voltage 

between 3.0 and 7.2 Volts (0.6 pts) 
 Determine the value of 90 % of the maximum light intensity. Obtain the value of the 

applied voltage V90 by interpolation. (0.6 pts) 
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 Determine the value of 10 % of the maximum light intensity. Obtain the value of the 
applied voltageV10 by interpolation. (0.6 pts) 

 Correct γ ± ∆γ value, (0.42 ~ 0.44) ± 0.02. (0.4+0.2 pts) 
 
 
 
 
 
a. Adequate value of VC with error, VC ± ∆VC. 

 Make the expanded scale plot and take more data points in the region of VC. 
(0.8 pts) 

 Determine the value of VC when the intensity of the transmission light increases 
rapidly and abruptly. (0.7 pts) 

 Correct VC ± ∆VC value, (1.20 ~ 1.50) ± 0.01 Volts. (0.8+0.2 pts) 
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(The data shown in this graph do not correspond to the data shown on the previous 
page. This graph only shows how to obtain Vc.) 

Question B-(2) (Total 2.5 points) 
Determine the critical voltage Vc of this NB 90o TN LC cell.  Show explicitly with 
graph how you determine the value Vc. 
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Part C:  Optical Properties of Nematic Liquid Crystal : 
Electro-optical switching characteristic of parallel aligned LC cell 

 
 
 
 
 
 
 
 

a. Adequate value of δ and ∆n with error. 
 Take and average the values of T‖. (0.3 pts) 
 Take and average the values of T⊥. (0.3 pts) 
 Determine the value of order m.  (0.9 pts) 
 Correct δ value, 15.7 ~ 18.2.  (0.5 pts) 
 Correct ∆n value, 0.20 ~ 0.24  (0.5 pts) 

01.031.0
3

31.031.031.0
// ±=

++
=T  Volts 

01.004.1
3

04.103.104.1
±=

++
=⊥T  Volts 

*

//
83.1

2
tan −=±=

⊥

T
Tδ   )214.2(214.4 ππδ morm +−+=∴  

61.18
65.0

25.07.722
=

××
=

∆
=

π
λ

πδ nd  

Take )3(2 orm =  )32.5(70.16 πδ =∴  

From 
λ

πδ nd∆
=

2  22.0
2

==∆∴
d

n
π
δλ  

Accepted value for )24.0~20.0(=∆∴ n  

*If 83.1
2

tan =
δ , the value for δ  will be either π68.4  or π68.6 , which is not 

consistent with data figure of problem C-(2). 
 

Question C-(1) (2.5 points) 
Assume that the wavelength of laser light 650 nm, LC layer thickness 7.7 μm, and 
approximate value of Δn ≈ 0. 25 are known. From the experimental data T⊥ and T‖ 

obtained above, calculate the accurate value of the phase retardation δ and accurate 
value of birefringence Δn of this LC cell at V=0. 
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a. Proper data table marked with variables and units. (0.3 pts)                                     

Applied voltage 
(Volts) 

Light intensity 
(Volts) 

Applied voltage 
(Volts) 

Light intensity 
(Volts) 

Applied voltage 
(Volts) 

Light intensity 
(Volts) 

0.00 0.30 2.01 1.47 3.33 0.00 
0.10 0.30 2.04 1.48 3.36 0.00 
0.20 0.29 2.07 1.48 3.39 0.00 
0.30 0.29 2.10 1.48 3.42 0.00 
0.40 0.29 2.13 1.45 3.45 0.00 
0.50 0.28 2.16 1.42 3.48 0.00 
0.60 0.26 2.19 1.38 3.51 0.00 
0.70 0.23 2.22 1.33 3.60 0.01 
0.80 0.19 2.25 1.27 3.70 0.02 
0.90 0.09 2.28 1.20 3.80 0.03 
0.99 0.00 2.31 1.14 3.90 0.04 
1.02 0.06 2.34 1.07 4.00 0.07 
1.05 0.16 2.37 1.00 4.10 0.09 
1.08 0.25 2.40 0.94 4.20 0.11 
1.11 0.40 2.43 0.87 4.30 0.14 
1.14 0.67 2.46 0.79 4.40 0.16 
1.17 0.93 2.49 0.72 4.50 0.19 
1.20 1.25 2.52 0.66 4.60 0.22 
1.26 1.31 2.55 0.61 4.70 0.25 
1.29 1.36 2.58 0.56 4.80 0.28 
1.32 1.32 2.61 0.51 4.90 0.31 
1.35 1.09 2.64 0.46 5.01 0.34 
1.38 0.85 2.67 0.42 5.11 0.37 
1.41 0.62 2.70 0.37 5.21 0.39 
1.44 0.46 2.73 0.33 5.29 0.42 
1.47 0.29 2.76 0.30 5.39 0.44 
1.50 0.13 2.79 0.26 5.51 0.48 
1.53 0.06 2.82 0.23 5.57 0.49 
1.59 0.03 2.85 0.21 5.70 0.52 
1.62 0.05 2.88 0.18 5.80 0.55 
1.65 0.15 2.91 0.16 5.90 0.57 
1.68 0.24 2.94 0.14 6.01 0.60 
1.71 0.34 2.97 0.12 6.10 0.62 
1.74 0.49 3.00 0.09 6.19 0.64 
1.77 0.63 3.06 0.08 6.30 0.66 
1.80 0.78 3.09 0.06 6.40 0.69 
1.83 0.92 3.12 0.05 6.60 0.73 
1.86 1.05 3.18 0.04 6.70 0.74 
1.89 1.19 3.21 0.03 6.80 0.76 
1.92 1.27 3.24 0.02 7.00 0.80 
1.95 1.34 3.27 0.02 7.20 0.83 
1.98 1.40 3.30 0.01   

Question C-(2) (Total 3.0 points) 
Measure, tabulate, and plot the electro-optical switching curve for T‖ of this parallel 
aligned LC cell in the θ = 45o configuration. 
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b. Properly choose the size of scales and units for abscissa and ordinate that bears the 
relation to the accuracy and range of the experiment. (0.3 pts) 

c. Correct measurement of the T‖ as a function of the applied voltage (Vrms) and 
adequate T‖-Vrms curve plot. 

  Three minima and two sharp maxima. (1.5 pts) 
  Maxima values within 15% from each other. (0.5 pts) 
  Minima are less than the values of 0.1 Volts. (0.4 pts) 
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a. Adequate value of Vπ with error. 
 Make the expanded scale plot and take more data points in the region of Vπ. (0.3 pts) 
 Indicate the correct minimum of Vπ. (0.8 pts) 
 Obtain the value of Vπ by interpolation or rounding. (0.5 pts) 
 Correct Vπ value : (3.2 ~ 3.5) 01.0± Volts. (0.2+0.2 pts) 
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Question C-(3) (Total 2.0 points)  
From the electro-optical switching data, find the value of the external applied voltage Vπ. 
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Marking Scheme 
 

Part A: Optical Properties of Laser Diode  
No. Contents Sub 

Scores 
Total 

Scores 
 A(1) Measure, tabulate, and plot the J vs. I curve.  

 
 1.5 pts. 

a Proper data table marked with variables and units. 0.3  
b Proper sizes of scales, and units for abscissa and ordinate that bear 

relation to the accuracy and range of the experiment. 
0.3  

c Proper data and adequate curve plotting (Fig. A-1) 0.9  
A(2) Estimate the maximum current Im with uncertainty in the linear region 

of the J vs. I curve. Mark the linear region on the J - I curve figure by 
using arrows (↓) and determine the threshold current Ith with 
uncertainty. 

 3.5 pts. 

a Mark the linear region. 0.5  
b Least-square fit or eye-balling with ruler and error analysis 1.5  
c Obtain Im ± ∆Im properly 0.5  
d Adequate value of Ith ± ∆ Ith 1.0  

 
Part B:  Optical Properties of Nematic Liquid Crystal  

Electro-optical switching characteristic of 90o TN LC cell 
No. Contents Sub 

Scores 
Total 

Scores 
B-(1) Measure, tabulate, and plot the electro-optical switching curve (J vs. 

Vrms curve) of the NB 90o TN LC, and find its switching slope γ, 
where γ is defined as (V90–V10)/V10. 

 5.0 pts. 

a Proper data table marked with variables and units. 0.3  
b Properly choose the size of scales and units for abscissa and ordinate 

that bears the relation to the accuracy and range of the experiment. 
0.3  

c Correct measurement of the light intensity (J) as a function of the 
applied voltage (Vrms) and adequate J - Vrms curve plot. 

  

  The intensity of the transmission light reaches zero value in the 
normally black mode.  

0.4  

  There is a small optical bounce before the external applied voltage 
reaches the critical voltage. 

0.8  

  The intensity of the transmission light increases rapidly and 0.4  
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abruptly when the external applied voltage exceeds the critical 
voltage. 

  The intensity of the transmission light displays the plateau 
behavior as the external applied voltage exceeds 3.0 Volts. 

0.4  

d Adequate value of γ with error, γ ± ∆γ.   
  Correctly analyzing the maximum light intensity. 0.6  
  Correctly analyzing the value of V90. 0.6  
  Correctly analyzing the value of V10. 0.6  
  Correct γ ± ∆γ value, (0.42 ~ 0.44) ± 0.02.  0.6  

B-(2) Determine the critical voltage Vc of this NB 90o TN LC cell.   
Show explicitly with graph how you determine the value Vc. 

 2.5 pts. 

 Adequate value of VC with error, VC ± ∆ VC.   
  Make the expanded scale plot and take more data points in the 

region of VC. 
0.8  

  Correctly analyzing the value of VC. 0.7  
  Correct VC ± ∆ VC value, (1.2 ~ 1.5) ± 0.01 Volts. 1.0  

 
 
Part C:  Optical Properties of Nematic Liquid Crystal : 

Electro-optical switching characteristic of parallel aligned LC cell 
No. Contents Sub 

Scores 
Total 

Scores 
C-(1) Assume that the wavelength of laser light 650 nm, LC layer thickness 

7.7 μm, and approximate value of Δn ≈ 0. 25 are known. From the 
experimental data T⊥ and T‖ obtained above, calculate the accurate 
value of the phase retardation δ and accurate value of birefringence 
Δn of this LC cell at V=0. 

 2.5 pts. 

 Adequate value of δ and ∆n with error.   
  Correctly analyzing the values of T‖. 0.3  
  Correctly analyzing the values of T⊥. 0.3  
  Correctly determining the value of order m. 0.9  
  Correct δ value, 17.7 ~ 18.2. 0.5  
  Correct ∆n value, 0.23 ~ 0.25. 0.5  

C-(2) Measure, tabulate, and plot the electro-optical switching curve for T 

of this parallel aligned LC cell in the θ = 45o configuration. 
 3.0 pts. 

a Proper data table marked with variables and units. 0.3  
b Properly choose the size of scales and units for abscissa and ordinate 0.3  
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that bears the relation to the accuracy and range of the experiment. 
c Correct measurement of the T‖ as a function of the applied voltage 

(Vrms) and adequate T‖-Vrms curve plot. 
  

  Three minima and two sharp maxima. 1.5  
  Maxima values within 15 % from each other. 0.5  
  Minima are less than the values of 0.1 Volts. 0.4  

 C-(3) From the electro-optical switching data, find the value of the external 
applied voltage Vπ 

 2.0 pts. 

 Adequate value of Vπ with error.   
  Make the expanded scale plot and take more data points in the 

region of Vπ. 
0.3  

  Indicate the correct minimum of Vπ. 0.8  
  Correctly analyzing the value of Vπ. 0.5  
  Correct Vπ± ∆ Vπvalue, (3.2 ~ 3.5 ) ± 0.1 Volts. 0.4  
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Theoretical Question 1: 

“Ping-Pong” Resistor 
 
A capacitor consists of two circular parallel plates both with radius R separated by 
distance d, where Rd << , as shown in Fig. 1.1(a). The top plate is connected to a 
constant voltage source at a potential V while the bottom plate is grounded. Then a thin 
and small disk of mass m  with radius r ( dR,<< ) and thickness t  ( r<< ) is placed on 
the center of the bottom plate, as shown in Fig. 1.1(b).  

Let us assume that the space between the plates is in vacuum with the dielectric 
constant 0ε ; the plates and the disk are made of perfect conductors; and all the 
electrostatic edge effects may be neglected. The inductance of the whole circuit and the 
relativistic effects can be safely disregarded. The image charge effect can also be 
neglected. 
 
 
 
 
 
 
 
 
 
 

Figure 1.1 Schematic drawings of (a) a parallel plate capacitor 
connected to a constant voltage source and (b) a side view of the 
parallel plates with a small disk inserted inside the capacitor. (See text 
for details.) 

 

(a) [1.2 points] Calculate the electrostatic force pF  between the plates separated by d  

before inserting the disk in-between as shown in Fig. 1.1(a).   
 
(b) [0.8 points] When the disk is placed on the bottom plate, a charge q  on the disk of 
Fig. 1.1(b) is related to the voltage V  by Vq χ= . Find χ  in terms of r , d , and 0ε .  
 
(c) [0.5 points] The parallel plates lie perpendicular to a uniform gravitational field g . 
To lift up the disk at rest initially, we need to increase the applied voltage beyond a 

(a) 

d 
V  

R 

mg 

t
r d

q

+V
side view 

(b) 
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threshold voltage thV . Obtain thV  in terms of m , g , d , and χ . 
 
(d) [2.3 points] When thVV > , the disk makes an up-and-down motion between the 
plates. (Assume that the disk moves only vertically without any wobbling.) The 
collisions between the disk and the plates are inelastic with the restitution coefficient 

)v/v( beforeafter≡η , where beforev  and afterv  are the speeds of the disk just before and 
after the collision respectively. The plates are stationarily fixed in position. The speed of 
the disk just after the collision at the bottom plate approaches a “steady-state speed” sv , 
which depends on V  as follows: 

βα += 2
sv V .     (1.1) 

Obtain the coefficients α  and β  in terms of m , g , χ , d , and η .  Assume that the 
whole surface of the disk touches the plate evenly and simultaneously so that the 
complete charge exchange happens instantaneously at every collision. 
 
(e) [2.2 points] After reaching its steady state, the time-averaged current I  through the 
capacitor plates can be approximated by 2VI γ=  when mgdqV >> . Express the 
coefficient γ  in terms of m , χ , d , and η .  
 
(f) [3 points] When the applied voltage V  is decreased (extremely slowly), there exists 
a critical voltage cV  below which the charge will cease to flow.  Find cV  and the 
corresponding current cI  in terms of m , g , χ , d , and η .   By comparing cV  with 
the lift-up threshold thV  discussed in (c), make a rough sketch of the VI −  
characteristics when V  is increased and decreased in the range from 0=V  to 3 thV . 
 
 



  Theoretical Question 1 / Answer Form  Page 1/1 
 

Country 
 Code 

Student 
Code 

Question 
Number 

  1 

 

AAnnsswweerr  FFoorrmm  
Theoretical Question 1:   
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(e)  =γ  
 
 
 
(f)  =cI  
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Theoretical Question 2 

Rising Balloon 
 
A rubber balloon filled with helium gas goes up high into the sky where the pressure 
and temperature decrease with height. In the following questions, assume that the shape 
of the balloon remains spherical regardless of the payload, and neglect the payload 
volume. Also assume that the temperature of the helium gas inside of the balloon is 
always the same as that of the ambient air, and treat all gases as ideal gases. The 
universal gas constant is R =8.31 J/mol·K and the molar masses of helium and air are 

HM = 4.00×10 3− kg/mol and AM  = 28.9×10 3− kg/mol, respectively. The gravitational 
acceleration is g = 9.8 m/s2.  

 

[Part A ] 

(a) [1.5 points] Let the pressure of the ambient air be P  and the temperature be T . 
The pressure inside of the balloon is higher than that of outside due to the surface 
tension of the balloon. The balloon contains n  moles of helium gas and the pressure 
inside is PP ∆+ . Find the buoyant force BF  acting on the balloon as a function of P  

and P∆ . 

(b) [2 points] On a particular summer day in Korea, the air temperature T  at the height 
z  from the sea level was found to be )/1()( 00 zzTzT −=  in the range of 15< <0 z  
km with 0z =49 km and 0T =303 K. The pressure and density at the sea level were 0P  
= 1.0 atm = 5101.01×  Pa and 0ρ = 1.16 kg/m3, respectively. For this height range, the 
pressure takes the form 

           η)/1()( 00 zzPzP −=  .           (2.1)  

Express η  in terms of 0z , 0ρ , 0P , and g , and find its numerical value to the two 
significant digits. Treat the gravitational acceleration as a constant, independent of 
height.     
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[Part B ] 
 
When a rubber balloon of spherical shape with un-stretched radius 0r  is inflated to a 
sphere of radius r  ( 0r≥ ), the balloon surface contains extra elastic energy due to the 

stretching. In a simplistic theory, the elastic energy at constant temperature T  can be 
expressed by  

)312(4 4
22

0 −+=
λ

λκπ RTrU             (2.2)  

where 0/ rr≡λ  (≥1) is the size-inflation ratio and κ  is a constant in units of mol/m2.  

(c) [2 points] Express P∆ in terms of parameters given in Eq. (2.2), and sketch P∆  as 
a function of λ = 0/ rr . 

 
(d) [1.5 points] The constant κ  can be determined from the amount of the gas needed 

to inflate the balloon. At 0T =303 K and 0P =1.0 atm = 5101.01×  Pa, an un-stretched 

balloon ( 1=λ ) contains 0n =12.5 moles of helium. It takes n =3.6 0n =45 moles in total 
to inflate the balloon to λ =1.5 at the same 0T  and 0P . Express the balloon parameter 

a , defined as 0/κκ=a , in terms of n , 0n , and λ , where 
0

00
0 4RT

Pr
≡κ . Evaluate a  

to the two significant digits.  
 
[Part C]  
 
A balloon is prepared as in (d) at the sea level (inflated to 5.1=λ  with 456.3 0 == nn  

moles of helium gas at 0T =303 K and 0P =1 atm= 5101.01×  Pa). The total mass 

including gas, balloon itself, and other payloads is =TM 1.12 kg. Now let the balloon 

rise from the sea level. 

(e) [3 points] Suppose that the balloon eventually stops at the height fz  where the 

buoyant force balances the total weight. Find fz  and the inflation ratio fλ  at that 
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height. Give the answers in two significant digits. Assume there are no drift effect and 

no gas leakage during the upward flight. 
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Theoretical Question 3 

Atomic Probe Microscope 
 
Atomic probe microscopes (APMs) are powerful tools in the field of nano-science.  
The motion of a cantilever in APM can be detected by a photo-detector monitoring the 
reflected laser beam, as shown in Fig. 3.1. The cantilever can move only in the vertical 
direction and its displacement z  as a function of time t  can be described by the 
equation 

 Fkz
dt
dzb

dt
zdm =++2

2

,    (3.1) 

where m  is the cantilever mass, 2
0ωmk =  is the spring constant of the cantilever, b  

is a small damping coefficient satisfying 0)/(0 >>> mbω , and finally F  is an 
external driving force of the piezoelectric tube. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1 A schematic diagram for a scanning probe microscope (SPM). 
The inset in the lower right corner represents a simplified mechanical 
model to describe the coupling of the piezotube with the cantilever.  

 

[Part A] 
(a) [1.5 points] When tFF ωsin0= , )(tz  satisfying Eq. (3.1) can be written as 

)sin()( φω −= tAtz , where 0>A  and πφ ≤≤0 . Find the expression of the 

VR 
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amplifier 

piezotube

F 
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input reference
signal 

m 

phase shifter

RV '

sample  
k
m

piezotube 

F 

k 
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z=0 

output Vi=c2z

photo-detector
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amplitude A  and φtan  in terms of 0F , m , ω , 0ω , and b . Obtain A  and the 
phase φ  at the resonance frequency 0ωω = . 

 
(b) [1 point] A lock-in amplifier shown in Fig.3.1 multiplies an input signal by the lock-
in reference signal, tVV RR ωsin0= , and then passes only the dc (direct current) 
component of the multiplied signal. Assume that the input signal is given by 

)sin(0 iiii tVV φω −= . Here 0RV , 0iV , iω , and iφ  are all positive given constants. Find 
the condition on ω  (>0) for a non-vanishing output signal. What is the expression for 
the magnitude of the non-vanishing dc output signal at this frequency? 

 
(c) [1.5 points] Passing through the phase shifter, the lock-in reference voltage 

tVV RR ωsin0=  changes to )2/sin(' 0 πω += tVV RR . RV ' , applied to the piezoelectric 
tube, drives the cantilever with a force RVcF '1= . Then, the photo-detector converts the 
displacement of the cantilever, z , into a voltage zcVi 2= . Here 1c  and 2c  are 
constants. Find the expression for the magnitude of the dc output signal at 0ωω = . 

 
(d) [2 points] The small change m∆  of the cantilever mass shifts the resonance 
frequency by 0ω∆ . As a result, the phase φ  at the original resonance frequency 0ω  
shifts by φ∆ . Find the mass change m∆  corresponding to the phase shift 

1800/πφ =∆ , which is a typical resolution in phase measurements. The physical 
parameters of the cantilever are given by =m 1.0×10-12 kg, 0.1=k N/m, and 

=)/( mb 1.0×103 s-1. Use the approximations ( ) axx a +≈+ 11  and 
xx /1)/2(tan −≈+π  when 1|| <<x . 

 
[Part B] 
From now on let us consider the situation that some forces, besides the driving force 
discussed in Part A, act on the cantilever due to the sample as shown in Fig.3.1.  
 
(e) [1.5 points] Assuming that the additional force )(hf  depends only on the distance 

h  between the cantilever and the sample surface, one can find a new equilibrium 
position 0h . Near 0hh = , we can write )()()( 030 hhchfhf −+≈ , where 3c  is a 
constant in h .  Find the new resonance frequency 0'ω  in terms of 0ω , m , and 3c . 

 
(f) [2.5 points] While scanning the surface by moving the sample horizontally, the tip of 
the cantilever charged with eQ 6=  encounters an electron of charge eq =  trapped 
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(localized in space) at some distance below the surface. During the scanning around the 
electron, the maximum shift of the resonance frequency 0ω∆ ( 00' ωω −= ) is observed to 
be much smaller than 0ω . Express the distance 0d  from the cantilever to the trapped 
electron at the maximum shift in terms of m , q , Q , 0ω , 0ω∆ , and the Coulomb 
constant ek . Evaluate 0d  in nm (1 nm = 9101 −× m) for 200 =∆ω  s-1.  
The physical parameters of the cantilever are =m 1.0×10-12 kg and 0.1=k N/m. 
Disregard any polarization effect in both the cantilever tip and the surface. Note that 

9
0 100.94/1 ×== πεek  N·m2/C2 and 19106.1 −×−=e  C.  
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(a) =A                         and  =φtan                     

 
 
 

At 0ωω = , =A                  and =φ                       

 
 
 
 
 
(b) The condition on ω  for a non-vanishing output signal :                       
 
 
 

The magnitude of the dc signal =                  
 
 
 
(c) The magnitude of the signal =                   
 
 
 
 
(d) =∆m                           kg 
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(e) =0'ω                           

 
 
 
 
(f) =0d                          ; Evaluated =0d                  nm. 
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35th International Physics Olympiad 
 

Pohang, Korea 
 

15 ~ 23 July 2004 
 

EExxppeerriimmeennttaall  CCoommppeettiittiioonn  
MMoonnddaayy,,  1199  JJuullyy  22000044 

 
Please, first read the following instruction carefully: 
 
1. The time available is 5 hours.  
2. Use only the pen provided. 
3. Use only the front side of the writing sheets. Write only inside the boxed area.  
4. In addition to the blank writing sheets, there are Answer Forms where you must 

summarize the results you have obtained. 
5. Write on the blank writing sheets the results of your measurements and whatever 

else you consider is required for the solution to the question. Please, use as little text 
as possible; express yourself primarily in equations, numbers, figures, and plots. 

6. In the boxes at the top of each sheet of paper write down your country code 
(Country Code) and student number (Student Code). In addition, on each blank 
writing sheets, write down the progressive number of each sheet (Page Number) 
and the total number of writing sheets used (Total Number of Pages). If you use 
some blank writing sheets for notes that you do not wish to be marked, put a large X 
across the entire sheet and do not include it in your numbering. 

7. At the end of the experiment, arrange all sheets in the following order: 
• Answer forms (top)  
• used writing sheets in order 
• the sheets you do not wish to be marked 
• unused writing sheets  
• the printed question (bottom) 

8. It is not necessary to specify the error range of your values. However, their 
deviations from the actual values will determine your mark.  

9. Place the papers inside the envelope and leave everything on your desk. You are not 
allowed to take any sheet of paper or any material used in the experiment out of 
the room. 
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Apparatus and materials 
1. List of available apparatus and materials 
 

 Name Quantity  Name Quantity
A Photogate timer 1 L Philips screw driver 1 
B Photogate 1 M Weight with a string 1 
C Connecting cable 1 N Electronic balance 1 
D Mechanical “black box” 

(Black cylinder) 
1 O Stand with a ruler 1 

E Rotation stage 1 P U-shaped support 1 
F Rubber pad 1 Q C-clamp 1 
G Pulley 2  Ruler (0.50 m, 0.15 m) 1 each
H Pin 2  Vernier calipers 1 
I U-shaped plate 1  Scissors 1 
J Screw 2  Thread 1 
K Allen (hexagonal, L- 

shaped) wrench 
1  Spares (string, thread, 

pin, screw, Allen wrench) 
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2. Instruction for the Photogate Timer 

 
The Photogate consists of an infrared LED and a photodetector. By connecting the 
Photogate to the Photogate Timer, you can measure the time duration related to the 
blocking of the infrared light reaching the sensor. 
 

• Be sure that the Photogate is connected to the Photogate Timer. Turn on the 
power by pushing the button labelled “POWER”. 

• To measure the time duration of a single blocking event, push the button 
labelled “GATE”. Use this “GATE” mode for speed measurements. 

• To measure the time interval between two or three successive blocking events, 
push the corresponding “PERIOD”. Use this “PERIOD” mode for oscillation 
measurements. 

• If “DELAY” button is pushed in, the Photogate Timer displays the result of each 
measurement for 5 seconds and then resets itself. 

• If “DELAY” button is pushed out, the Photogate Timer displays the result of the 
previous measurement until the next measurement is completed. 

• After any change of button position, press the “RESET” button once to activate 
the mode change. 

 
Caution: Do not look directly into the Photogate. The invisible infrared light may be 

harmful to your eyes.  
 

 
Photogate, Photogate Timer, and connection cable 
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3. Instruction for the Electronic Balance 
 

• Adjust the bottom legs to set the balance stable. (Although there is a level 
indicator, setting the balance in a completely horizontal position is not 
necessary.) 

• Without putting anything on the balance, turn it on by pressing the “On/Off” 
button.  

• Place an object on the round weighing pan. Its mass will be displayed in grams. 
• If there is nothing on the weighing pan, the balance will be turned off 

automatically in about 25 seconds. 
 

 
Balance 
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4. Instruction for the Rotation Stage 
 

• Adjust the bottom legs to set the rotation stage stable on a rubber pad in a near 
horizontal position. 

• With a U-shaped plate and two screws, mount the Mechanical “Black Box” 
(black cylinder) on the top of the rotating stub. Use Allen (hexagonal, L-shaped) 
wrench to tighten the screws. 

• The string attached to the weight is to be fixed to the screw on the side of the 
rotating stub. Use the Philips screw driver.   

 
Caution: Do not look too closely at the Mechanical “Black Box” while it is rotating. 

Your eyes may get hurt. 
 

 
Mechanical “Black Box” and rotation stage 

 

     
Rotating stub            Weight with a string 
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Mechanical “Black Box” 

 
[Question]  Find the mass of the ball and the spring constants of two 
springs in the Mechanical “Black Box”. 
 
General Information on the Mechanical “Black Box”  
 

The Mechanical “Black Box” (MBB) consists of a solid ball attached to two 
springs in a black cylindrical tube as shown in Fig. 1. The two springs are fashioned 
from the same tightly wound spring with different number of turns. The masses and the 
lengths of the springs when they are not extended can be ignored. The tube is 
homogeneous and sealed with two identical end caps. The part of the end caps plugged 
into the tube is 5 mm long. The radius of the ball is 11 mm and the inner diameter of the 
tube is 23 mm. The gravitational acceleration is given as g = 9.8 m/s2. There is a finite 
friction between the ball and the inner walls of the tube. 

 

 
Fig. 1  Mechanical “Black Box” (not to scale) 

 
The purpose of this experiment is to find out the mass m of the ball and the spring 

constants k1 and k2 of the springs without opening the MBB. The difficult aspect of this 
problem is that any single experiment cannot provide the mass m or the position l of the 
ball because the two quantities are interconnected. Here, l is the distance between the 
centers of the tube and the ball when the MBB lies horizontally in equilibrium when the 
friction is zero. 

The symbols listed below should be used to represent the physical quantities of 
interest. If you need to use other physical quantities, use symbols different from those 
already assigned below to avoid confusion. 

lCM
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Assigned Physical Symbols 
 
Mass of the ball: m 
Radius of the ball: r (= 11 mm) 
Mass of the MBB excluding the ball: M 
Length of the black tube: L 
Length of each end cap extending into the tube: δ (= 5.0 mm) 
Distance from the center-of-mass of the MBB to the center of the tube: lCM 
Distance between the center of the ball and the center of the tube: x (or l at 

equilibrium when the MBB is horizontal) 
Gravitational acceleration: g (= 9.8 m/s2) 
Mass of the weight attached to a string: mo 
Speed of the weight: v 
Downward displacement of the weight: h 
Radius of the rotating stub where the string is to be wound: R 
Moments of inertia: I, Io, I1, I2, and so on 
Angular velocity and angular frequencies: ω, ω1, ω2, and so on 
Periods of oscillation: T1, T2  
Effective total spring constant: k 
Spring constants of the two springs: k1, k2 
Number of turns of the springs: N1, N2 

 

Caution: Do not try to open the MBB.  If you open it, you will be disqualified 
and your mark in the Experimental Competition will be zero. 

 
Caution: Do not shake violently nor drop the MBB. The ball may be detached 

from the springs.  If your MBB seems faulty, report to the proctors 
immediately.  It will be replaced only once without affecting your 
mark.  Any further replacement will cut down your mark by 0.5 
points each time. 
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PART-A  Product of the mass and the position of the ball (m× l ) (4.0 points) 
 
l is the position of the center of the ball relative to that of the tube when the MBB 

lies horizontally in equilibrium as in Fig. 1. Find the value of the product of the mass m 
and the position l of the ball experimentally. You will need this to determine the value of 
m in PART-B. 

 
1. Suggest and justify, by using equations, a method allowing to obtain m× l. (2.0 

points) 
 
2. Experimentally determine the value of m× l. (2.0 points) 
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PART-B  The mass m of the ball (10.0 points) 
 

Figure 2 shows the MBB fixed horizontally on the rotating stub and a weight 
attached to one end of a string whose other end is wound on the rotating stub. When the 
weight falls, the string unwinds, and the MBB rotates. By combining the equation 
pertinent to this experiment with the one obtained in PART-A, you can find an equation 
for m.  

Between the ball and the inner walls of the cylindrical tube acts a frictional force. 
The physical mechanisms of the friction and the slipping of the ball under the rotational 
motion are complicated. To simplify the analysis, you may ignore the energy dissipation 
due to kinetic friction.  

 

Fig. 2  Rotation of the Mechanical “Black Box” (not to scale) 
The angular velocity ω of the MBB can be obtained 
from the speed v of the weight passing through the 
Photogate. x is the position of the ball relative to the 
rotation axis, and d is the length of the weight. 
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1. Measure the speed of the weight v for various values of downward displacement 

h of the weight. It is recommended to scan the whole range from h = 1.0×10-2 m 
to 4.0×10-1 m by measuring v just once at each h with an interval of 1.0×10-2 
~2.0×10-2 m. Plot the data on graph paper in a form that is suitable to find the 
value of m. After you get a general idea of the relation between v and h, you may 
repeat the measurement or add some data points, if necessary. When the MBB 
rotates slowly, the ball does not slip from its static equilibrium position because 
of the friction between the ball and the tube. When the MBB rotates sufficiently 
fast, the ball hits and actually stays at the end cap of the tube because the springs 
are weak. Identify the slow rotation region and the fast rotation region on the 
graph. (4.0 points) 

 
2. Show your measurements are consistent with the fact that h is proportional to v2 

( h = C v2 ) in the slow rotation region. Show from your measurements that h = 
Av2+B in the fast rotation region. (1.0 points) 

 
3. The moment of inertia of a ball of radius r and mass m about the axis passing 

through its center is 2mr2/5. If the ball is displaced a distance a perpendicular to 
the axis, the moment of inertia increases by ma2. Use the symbol I to represent 
the total moment of inertia of all the rotating bodies excluding the ball. Relate 
the coefficient C to the parameters of the MBB such as m, l, etc. (1.0 points) 

 
4. Relate the coefficients A and B to the parameters of the MBB such as m, l, etc. 

(1.0 points) 
 

5. Determine the value of m from your measurements and the results obtained in 
PART-A. (3.0 points) 
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PART-C  The spring constants k1 and k2  (6.0 points) 
 

In this part, you need to perform small oscillation experiments using the MBB as a 
rigid pendulum. There are two small holes at each end of the MBB. Two thin pins 
inserted into the holes can be used as the pivot of small oscillation. The U-shaped 
support is to be clamped to the stand and used to support the pivot. Note that the angular 
frequency ω  of small oscillation is given as ω = [torque/(moment of inertia ×  
angle)]1/2. Here, the torque and the moment of inertia are with respect to the pivot.  
Similarly to PART-B, consider two experimental conditions, shown in Fig. 3, to avoid 
the unknown moment of inertia Io of the MBB excluding the ball.  

 

 
 

(1) (2) 
 

Fig. 3  Oscillation of the Mechanical “Black Box” (not to scale) 
The periods of small oscillation, T1 and T2, for two  
configurations shown above can be measured using  
the Photogate. Two pins and a U-shaped support are  
supplied for this experiment. 
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1. Measure the periods T1 and T2 of small oscillation shown in Figs 3(1) and (2) and 

write down their values, respectively. (1.0 points) 
 
2. Explain (by using equations) why the angular frequencies ω1 and ω2 of small 

oscillation of the configurations are different. Use the symbol Io to represent the 
moment of inertia of the MBB excluding the ball for the axis perpendicular to the 
MBB at the end. Use the symbol ∆l as the displacement of the ball from the 
horizontal equilibrium position. (1.0 points) 

 
3. Evaluate ∆l by eliminating Io from the previous results. (1.0 points)  
 
4. By combining the results of PART-C 1~3 and PART-B, find and write down the 

value of the effective total spring constant k of the two-spring system. (2.0 points) 
 
5. Obtain the respective values of k1 and k2. Write down their values. (1.0 points) 
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Country Code Student Code 
  

 
  
  

AAnnsswweerr  FFoorrmm  
 
 
 
PART-A 
 
 
1. Suggest and justify, by using equations, a method allowing to obtain m× l. (2.0 

points) 
 

 

 

 

 

 

 

 

 

 

 

 

2. Experimentally determine the value of m×l. (2.0 points) 
 

 

 

 

 

 

 

 

m×l =                                               . 
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Country Code Student Code 
  

 
PART-B 
 
 

1. Measure v for various values of h. Plot the data on a graph paper in a form that is 
suitable to find the value of m. Identify the slow rotation region and the fast rotation 
region on the graph. (4.0 points) 

 
(On a separate graph paper) 

 
2. Show from your measurements that h = C v2 in the slow rotation region, and h = 

Av2+B in the fast rotation region. (1.0 points) 
 

(In the plot above) 

 

3. Relate the coefficient C to the parameters of the MBB. (1.0 points) 
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Country Code Student Code 
  

 
4. Relate the coefficients A and B to the parameters of the MBB. (1.0 points) 
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Country Code Student Code 
  

 
5. Determine the value of m from your measurements and the results obtained in 

PART-A. (3.0 points) 
 

 
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

m =                                         . 
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Country Code Student Code 
  

 
PART-C 
 
1. Measure the periods T1 and T2 of small oscillation shown in Figs. 3 (1) and (2) and 

write down their values, respectively. (1.0 points) 
 

 
 

T1 =                                                      . 
 
 
 

T2 =                                                      . 
 
 

2. Explain, by using equations, why the angular frequencies ω1 and ω2 of small 
oscillation of the configurations are different. (1.0 points) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



  Experimental Competition / Answer Form  Page 6/7 
 

Country Code Student Code 
  

 
3. Evaluate ∆l by eliminating Io from the previous results. (1.0 points) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
∆l =                                                . 
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Country Code Student Code 
  

 
4. Write down the value of the effective total spring constant k of the two-spring 

system. (2.0 points) 
 
 
 
 
 
 
 
 
 

k =                                                   . 
 
 

5. Obtain the respective values of k1 and k2. Write down their values. (1.0 points) 
 
 

 

 

 

 

 

 

 

 

 

 
k1 =                                                  . 

 
 
 

k2 =                                                  . 
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Theoretical Question 1: Ping-Pong Resistor 
 
1. Answers  
 

(a)  2

2

0
2

R 2
1

d
VRF επ−=  

 

(b)  
d
r 2

0
πεχ −=  

 

(c)  
χ

mgdV 2
th =  

 

(d)  βα += 2
sv V  

    














−

=
m
χ

η
ηα 2

1 2

2

,  ( )gd2
1 2

2









+

=
η

ηβ  

 

(e)  2

3

21
1

md
χ

η
ηγ

−
+

=  

 

(f)  
χη

η mgdVc 2

2

1
1
+
−

= , χ
ηη
ηη

mgIc )1)(1(
12

2

2

++
−

=  

 

V/ Vth

I 

0 cz 1 

Ic 

2~ VI γ  
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2. Solutions 
(a) [1.2 points] 
The charge Q  induced by the external bias voltage V  can be obtained by applying 
the Gauss law: 

∫ =⋅ QsdE rr
0ε      (a1) 

)()( 2
0

2
0 R

d
VREQ πεπε ⋅





=⋅= ,    (a2)  

where  EdV = . 
The energy stored in the capacitor: 

d
VRVd

d
VRVdVQU

VV 2
2

0
0

2
0

0 2
1)( πεπε =′






 ′

=′′= ∫∫ .   (a3) 

The force acting on the plate, when the bias voltage V  is kept constant: 

2

2
2

0R 2
1

d
VR

d
UF πε−=
∂
∂

+=∴ .    (a4) 

 
[An alternative solution:] 
Since the electric field 'E  acting on one plate should be generated by the other plate 
and its magnitude is 

d
VEE
22

1' == ,     (a5) 

the force acting on the plate can be obtained by 
'R QEF = .      (a6) 

 
 
(b) [0.8 points] 
The charge q  on the small disk can also be calculated by applying the Gauss law: 

∫ =⋅ qsdE rr
0ε .     (b1) 

Since one side of the small disk is in contact with the plate,  

VV
d
rrEq χπεπε =−=⋅−=

2

0
2

0 )( .    (b2) 
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Alternatively, one may use the area ratio for Q
R
rq 








−= 2

2

π
π . 

d
r 2

0
πεχ −=∴ .     (b3) 

 
(c) [0.5 points] 
The net force, netF , acting on the small disk should be a sum of the gravitational and 
electrostatic forces: 

egnet FFF += .     (c1) 

The gravitational force: mgF −=g . 

The electrostatic force can be derived from the result of (a) above: 

22
2

2

0e 22
1 V

d
V

d
rF χπε == .   (c2) 

 
In order for the disk to be lifted, one requires :0net >F  

0
2

2 >−mgV
d
χ .    (c3) 

χ
mgdV 2

th =∴ .    (c4) 

 
(d) [2.3 points] 
Let sv  be the steady velocity of the small disk just after its collision with the bottom 
plate. Then the steady-state kinetic energy sK  of the disk just above the bottom plate 
is given by 

2
ss v

2
1 mK = .     (d1) 

For each round trip, the disk gains electrostatic energy by  
qVU 2=∆ .     (d2) 

For each inelastic collision, the disk lose its kinetic energy by 

after2before
2

afterbeforeloss 11)1( KKKKK 







−=−=−=∆

η
η .  (d3) 

Since sK  is the energy after the collision at the bottom plate and )( s mgdqVK −+  is 
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the energy before the collision at the top plate, the total energy loss during the round trip 
can be written in terms of sK : 

))(1(11
s

2
s2tot mgdqVKKK −+−+








−=∆ η

η
.   (d4) 

In its steady state, U∆  should be compensated by totK∆ .  

))(1(112 s
2

s2 mgdqVKKqV −+−+







−= η

η
.   (d5) 

Rearranging Eq. (d5), we have 

[ ]

.v
2
1

11

)1()1(
1

2
s

2

2

2

2

22
4

2

s

m

mgdqV

mgdqVK

=









+

+







−

=

−++
−

=

η
η

η
η

ηη
η

η

    (d6) 

Therefore, 

( )gd
m
V 2

1
2

1
v 2

22

2

2

s 







+

+















−

=
η

ηχ
η

η .   (d7) 

Comparing with the form: 

βα += 2
sv V ,     (d8) 

    














−

=
m
χ

η
ηα 2

1 2

2

,  ( )gd2
1 2

2









+

=
η

ηβ .   (d9) 

 
[An alternative solution:] 
Let nv  be the velocity of the small disk just after n-th collision with the bottom plate. 
Then the kinetic energy of the disk just above the bottom plate is given by 

2v
2
1

nn mK = .     (d10) 

When it reaches the top plate, the disk gains energy by the increase of potential energy: 

mgdqVU −=∆ up .    (d11) 

Thus, the kinetic energy just before its collision with the top plate becomes 

up
2
upup v

2
1 UKmK nn ∆+==− .   (d12) 
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Since beforeafter v/v=η , the kinetic energy after the collision with the top plate becomes 
scaled down by a factor of 2η : 

up
2

up −− ⋅=′ nn KK η .    (d13) 

Now the potential energy gain by the downward motion is: 
mgdqVU +=∆ down     (d14) 

so that the kinetic energy just before it collides with the bottom plate becomes: 

downupdown UKK nn ∆+′= −− .   (d15) 

Again, due to the loss of energy by the collision with the bottom plate, the kinetic 
energy after its )1( +n -th collision can be obtained by 

.)1()1(

))((

))((

)(

22224

22

downup
22

downup
2

down
2

1

mgdqVK
mgdqVmgdqVK

UUK

UK
KK

n

n

n

n

nn

ηηηηη

ηη

ηη

η

η

−+++=

++−+=

∆+∆+=

∆+′=

⋅=

−

−+

   (d16) 

As ∞→n , we expect the velocity svv →n , that is, 2
ss v

2
1 mKK n =→ : 

[ ]

2
s

2

2

2

2

2222
4s

v
2
1

11

)1()1(
1

1

m

mgdqV

mgdqVK

=









+

+







−

=

−++
−

=

η
η

η
η

ηηηη
η

   (d17) 

 
(e) [2.2 points] 
The amount of charge carried by the disk during its round trip between the plates is 

qQ 2=∆ , and the time interval −+ +=∆ ttt , where +t ( −t ) is the time spent during the 
up- (down-) ward motion respectively.   
Here +t ( −t ) can be determined by 

dtat

dtat

=+

=+

−−−−

++++

2
0

2
0

2
1v

2
1v

    (e1) 

where +0v ( −0v ) is the initial velocity at the bottom (top) plate and +a ( −a ) is the up- 
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(down-) ward acceleration respectively.   
Since the force acting on the disk is given by  

mg
d

qVmgqEmaF mm === ± ,   (e2) 

in the limit of qVmgd << , ±a  can be approximated by  

md
qVaaa ≈== −+0 ,    (e3) 

which implies that the upward and down-ward motion should be symmetric. Thus, 
Eq.(e1) can be described by a single equation with −+ == ttt0 , -00s vvv == + , and 

−+ == aaa0 .  Moreover, since the speed of the disk just after the collision should be 
the same for the top- and bottom-plates, one can deduce the relation: 

( )00ss vv ta+=η ,     (e4) 
from which we obtain the time interval 02tt =∆ , 

0

s
0

v122
a

tt 






 −
==∆

η
η .    (e5) 

From Eq. (d6), in the limit of qVmgd << , we have 

qVmK 







−

≈= 2

2
2
ss 1

v
2
1

η
η .   (e6) 

By substituting the results of Eqs. (e3) and (e6), we get 

2

22

2

2 2
1
12

1
212

V
md

qV
mdt

χη
η

η
η

η
η

+
−

=
−







 −
=∆ .  (e7) 

Therefore, from 
t
q

t
QI

∆
=

∆
∆

=
2 , 

2
2

3

2

2

21
1

21
12 V

mdmd
VV

t
qI χ

η
ηχ

η
ηχ

−
+

=
−
+

=
∆

= .  (e8) 

 2

3

21
1

md
χ

η
ηγ

−
+

=∴      (e9) 

 
[Alternative solution #1:] 
Starting from Eq. (e3), we can solve the quadratic equation of Eq. (e1) so that 
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









−+=

±

±
± 1

v
21v

2
0

0

0

0 da
a

t  .   (e10) 

When it reaches the steady state, the initial velocities ±0v  are given by 

s0 vv =+      (e11) 

2
s

0
s0s0 v

21v)v(v data +=+⋅= +− ηη ,   (e12) 

where sv  can be rewritten by using the result of Eq. (e6),  

da
m
qVV 02

2

2

2
2
s 2

1
2

1
v 








−

=







−

=≈
η

η
η

ηα .   (e13) 

As a result, we get ss0 v1vv =⋅≅− η
η and consequently 








−=± 11v

0

s

ηa
t , which is 

equivalent to Eq. (e4).   
 
[Alternative solution #2:] 
The current I  can be obtained from  

d
q

t
qI v22
=

∆
= ,     (e14) 

where v  is an average velocity. Since the up and down motions are symmetric with the 
same constant acceleration in the limit of qVmgd << , 









+=
η

s
s

vv
2
1v .     (e15) 

Thus, we have 

sv11
2 








+=
ηd

qI .    (e16) 

Inserting the expression (Eq. (e15)) of sv  into Eq. (e16), one obtains an expression 
identical to Eq. (e8). 
 
(f) [3 points] 
The disk will lose its kinetic energy and eventually cease to move when the disk can not 
reach the top plate.  In other words, the threshold voltage cV  can be determined from 
the condition that the velocity -0v  of the disk at the top plate is zero, i.e., 0v0 =- .   

In order for the disk to have 0v -0 =  at the top plate, the kinetic energy sK  at the 
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top plate should satisfy the relation: 

0ss =−+= mgdqVKK c ,   (f1) 

where sK  is the steady-state kinetic energy at the bottom plate after the collision. 
Therefore, we have 

0
11 2

2

2

2

=−+







+

+







−

mgdqVmgdqV cc η
η

η
η ,   (f2) 

or equivalently,  

0)1()1( 22 =−−+ mgdqVc ηη .    (f3) 

∴  mgdqV 2

2

c 1
1

η
η

+
−

=      (f4) 

From the relation cVq χ= ,  

χη
η mgdV 2

2

c 1
1
+
−

=∴ .    (f5) 

In comparison with the threshold voltage thV  of Eq. (c4), we can rewrite Eq. (f5) by 

thVzV cc =      (f6) 
where cz  should be used in the plot of I  vs. )/( thVV  and 

)1(2
1

2

2

η
η
+
−

=cz .     (f7) 

 
[Note that an alternative derivation of Eq. (f1) is possible if one applies the energy 
compensation condition of Eq. (d5) or the recursion relation of Eq. (d17) at the top 
plate instead of the bottom plate.] 

Now we can setup equations to determine the time interval +− +=∆ ttt : 

dtat =+ −−−−
2

0 2
1v     (f8) 

dtat =+ ++++
2

0 2
1v     (f9) 

where the accelerations are given by 
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ggg
md
qV
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
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=

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ηη
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2η−=
−

+

a
a

     (f12) 

Since 0v0 =− , we have ( )−−+ = taη0v  and −− = adt /22 .  









+==

−
− g

d
a
dt )1(2 2η ,     (f13) 

By using ( ) +−+ −== dada 22v 22
0 η , we can solve the quadratic equation of Eq. (f9): 

ηη
η −

++

+

+

+

+

+
+ =















 +
==−=










−+=

t
g
d

a
d

a
da

a
t 2

2
0

2
0

0 12v1
v

21v .  (f14) 

∴ ( ) 
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
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
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[A more elaborate Solution:] 
 
One may find a general solution for an arbitrary value of V .  By solving the quadratic 
equations of Eqs. (f8) and (f9), we have 












++−=

±

±

±

±
± 2

0

0

v
2

11
v da
a

t .   (f17) 

(It is noted that one has to keep the smaller positive root.) 
 
 
To simplify the notation, we introduce a few variables: 

(i) 
thV

Vy =  where 
χ

mgdV 2
th = , 

(ii) 
)1(2

1
2

2

η
η
+
−

=cz , which is defined in Eq. (f7), 

(iii) 20 1
2

η
η

−
=

gdw  and ( )g
dw 21 1

2
η−

= , 

In terms of y , w , and cz , 

)12( 2 −=−=+ ygg
md
qVa    (f18) 

)12( 2 +=+=− ygg
md
qVa    (f19) 

22
0s0 vv czyw +==+     (f20) 

22
0s0 )v(v czywta −=+= ++− η   (f21) 

12 2
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+−−
=+ y

zyzy
wt cc η

   (f22) 

12 2
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1 +

−−+
=− y

zyzy
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   (f21) 
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( ) )(
8
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1
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w
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t
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q

t
QI

χ
χ =

∆
=

+
=

∆
∆

=
−+

  (f22) 

where  
1

2
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3. Mark Distribution 

No. Total 
Pt. 

Partial 
Pt. Contents 

0.3 Gauss law, or a formula for the capacitance of a parallel plate 

0.5 Total energy of a capacitor at 
V  

='E electrical field by the other 
plate 

(a) 1.2 

0.4 Force from the energy 
expression  

'QEF =  

0.3 Gauss law Use of area ratio and result of (a) (b) 0.8 

0.5 Correct answer 

0.1 Correct lift-up condition with force balance  

0.2 Use of area ratio and result of (a) 

(c) 0.5 

0.2 Correct answer 

0.5 Energy conservation and the work done by the field 

0.5 Loss of energy due to collisions 

0.8 Condition for the steady state: 
energy balance equation (loss = 
gain) 

Condition for the steady state: 
recursion relation 

(d) 2.3 

0.5 Correct answer 

0.2 qQ 2=∆  per trip 

0.5 Acceleration ±a  in the limit of mgdqV >> ; −+ = aa  by 
symmetry 

0.3 Kinetic equations for d , v , 
a , and t , solutions for ±t  

0.4 Expression of ±0v  and ±t  in 
its steady state 

0.4 Solutions of ±t  in 
approximation 

By using the symmetry, derive 
the relation (e4) 

(e) 2.2 

0.4 Correct answer 

0.5 Condition for cV ; 0up =K or 
0v up,s =  

0.3 energy balance equation 

Using (d8), Recursion relations 

0.3 Correct answer of cV  

0.7 Kinetic equations for t∆  

0.3 Correct answer of cI  

(f) 3.0 

0.9 Distinction between thV  and cV , 
the asymptotic behavior 2VI γ=  in plots 

Total 10   
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Theoretical Question 2: Rising Balloon 

 
1. Answers  
 

(a) 
PP

PngMF AB ∆+
=   

 

(b) =γ  
0

00

P
gzρ  = 5.5  

 

(c) =∆P  





 − 7

0

114
λλ

κ
r
RT    

2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

 

(d) a =0.110 
 

(e) fz =11 km,  fλ =2.1.  
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2. Solutions 
 
[Part A] 
(a) [1.5 points] 
Using the ideal gas equation of state, the volume of the helium gas of n  moles at 
pressure PP ∆+  and temperature T  is  

)/( PPnRTV ∆+=                             (a1)  

while the volume of 'n  moles of air gas at pressure P and temperature T  is 
PRTnV /'= .                               (a2) 

Thus the balloon displaces 
PP

Pnn
∆+

='  moles of air whose weight is  gnM A ' .  

This displaced air weight is the buoyant force, i.e., 

 
PP

PngMF AB ∆+
= .     (a3) 

(Partial credits for subtracting the gas weight.) 
 
(b) [2 points] 
The pressure difference arising from a height difference of z  is gzρ−  when the air 
density ρ  is a constant. When it varies as a function of the height, we have 

         g
T
P

P
Tg

dz
dP

0

00ρρ −=−=                           (b1) 

where the ideal gas law PT /ρ = constant is used. Inserting Eq. (2.1) and 

00 /1/ zzTT −=  on both sides of Eq. (b1), and comparing the two, one gets  

52.5
1001.1

8.9109.416.1
5

4

0

00 =
×

×××
==

P
gzργ .                 (b2) 

The required numerical value is 5.5. 
 

[Part B] 
(c) [2 points] 
The work needed to increase the radius from r  to drr +  under the pressure 
difference P∆  is  

PdrrdW ∆= 24π ,                             (c1) 
while the increase of the elastic energy for the same change of r  is  
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dr
r
rrRTdr

dr
dUdW )44(4 5

6
0−=






= πκ .                       (c2) 

Equating the two expressions of dW , one gets 

 )1(4 7

6
0

r
r

r
RTP −=∆ κ  = 






 − 7

0

114
λλ

κ
r
RT .                    (c3) 

This is the required answer.  
The graph as a function of λ (>1) increases sharply initially, has a maximum at λ =71/6 

=1.38, and decreases as 1−λ  for largeλ . The plot of )/4/( 0rRTP κ∆  is given below.  

 

2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

 
 
(d) [1.5 points] 
From the ideal gas law,  

0000 RTnVP =                               (d1) 
where 0V  is the unstretched volume.  

At volume 0
3VV λ=  containing n  moles, the ideal gas law applied to the gas inside 

at 0TT =  gives the inside pressure inP  as 

03
0

0in / P
n

nVnRTP
λ

==  .                         (d2) 

On the other hand, the result of (c) at 0TT =  gives 

              

inP = 077
0

0
00 ))11(1()11(4 Pa

r
RTPPP

λλλλ
κ

−+=−+=∆+ .          (d3)  

Equating (d2) and (d3) to solve for a ,  
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71

3
0 1)/(

−− −
−

=
λλ

λnna .                                        (d5) 

Inserting 0/ nn =3.6 and λ =1.5 here, a =0.110.   

 
 

[Part C] 
(e) [3 points] 
The buoyant force derived in problem (a) should balance the total mass of TM =1.12 kg. 

Thus, from Eq. (a3), at the weight balance, 

PP
P
∆+

=
nM

M

A

T .                                 (e1) 

On the other hand, applying again the ideal gas law to the helium gas inside of volume 

0
33

0
33

3
4

3
4 VrrV λπλπ === , for arbitrary ambient P  and T , one has 

00
0

0

3)(
n
n

T
TP

V
nRTPP ==∆+ λ                           (e2) 

for n  moles of helium. Eqs. (c3), (e1), and (e2) determine the three unknowns P , 
P∆ , and λ  as a function of T and other parameters. Using Eq. (e2) in Eq. (e1), one 

has an alternative condition for the weight balance as 

  
0

T30

0 nM
M

T
T

P
P

A

=λ  .                             (e3)  

Next using (c3) for P∆  in (e2), one has 

00
0

62

0

3 )1(4
n
n

T
TP

r
RTP =−+ −λλκλ  

or, rearranging it, 

 )1( 62

0

30

0

−−−= λλλ a
n
n

T
T

P
P ,                         (e4) 

where the definition of a  has been used again. 
Equating the right hand sides of Eqs. (e3) and (e4), one has the equation for λ  as 

 )1( 62 −− λλ = )(1 T

0 AM
Mn

an
− =4.54.                      (e5) 

The solution for λ  can be obtained by 

 54.4)54.41/(54.4 32 ≈−≈ −λ : ≅fλ 2.13.       (e6) 
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To find the height, replace )//()/( 00 TTPP  on the left hand side of Eq. (e3) as a 

function of the height given in (b) as  

0

T31
0

30

0

)/1(
nM

Mzz
T
T

P
P

A
ff =−= − λλ γ =3.10 .                (e7) 

 Solution of Eq. (e7) for fz  with fλ =2.13 and 1−γ =4.5 is  

fz = 49 ( )5.4/13 )13.2/10.3(1−× = 10.9 (km).    (e8) 

The required answers are =fλ 2.1, and =fz 11 km.  
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3. Mark Distribution 
 

No. Total 
Pt. 

Partial 
Pt. Contents 

0.5 Archimedes’ principle 

0.5 Ideal gas law applied correctly 

(a) 1.5 

0.5 Correct answer (partial credits 0.3 for subtracting He weight) 

0.8 Relation of pressure difference to air density 

0.5 Application of ideal gas law to convert the density into pressure 

0.5 Correct formula for γ  

(b) 2.0 

0.2 Correct number in answer  

0.7 Relation of mechanical work to elastic energy change 

0.3 Relation of pressure to force  

0.5 Correct answer in formula 

(c) 2.0 

0.5 Correct sketch of the curve 

0.3 Use of ideal gas law for the increased pressure inside 

0.4 Expression of inside pressure in terms of a  at the given conditions 

0.5 Formula or correct expression for a  

(d) 1.5 

0.3 Correct answer 

0.3 Use of force balance as one condition to determine unknowns 

0.3 Ideal gas law applied to the gas as an independent condition to determine 
unknowns 

0.5 The condition to determine fλ  numerically 

0.7 Correct answer for fλ  

0.5 The relation of fz  versus fλ  

(e) 3.0 

0.7 Correct answer for fz  

Total 10   
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Theoretical Question 3: Scanning Probe Microscope 
 

1. Answers 

(a) 
22222

0
2

0

)( ωωω bm

F
A

+−
=  and 

)(
tan 22

0

0

ωω
ω

φ
−

=
m
b .   At 0ωω = , 

0

0

ωb
F

A =  

and 
2
πφ = .  

 
(b) A non-vanishing dc component exists only when iωω = . 

In this case the amplitude of the dc signal will be iRi VV φcos
2
1

00 . 

 

(c) 
0

2
021

2 ωb
Vcc R  at the resonance frequency 0ω . 

 
(d) 18107.1 −×=∆m  kg. 
 

(e) 
2/1

2
0

3
00 1' 








−=

ω
ωω

m
c . 

 

(f) 
3/1

00
0 








∆

=
ωωm

qQkd e  

=0d 41 nm. 
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2. Solutions 
 

(a) [1.5 points] 

Substituting )sin()( φω −= tAtz  in the equation tFzm
dt
dzb

dt
zdm ωω sin0

2
02

2

=++  

yields, 

t
A
Ftmtbtm ωφωωφωωφωω sin)sin()cos()(sin 02

0
2 =−+−+−− .  (a1) 

Collecting terms proportional to tωsin  and tωcos , one obtains 

{ } 0coscossin)(sinsincos)( 22
0

022
0 =+−−+







 −+− tbmt

A
Fbm ωφωφωωωφωφωω  (a2) 

Zeroing the each curly square bracket produces  

)(
tan 22

0 ωω
ωφ
−

=
m

b ,       (a3) 

22222
0

2

0

)( ωωω bm

F
A

+−
= .    (a4) 

At 0ωω = ,  

0

0

ωb
F

A =  and .
2
πφ =        (a5) 

(b) [1 point] 
The multiplied signal is  

}])cos{(})[cos{(
2
1

)sin()sin(

00

00

iiiiRi

Riii

ttVV

tVtV

φωωφωω

ωφω

−+−−−=

−
  (b1) 

A non-vanishing dc component exists only when iωω = . In this case the amplitude of 

the dc signal will be  

iRi VV φcos
2
1

00 .     (b2) 

 
(c) [1.5 points] 
Since the lock-in amplifier measures the ac signal of the same frequency with its 
reference signal, the frequency of the piezoelectric tube oscillation, the frequency of the 



  Theoretical Question 3 / Solutions  Page 3/6 
 

 

cantilever, and the frequency of the photodiode detector should be same.  The 
magnitude of the input signal at the resonance is 

0

021

0

0
20 ωω b

Vcc
b
FcV R

i == .     (c1) 

Then, since the phase of the input signal is 0
22
=+−

ππ  at the resonance, 0=iφ  and 

the lock-in amplifier signal is  

0

2
021

00 2
0cos

2
1

ωb
VccVV R

Ri = .      (c2) 

 
(d) [2 points] 

The original resonance frequency 
m
k

=0ω  is shifted to 

 





 ∆
−=






 ∆
−≅






 ∆
+=

∆+

−

m
m

m
m

m
k

m
m

m
k

mm
k

2
11

2
111 0

2
1

ω .  (d1) 

Thus  

m
m∆

−=∆ 00 2
1ωω .       (d2) 

Near the resonance, by substituting φπφ ∆+→
2

 and 000 ωωω ∆+→  in Eq. (a3), the 

change of the phase due to the small change of 0ω  (not the change of ω ) is  

02tan
1

2
tan

ωφ
φπ

∆
=

∆
−=






 ∆+

m
b .      (d3) 

Therefore,  

b
m 02tan ωφφ ∆

−=∆≈∆ .      (d4)  

From Eqs. (d2) and (d4), 
1818

6

123

0

107.110
8.1180010

1010 −−
−

×==
⋅

=∆=∆
ππφ

ω
bm  kg.  (d5) 

 
(e) [1.5 points]  
In the presence of interaction, the equation of motion near the new equilibrium position 

0h  becomes 
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tFzczm
dt
dzb

dt
zdm ωω sin03

2
02

2

=−++    (e1) 

where we used zchfhf 30 )()( +≈  with 0hhz −=  being the displacement from the 
new equilibrium position 0h .  Note that the constant term )( 0hf  is cancelled at the 

new equilibrium position. 

Thus the original resonance frequency 
m
k

=0ω  will be shifted to 

2
0

3
0

3
2
03

0 1'
ω

ω
ω

ω
m
c

m
cm

m
ck

−=
−

=
−

= .      (e3) 

Hence the resonance frequency shift is given by 

 







−−=∆ 11 2

0

3
00 ω

ωω
m
c .     (e4) 

 
(f) [2.5 points] 
The maximum shift occurs when the cantilever is on top of the charge, where the 
interacting force is given by  

2)(
h
qQkhf e= .       (f1) 

From this,  

3
0

3 2
0

d
qQk

dh
dfc e

dh

−==
=

.       (f2) 

Since 00 ωω <<∆ , we can approximate Eq. (e4) as 

0

3
0 2 ω

ω
m
c

−≈∆ .     (f3) 

From Eqs. (f2) and (f3), we have 

3
00

3
00

0 2
2

1
dm

qQk
d
qQk

m ee ωω
ω =








−−=∆ .   (f4) 

Here 19106.1 −×−== eq  Coulomb and 19106.96 −×−== eQ  Coulomb. Using the 

values provided, 
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 8
3/1

00
0 101.4 −×=








∆

=
ωωm

qQkd e  m = 41 nm.     (f5) 

Thus the trapped electron is 41 nm from the cantilever.  
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3. Mark Distribution 
 

No. 
Total 

Pt. 

Partial 

Pt. 
Contents 

0.7 Equations for A  and φ  (substitution and manipulation) 

0.4 Correct answers for A  and φ  
(a) 1.5 

0.4 A  and φ  at 0ω  

0.4 Equation for the multiplied signal 

0.3 Condition for the non-vanishing dc output 

(b) 1.0 

0.3 Correct answer for the dc output 

0.6 Relation between iV  and RV  

0.4 Condition for the maximum dc output 

(c) 1.5 

0.5 Correct answer for the magnitude of dc output 

0.5 Relation between m∆  and 0ω∆  

1.0 Relations between 0ω∆  (or m∆ ) and φ∆  
(d) 2.0 

0.5 Correct answer (Partial credit of 0.2 for the wrong sign.) 

1.0 
Modification of the equation with )(hf  and use of a proper 

approximation for the equation 
(e) 1.5 

0.5 Correct answer  

0.5 Use of a correct formula of Coulomb force 

0.3 Evaluation of 3c  

0.6 Use of the result in (e) for either 0ω∆  or 2
0

2
0' ωω −  

0.6 Expression for 0d  

(f) 2.5 

0.5 Correct answer 

Total 10   
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Solutions 
 
PART-A  Product of the mass and the position of the ball (m×l )  

(4.0 points) 
 

1. Suggest and justify, by using equations, a method allowing to obtain m× l. (2.0 
points) 

 
m×l = (M + m)×lcm 

 

(Explanation)  The lever rule is applied to the Mechanical “Black Box”, shown in Fig. 
A-1, once the position of the center of mass of the whole system is found. 
 

 
 

Fig. A-1 Experimental setup 
 

2. Experimentally determine the value of m×l. (2.0 points) 
 
            m×l = 2.96×10-3kg⋅m  
 
(Explanation)  The measured quantities are 
 
          M + m = (1.411±0.0005)×10-1kg 
and 
          lcm = (2.1±0.06)×10-2m   or   21±0.6 mm. 
Therefore 
          m×l = (M + m)×lcm  

= (1.411±0.0005)×10-1kg×(2.1±0.06)×10-2m  
= (2.96±0.08)×10-3kg⋅m 
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PART-B  The mass m of the ball  (10.0 points) 
 

1. Measure v for various values of h. Plot the data on a graph paper in a form that 
is suitable to find the value of m. Identify the slow rotation region and the fast 
rotation region on the graph. (4.0 points) 

 
2. Show from your measurements that h = C v2 in the slow rotation region, and h = 

Av2+B in the fast rotation region. (1.0 points) 

0 200 400 600 800
0

10

20

30

40

50

h 
(c

m
)

v2 (cm2/s2)

 
Fig. B-1 Experimental data 

 

(Explanation)  The measured data are 
 

 h1 (×10- 2 m) a) ∆t (ms) h (×10- 2 m) b) v (×10- 2 m/s) c) v2 (×10- 4 m2/s2) 
1 25.5±0.1 269.4±0.05 1.8±0.1 8.75±0.02 76.6±0.2 
2 26.5±0.1 235.7±0.05 2.8±0.1 11.12±0.02 123.7±0.3 
3 27.5±0.1 197.9±0.05 3.8±0.1 13.24±0.03 175.3±0.6 
4 28.5±0.1 176.0±0.05 4.8±0.1 14.89±0.03 221.7±0.6 
5 29.5±0.1 161.8±0.05 5.8±0.1 16.19±0.03 262.1±0.7 
6 30.5±0.1 151.4±0.05 6.8±0.1 17.31±0.03 299.6±0.7 
7 31.5±0.1 141.8±0.05 7.8±0.1 18.48±0.04 342±1 
8 32.5±0.1 142.9±0.05 8.8±0.1 18.33±0.04 336±1 

fast 

 

( ×10- 4 m2/s2 )

h ( × 10
-2 m

 ) 



 Experimental Competition / Solutions  Page 3/11 

9 33.5±0.1 141.4±0.05 9.8±0.1 18.53±0.04 343±1 
10 34.5±0.1 142.2±0.05 10.8±0.1 18.42±0.04 339±1 
11 35.5±0.1 145.4±0.05 11.8±0.1 18.02±0.04 325±1 
12 36.5±0.1 147.8±0.05 12.8±0.1 17.73±0.04 314±1 
13 37.5±0.1 148.3±0.05 13.8±0.1 17.67±0.04 312±1 
14 38.5±0.1 148.0±0.05 14.8±0.1 17.70±0.04 313±1 
15 39.5±0.1 143.9±0.05 15.8±0.1 18.21±0.04 332±1 
16 40.5±0.1 141.9±0.05 16.8±0.1 18.46±0.04 341±1 
17 41.5±0.1 142.9±0.05 17.8±0.1 18.33±0.04 336±1 
18 42.5±0.1 141.9±0.05 18.8±0.1 18.46±0.04 341±1 
19 43.5±0.1 142.8±0.05 19.8±0.1 18.35±0.04 337±1 
20 44.5±0.1 144.3±0.05 20.8±0.1 18.16±0.04 330±1 
21 45.5±0.1 142.2±0.05 21.8±0.1 18.42±0.04 339±1 
22 46.5±0.1 139.8±0.05 22.8±0.1 18.74±0.04 351±1 
23 47.5±0.1 136.7±0.05 23.8±0.1 19.17±0.04 368±1 
24 48.5±0.1 133.0±0.05 24.8±0.1 19.70±0.04 388±1 
25 49.5±0.1 129.5±0.05 25.8±0.1 20.23±0.04 409±1 
26 50.5±0.1 125.7±0.05 26.8±0.1 20.84±0.04 434±1 
27 51.5±0.1 124.3±0.05 27.8±0.1 21.08±0.04 444±1 
28 52.5±0.1 123.4±0.05 28.8±0.1 21.23±0.04 451±1 
29 53.5±0.1 120.9±0.05 29.8±0.1 21.67±0.04 470±1 
30 54.5±0.1 117.5±0.05 30.8±0.1 22.30±0.04 497±1 
31 55.5±0.1 114.0±0.05 31.8±0.1 22.98±0.04 528±1 
32 56.5±0.1 111.2±0.05 32.8±0.1 23.56±0.05 555±2 
33 57.5±0.1 110.5±0.05 33.8±0.1 23.71±0.05 562±2 
34 58.5±0.1 108.1±0.05 34.8±0.1 24.24±0.05 588±2 
35 59.5±0.1 107.1±0.05 35.8±0.1 24.46±0.05 598±2 
36 60.5±0.1 104.6±0.05 36.8±0.1 25.05±0.05 628±2 
37 61.5±0.1 102.1±0.05 37.8±0.1 25.66±0.05 658±2 
38 62.5±0.1 100.1±0.05 38.8±0.1 26.17±0.05 685±2 
39 63.5±0.1 99.6±0.05 39.8±0.1 26.31±0.05 692±2 
40 64.5±0.1 97.3±0.05 40.8±0.1 26.93±0.05 725±2 
41 65.5±0.1 95.8±0.05 41.8±0.1 27.35±0.05 748±2 
42 66.5±0.1 94.7±0.05 42.8±0.1 27.67±0.05 766±2 
43 67.5±0.1 94.0±0.05 43.8±0.1 27.87±0.06 777±2 
44 68.5±0.1 92.9±0.05 44.8±0.1 28.20±0.06 795±2 
45 69.5±0.1 91.1±0.05 45.8±0.1 28.76±0.06 827±2 
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where  a) h1 is the reading of the top position of the weight before it starts to fall, 
      b) h is the distance of fall of the weight which is obtained by h = h1 – h2 + d/2, 
          h2 (= (25±0.05)×10-2 m) is the top position of the weight at the start of 

blocking of the photogate,  
d (= (2.62±0.005) ×10-2 m) is the length of the weight, and 

  c) v is obtained from v = d/∆t. 
 

3. Relate the coefficient C to the parameters of the MBB. (1.0 points) 

 
h = C v2, where C = {mo + I/R2 + m(l2 + 2/5 r2)/R2}/2mog  
 

(Explanation)  The ball is at static equilibrium (x = l). When the speed of the weight is 
v, the increase in kinetic energy of the whole system is given by 
 

∆K = 1/2 mov2 + 1/2 Iω2 + 1/2 m(l2 + 2/5 r2)ω2 
           = 1/2 {mo + I/R2 + m(l2 + 2/5 r2)/R2}v2, 
 
where ω (= v/R) is the angular velocity of the Mechanical “Black Box” and I is the 
effective moment of inertia of the whole system except the ball. Since the decrease in 
gravitational potential energy of the weight is 
 

∆U = - mogh , 
 
the energy conservation (∆K + ∆U = 0) gives 
 

h = 1/2 {mo + I/R2 + m(l2 + 2/5 r2)/R2}v2/mog 
= C v2,  where C = {mo + I/R2 + m(l2 + 2/5 r2)/R2}/2mog 

 
4. Relate the coefficients A and B to the parameters of the MBB. (1.0 points) 

 

h = A v2 + B, where A = [mo + I/R2 + m{(L/2 − δ − r)2 + 2/5 r2}/R2]/2mog  
     and B = [ – k1( L/2 – l – δ – r)2  

+ k2{(L – 2δ – 2r)2 – (L/2 + l – δ – r)2}] /2mog  
 

(Explanation)  The ball stays at the end cap of the tube (x = L/2 − δ − r). When the 
speed of the weight is v, the increase in kinetic energy of the whole system is given by  
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K = 1/2 [mo + I/R2 + m{(L/2 − δ − r)2 + 2/5 r2}/R2]v2. 
 

Since the increase in elastic potential energy of the springs is 
∆Ue = 1/2 [ – k1( L/2 – l – δ – r)2  

+ k2{(L – 2δ – 2r)2 – (L/2 + l – δ – r)2}] ,  
   
the energy conservation (K + ∆U + ∆Ue = 0) gives 
 
              h = 1/2 [mo + I/R2 + m{(L/2 − δ − r)2 + 2/5 r2}/R2]v2/mog + ∆Ue/mog  

       = A v2 + B,  
where  

A = [mo + I/R2 + m{(L/2 − δ − r)2 + 2/5 r2}/R2]/2mog  
and  

B = [ – k1( L/2 – l – δ – r)2  
+ k2{(L – 2δ – 2r)2 – (L/2 + l – δ – r)2}] /2mog. 

 
 

5. Determine the value of m from your measurements and the results obtained in 
PART-A. (3.0 points) 

 
m = 6.2×10-2 kg 

 
 (Explanation)  From the results obtained in PART-B 3 and 4 we get 
 

A – C { }.)2(
2

22
2 lrL

Rgm
m

o

−−−= δ   

 
The measured values are  L = (40.0±0.05)×10-2 m 
       mo = (100.4±0.05)×10-3 kg 
       2R = (3.91±0.005)×10-2 m 
Therefore,  
 

(L/2 - δ - r)2 = {(20.0±0.03) – 0.5 – 1.1}2 ×10-4 m2 = (338.6±0.8)×10-4 m2 

 
and 

2gmoR2 = 2×980×(100.4±0.05)×(1.955±0.003)2 ×10-6kg⋅m3/s2 
= (752±2)×10-6kg⋅m3/s2.  
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The slopes of the two straight lines in the graph (Fig. B-1) of PART-B 1 are  
  

A = 5.0±0.1s2/m  and  C = 2.4±0.1s2/m,  
 

respectively, and 
 
    A - C = 2.6±0.1s2/m.  
 
Since we already obtained m×l = (M + m)×lcm = 2.96×10-3kg⋅m from PART-A, 
the equation  
 

(338.6±0.8)m2 – (752±2)×103×(0.026±0.001)m – (296±8)2 = 0 
or 

(338.6±0.8)m2 – (19600±800)m – (88000±3000) = 0 
 
is resulted, where m is expressed in the unit of g.  
The roots of this equation are 
 

( ) ( ) ( ) ( )
( ) .

8.06.338
3000880008.06.33840098004009800 2

±
±×±+±±±

=m  

 
The physically meaningful positive root is 
 

( ) ( )
( )8.06.338

60000001260000004009800
±

±+±
=m ( )262 ±= g ( ) 26.2 0.2 10−= ± × kg. 

 
 
 
 
PART-C  The spring constants k1 and k2  (6.0 points) 
 
 

1. Measure the periods T1 and T2 of small oscillation shown in Figs. 3 (1) and (2) 
and write down their values, respectively. (1.0 points) 

 
            T1 = 1.1090s   and   T2 = 1.0193s 
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(Explanation)   

 
(1) (2) 

 
Fig. C-1  Small oscillation experimental set up 

 
The measured periods are 
 

 T1 (s)  T2 (s) 
1 1.1085±0.00005 1 1.0194±0.00005 
2 1.1092±0.00005 2 1.0194±0.00005 
3 1.1089±0.00005 3 1.0193±0.00005 
4 1.1085±0.00005 4 1.0191±0.00005 
5 1.1094±0.00005 5 1.0192±0.00005 
6 1.1090±0.00005 6 1.0194±0.00005 
7 1.1088±0.00005 7 1.0194±0.00005 
8 1.1090±0.00005 8 1.0191±0.00005 
9 1.1092±0.00005 9 1.0192±0.00005 
10 1.1094±0.00005 10 1.0193±0.00005 

 
By averaging the10 measurements for each configuration, respectively, we get 
 
       T1 = 1.1090±0.0003s   and   T2 = 1.0193±0.0001s. 
 
 

 
2. Explain, by using equations, why the angular frequencies ω1 and ω2 of small 

oscillation of the configurations are different. (1.0 points) 
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( )
( )







 +∆+++

∆+++
=

221

5
2

2

22

rllLmI

llLmgLMg

o

ω  

( )
( )







 +∆+−+

∆+−+
=

222

5
2

2

22

rllLmI

llLmgLMg

o

ω  

 
(Explanation)  The moment of inertia of the Mechanical “Black Box” with respect to 
the pivot at the top of the tube is  
 

( )






 +∆+++= 22

1 5
2

2 rllLmII o   or  ( )






 +∆+−+= 22

2 5
2

2 rllLmII o  

 
depending on the orientation of the MBB as shown in Figs. C-1(1) and (2), 
respectively. 
When the MBB is slightly tilted by an angle θ from vertical, the torque applied by the 
gravity is 
 

( ) ( ) ( ) ( ){ }θθθτ llLmgLMgllLmgLMg ∆+++≈∆+++= 22sin2sin21  

or 
 

( ) ( ) ( ) ( ){ }θθθτ llLmgLMgllLmgLMg ∆+−+≈∆+−+= 22sin2sin22  

depending on the orientation.   
Therefore, the angular frequencies of oscillation become  
 

( )
( )







 +∆+++

∆+++
==

22
1

1

1

5
2

2

22

rllLmI

llLmgLMg

I
o

θ
τ

ω  

and 

( )
( )

.

5
2

2

22
22

2

2

2







 +∆+−+

∆+−+
==

rllLmI

llLmgLMg

I
o

θ
τ

ω  
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3. Evaluate ∆l by eliminating Io from the previous results. (1.0 points) 
 

 

( )7.2 0.9l∆ = ± cm ( ) 27.2 0.9 10−= ± × m 

 
(Explanation)  By rewriting the two expressions for the angular frequencies ω1 and ω2 
as 

( ) ( )






 +∆+++=∆+++ 222

1
2
1 5

2
222 rllLmIllLmgLMg o ωω  

and 

( ) ( )






 +∆+−+=∆+−+ 222

2
2
2 5

2
222 rllLmIllLmgLMg o ωω  

 
one can eliminate the unknown moment of inertia Io of the MBB without the ball. 
By eliminating the Io one gets the equation for ∆l 
 

( ) ( ) ( ) ( )( ).22
2

2
2

2
1

2
2

2
1

2
1

2
2 llLmmgllmggLmM

∆+=++






 ∆+

+
− ωωωωωω  

 
From the measured or given values we get,    
 

( )




















−








=−

2

1

2

2

2
1

2
2

22
TT
ππωω

22

0003.01090.1
2832.6

0001.00193.1
2832.6









±
−








±
=  

= 5.90±0.01s-2 
 

( ) ( ) ( ) ( ) 2141.1 0.05 980 40.0 0.05
27.66 0.04 10

2 2
M m gL −+ ± × × ±

= = ± × kg⋅m2/s2 

 

( ) ( ) glmM
TT

mgl cm+




















+








=+

2

2

2

1

2
2

2
1

22 ππωω  

( ) 9808296
0001.00193.1

2832.6
0003.01090.1

2832.6 22

×±×




















±
+








±
=  
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( ) 2203 5 10−= ± × kg⋅m2/s4 

 

( ) cmlmM
TT

ml +















=

2

2

2

1

2
2

2
1

22 ππωω  

 

 

( )3.6 0.1= ± kg⋅m/s4. 

 
Therefore, the equation we obtained in PART-C 3 becomes 
 

( ) ( ) ( ){ } ( ) 55 1052039802621004.066.2701.090.5 ×±+∆××±+×±± l   
 

( ) ( ){ },205.00.40102.02.7 5 l∆+±××±=
 
where ∆l is expressed in the unit of cm. By solving the equation we get  
 

( )7.2 0.9l∆ = ± cm ( ) 27.2 0.9 10−= ± × m 

 
4. Write down the value of the effective total spring constant k of the two-spring 

system. (2.0 points) 
 

k = 9 N/m  
 
(Explanation)  The effective total spring constant is 
 

( ) 10009000
9.02.7
980262

±=
±
×±

=
∆

≡
l

mgk dyne/cm   or   9±1N/m. 

 
5. Obtain the respective values of k1 and k2. Write down their values. (1.0 point) 

 
k1 = 5.7 N/m 
k2 = 3 N/m 

 

( )8296
0001.00193.1

2832.6
0003.01090.1

2832.6 22

±×







±








±
=
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(Explanation)  When the MBB is in equilibrium on a horizontal plane the force 
balance condition for the ball is that 
 

 .
2

2
1

2

2

1

k
k

N
N

rlL
rlL

==
−−+

−−−

δ

δ
    

 
Since 21 kkk += , we get 
 

 k
rL

rlL

rlL
rlL

kk
22

2

1
2

2
1 −−

−−+
=

+
−−+

−−−
=

δ

δ

δ

δ
 

and 

.
22

2
12 k

rL

rlL
kkk

−−

−−−
=−=

δ

δ
 

 
From the measured or given values  
 

( )

( ) .005.063.0
2.20.105.00.40

1.15.0
262
829603.00.20

22
2 ±=

−−±

−−







±
±

+±
=

−−

−−+

rL

rlL

δ

δ
 

 
Therefore, 
 

( ) ( ) 600570010009000005.063.01 ±=±×±=k dyne/cm   or   5.7±0.6N/m, 
and 
 

( ) ( ) 100030006005700100090002 ±=±−±=k dyne/cm   or   3±1N/m. 
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